References
Aljanabi, S.M., & Martinez, I. (1997). Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques.Nucleic Acids Research , 25 , 4692–4693. https://doi.org/10.1093/nar/25.22.4692
Andrews, S., & Krueger, F. (2010). FastQC. A quality control tool for high throughput sequence data (p. 370).
Bandelt, H.J., Forster, P., & Röhl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution , 16 , 37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036
Banister, K.E. (1973). A revision of the large Barbus (Pisces, Cyprinidae) of East and Central Africa. Studies of African Cyprinidae. Part II. Bulletin of the British Museum (Natural History) Zoology , 26 , 3–148. https://doi.org/10.5962/bhl.part.204
Barluenga, M., Stölting, K.N., Salzburger, W., Muschick, M., & Meyer, A. (2006). Sympatric speciation in Nicaraguan crater lake cichlid fish.Nature , 439 , 719–723. https://doi.org/10.1038/nature04325
Baumgarten, L., Machado-Schiaffino, G., Henning, F., & Meyer, A. (2015). What big lips are good for: on the adaptive function of repeatedly evolved hypertrophied lips of cichlid fishes.Biological Journal of the Linnean Society , 115 , 448–455. https://doi.org/10.1111/bij.12502
Beshera, K.A., & Harris, P.M. (2014). Mitochondrial DNA phylogeography of the Labeobarbus intermedius complex (Pisces, Cyprinidae) from Ethiopia. Journal of Fish Biology , 85 , 228–245. https://doi.org/10.1111/jfb.12408
Binning, S.A., Chapman, L.J., & Cosandey-Godin, A. (2009). Specialized morphology for a generalist diet: evidence for Liem’s paradox in a cichlid fish. Journal of Fish Biology , 75 , 1683–1699. https://doi.org/10.1111/j.1095-8649.2009.02421.x
Bolnick, D.I., Hund, A.K., Nosil, P., Peng, F., Ravinet, M., Stankowski, S., Subramanian, S., Wolf, J.B.W., & Yukilevich, R. (2023). A multivariate view of the speciation continuum. Evolution ,77 , 318–328. https://doi.org/10.1093/evolut/qpac004
Burress, E.D. (2016). Ecological diversification associated with the pharyngeal jaw diversity of Neotropical cichlid fishes. Journal of Animal Ecology , 85 , 302–313. https://doi.org/10.1111/1365-2656.12457
Burress, E.D., Piálek, L., Casciotta, J.R., Almirón, A., Tan, M., Armbruster, J.W., & Říčan, O. (2018). Island- and lake-like parallel adaptive radiations replicated in rivers. Proceedings of the Royal Society B: Biological Sciences , 285 , 20171762. https://doi.org/10.1098/rspb.2017.1762
Chen, S., Zhou, Y., Chen, Y., & Gu, J. (2018). fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics , 34 , i884–i890. https://doi.org/10.1093/bioinformatics/bty560
Colombo, M., Diepeveen, E.T., Muschick, M., Santos, M.E., Indermaur, A., Boileau, N., Barluenga, M., & Salzburger, W. (2013). The ecological and genetic basis of convergent thick-lipped phenotypes in cichlid fishes.Molecular Ecology , 22 , 670–684. https://doi.org/10.1111/mec.12029
Comtois, D. (2018). Summarytools: Tools to Quickly and Neatly Summarize Data. R Package Version 0.8. 72018. Available online: https://CRAN.R-project.org/package=summarytools (accessed on 26 July 2022)
Decru, E., Snoeks, J., Walanga, A., & Vreven, E.J.W.M.N. (2022). Disentangling the diversity of the Labeobarbus taxa (Cypriniformes: Cyprinidae) from the Epulu Basin (DR Congo, Africa).Diversity , 14 , 1022. https://doi.org/10.3390/d14121022
Drès, M., & Mallet, J. (2002). Host races in plant–feeding insects and their importance in sympatric speciation. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences , 357 , 471–492. https://doi.org/10.1098/rstb.2002.1059
Edgar, R.C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research , 32 , 1792–1797. https://doi.org/10.1093/nar/gkh340
Elmer, K.R., Lehtonen, T.K., Kautt, A.F., Harrod, C., & Meyer, A. (2010). Rapid sympatric ecological differentiation of crater lake cichlid fishes within historic times. BMC Biology , 8 , 60. https://doi.org/10.1186/1741-7007-8-60
Esin, E.V., Markevich, G.N., Melnik, N.O., Kapitanova, D.V., & Shkil, F.N. (2021). Natural toxic impact and thyroid signalling interplay orchestrates riverine adaptive divergence of salmonid fish.Journal of Animal Ecology , 90 , 1004–1019. https://doi.org/10.1111/1365-2656.13429
Esin, E.V., Melnik, N.O., & Markevich, G.N. (2022). Life history variation as a source of diversity for endemic white charr (Salmonidae) of the lower Kamchatka River. Journal of Fish Biology ,101 , 914–924. https://doi.org/10.1111/jfb.15149
Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology , 14 , 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
Ewels, P., Magnusson, M., Lundin, S., & Käller, M. (2016). MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics , 32 , 3047–3048. https://doi.org/10.1093/bioinformatics/btw354
Franchini, P., Fruciano, C., Spreitzer, M.L., Jones, J.C., Elmer, K.R., Henning, F., & Meyer, A. (2014). Genomic architecture of ecologically divergent body shape in a pair of sympatric crater lake cichlid fishes.Molecular Ecology , 23 , 1828–1845. https://doi.org/10.1111/mec.12590
Franchini, P., Monné Parera, D., Kautt, A.F., & Meyer, A. (2017). quaddRAD: a new high-multiplexing and PCR duplicate removal ddRAD protocol produces novel evolutionary insights in a nonradiating cichlid lineage. Molecular Ecology , 26 , 2783–2795. https://doi.org/10.1111/mec.14077
Fricke, R., Eschmeyer, W.N., & van der Laan, R. (eds.). (2022). Eschmeyer’s Catalog of Fishes: Genera, Species, References. Available online: http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp (accessed on 15 February 2022).
Fruciano, C., Franchini, P., Kovacova, V., Elmer, K.R., Henning, F., & Meyer, A. (2016). Genetic linkage of distinct adaptive traits in sympatrically speciating crater lake cichlid fish. Nature Communications , 7 , 12736. https://doi.org/10.1038/ncomms12736
Gibert, J.-M. (2017). The flexible stem hypothesis: evidence from genetic data. Development Genes and Evolution , 227 , 297–307. https://doi.org/10.1007/s00427-017-0589-0
Golcher-Benavides, J., & Wagner, C.E. (2019). Playing out Liem’s paradox: opportunistic piscivory across Lake Tanganyikan cichlids.The American Naturalist , 194 , 260–267. https://doi.org/10.1086/704169
Golubtsov, A.S., & Krysanov, E.Y. (1993). Karyological study of some cyprinid species from Ethiopia. The ploidy differences between large and small Barbus of Africa. Journal of Fish Biology ,42 , 445–455. https://doi.org/10.1111/j.1095-8649.1993.tb00347.x
Golubtsov, A.S., Korostelev, N.B., & Levin, B.A. (2021). Monsters with a shortened vertebral column: A population phenomenon in radiating fishLabeobarbus (Cyprinidae). PLoS ONE , 16 , e0239639. https://doi.org/10.1371/journal.pone.0239639
Groenewald, A.A.V.J. (1957). A revision of the genera Barbus andVaricorhinus (Pisces: Cyprinidae) in Transvaal. Annals of the Transvaal Museum , 23 , 263–330.https://doi.org/10.10520/AJA00411752_1050
Gunter, H.M., Schneider, R.F., Karner, I., Sturmbauer, C., & Meyer, A. (2017). Molecular investigation of genetic assimilation during the rapid adaptive radiations of East African cichlid fishes. Molecular Ecology26 (23), 6634-6653.https://doi.org/10.1111/mec.14405
Hoang, D.T., Chernomor, O., von Haeseler, A., Minh, B.Q., & Vinh, L.S. (2018). UFBoot2: Improving the Ultrafast Bootstrap Approximation.Molecular Biology and Evolution , 35 , 518–522. https://doi.org/10.1093/molbev/msx281
Jackson, A.L., Parnell, A.C., Inger, R., & Bearhop, S. (2011). Comparing isotopic niche widths among and within communities: SIBER – Stable Isotope Bayesian Ellipses in R. Journal of Animal Ecology ,80 , 595–602. https://doi.org/10.1111/j.1365-2656.2011.01806.x
Jombart, T., & Ahmed, I. (2011). adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics , 27 , 3070–3071. https://doi.org/10.1093/bioinformatics/btr521
Junker, J., Rick, J.A., McIntyre, P.B., Kimirei, I., Sweke, E.A., Mosille, J.B., Wehrli, B., Dinkel, C., Mwaiko, S., Seehausen, O., & Wagner, C.E. (2020). Structural genomic variation leads to genetic differentiation in Lake Tanganyika’s sardines. Molecular Ecology ,29 , 3277–3298. https://doi.org/10.1111/mec.15559
Kassambara, A., & Mundt, F. (2020). factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R package version 1.0.7. 2020. Available online: https://CRAN.R-project.org/package=factoextra (accessed on 26 July 2022).
Kautt, A. F., Elmer, K. R., & Meyer, A. (2012). Genomic signatures of divergent selection and speciation patterns in a ‘natural experiment’, the young parallel radiations of Nicaraguan crater lake cichlid fishes. Molecular Ecology21 (19), 4770-4786.https://doi.org/10.1111/j.1365-294X.2012.05738.x
Kautt, A. F., Kratochwil, C. F., Nater, A., Machado-Schiaffino, G., Olave, M., Henning, F., … & Meyer, A. (2020). Contrasting signatures of genomic divergence during sympatric speciation. Nature588 (7836), 106-111. https://doi.org/10.1038/s41586-020-2845-0
Kisekelwa, T., Snoeks, J., Zamba, A.I., Amzati, G.S., Isumbisho, M., Masilya, P.M., Lemmens, P., Vreven, E. (2021). Association betweenLabeobarbus spp. (Teleostei: Cyprinidae) and environmental variables in the Luhoho basin (Eastern Congo River basin; DRC).Journal of Fish Biology , 99 , 321–334. https://doi.org/10.1111/jfb.14719
Komarova A.S., Rozanova O.L., & Levin B.A. (2021). Trophic resource partitioning by sympatric ecomorphs of Schizopygopsis(Cyprinidae) in a young Pamir Mountain lake: preliminary results.Ichthyological Research , 68 , 191–197. https://doi.org/10.1007/s10228-020-00773-3
Komarova, A.S., Golubtsov, A.S., & Levin, B.A. (2022). Trophic diversification out of ancestral specialization: an example from a radiating African cyprinid fish (genus Garra ). Diversity ,14 , 629. https://doi.org/10.3390/d14080629
Kopelman, N.M., Mayzel, J., Jakobsson, M., Rosenberg, N.A., & Mayrose, I. (2015). Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Molecular Ecology Resources , 15 , 1179–1191. https://doi.org/10.1111/1755-0998.12387
Kornfield, I., & Carpenter, K.E. (1984). Cyprinids of Lake Lanao, Philippines: taxonomic validity, evolutionary rates and speciation scenarios. In A.E. Echelle & I. Kornfield (Eds.), Evolution of fish species flocks (pp. 69–84). University of Maine Press, Orono.
Leigh, J.W., & Bryant, D. (2015). POPART: full-feature software for haplotype network construction. Methods in Ecology and Evolution ,6 , 1110–1116. https://doi.org/10.1111/2041-210x.12410
Levin, B., Simonov, E., Franchini, P., Mugue, N., Golubtsov, A., & Meyer A. (2021a). Rapid adaptive radiation in a hillstream cyprinid fish in the East African White Nile River basin. Molecular Ecology ,30 , 5530–5550. https://doi.org/10.1111/mec.16130
Levin, B.A., Casal-López, M., Simonov, E., Dgebuadze, Y.Y., Mugue, N.S., Tiunov, A.V., Doadrio, I., & Golubtsov, A.S. (2019). Adaptive radiation of barbs of the genus Labeobarbus (Cyprinidae) in an East African river. Freshwater Biology , 64 , 1721–1736. https://doi.org/10.1111/fwb.13364
Levin, B.A., Golubtsov, A.S., Dgebuadze, Y.Y., & Mugue, N.S. (2013). New evidence of homoplasy within the African genus Varicorhinus(Cyprinidae): An independent origin of specialized scraping forms in the adjacent drainage systems of Ethiopia inferred from mtDNA analysis.African Zoology , 48 , 400–406. https://doi.org/10.1080/15627020.2013.11407609
Levin, B.A., Komarova, A.S., Rozanova, O.L., & Golubtsov, A.S. (2021b). Unexpected diversity of feeding modes among chisel-mouthed EthiopianLabeobarbus (Cyprinidae). Water , 13 , 2345. https://doi.org/10.3390/w13172345
Levin, B.A., Simonov, E., Dgebuadze, Y.Y., Levina, M., & Golubtsov, A.S. (2020). In the rivers: Multiple adaptive radiations of cyprinid fishes (Labeobarbus ) in Ethiopian Highlands. Scientific Reports , 10 , 7192. https://doi.org/10.1038/s41598-020-64350-4.
Lewis, P.O. (2001). A likelihood approach to estimating phylogeny from discrete morphological character data. Systematic Biology ,50 , 913–925. https://doi.org/10.1080/106351501753462876
Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics , 25 , 1754–1760. https://doi.org/10.1093/bioinformatics/btp324
Liem, K.F. (1980). Adaptive significance of intra- and interspecific differences in the feeding repertoires of cichlid fishes. American Zoologist , 20 , 295–314. https://doi.org/10.1093/icb/20.1.295
Lysy, M., Stasko, A.D., & Swanson, H.K. (2021). nicheROVER: Niche Region and Niche Overlap Metrics for Multidimensional Ecological Niches. R package version 1.1.0. 2021. Available online: https://CRAN.R-project.org/package=nicheROVER (accessed on 26 July 2022).
Machado-Schiaffino, G., Kautt, A.F., Torres-Dowdall, J., Baumgarten, L., Henning, F., & Meyer, A. (2017). Incipient speciation driven by hypertrophied lips in Midas cichlid fishes? Molecular Ecology ,26 , 2348–2362. https://doi.org/10.1111/mec.14029
Manousaki, T., Hull, P.M., Kusche, H., Machado-Schiaffino, G., Franchini, P., Harrod, C., Elmer, K.R., & Meyer, A. (2013). Parsing parallel evolution: ecological divergence and differential gene expression in the adaptive radiations of thick-lipped Midas cichlid fishes from Nicaragua. Molecular Ecology , 22 , 650–669. https://doi.org/10.1111/mec.12034
Martin, C.H., & Wainwright, P.C. (2011). Trophic novelty is linked to exceptional rates of morphological diversification in two adaptive radiations of Cyprinodon pupfish. Evolution , 65 , 2197–2212. https://doi.org/10.1111/j.1558-5646.2011.01294.x
Matthes, H. (1963). A comparative study of the feeding mechanisms of some African Cyprinidae (Pisces, Cypriniformes). Bijdragen tot de Dierkunde , 33 , 3–35. https://doi.org/10.1163/26660644-03301001
Meyer, A. (1987). Phenotypic plasticity and heterochrony inCichlasoma managuense (Pisces, Cichlidae) and their implications for speciation in cichlid fishes. Evolution , 41 , 1357–1369. https://doi.org/10.1111/j.1558-5646.1987.tb02473.x
Mina, M.V., Mironovsky, A.N., Dgebuadze, Y. (1996). Lake Tana large barbs: phenetics, growth and diversification. Journal of Fish Biology , 48 , 383–404. https://doi.org/10.1111/j.1095-8649.1996.tb01435.x.
Mina, M.V., Mironovsky, A.N., Golubtsov, A.S., & Dgebuadze, Y.Y. (1998). II – Morphological diversity of ”large barbs” from Lake Tana and neighbouring areas: Homoplasies or synapomorphies? Italian Journal of Zoology , 65 (S1), 9–14. https://doi.org/10.1080/11250009809386789
Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D., Von Haeseler, A., & Lanfear, R. (2020). IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era.Molecular Biology and Evolution , 37 , 1530–1534. doi.org/10.1093/molbev/msaa015
Mironovsky, A.N., Mina, M.V., & Dgebuadze, Y.Y. (2019). Large African barbs with hypertrophied lips and their relationship with generalized forms of species of the genus Barbus (Labeobarbusauctorum ). Journal of Ichthyology , 59 , 327–335. https://doi.org/10.1134/S0032945219030111
Muschick, M., Nosil, P., Roesti, M., Dittmann, M.T., Harmon, L., & Salzburger, W. (2014). Testing the stages model in the adaptive radiation of cichlid fishes in East African Lake Tanganyika.Proceedings of the Royal Society B: Biological Sciences ,281 , 20140605. https://doi.org/10.1098/rspb.2014.0605
Nagelkerke, L.A.J., Sibbing, F.A., van den Boogaart, J.G.M., Lammens, E.H.R.R., & Osse, J.W.M. (1994). The barbs (Barbus spp.) of Lake Tana: a forgotten species flock? Environmental Biology of Fishes ,39 , 1–22. https://doi.org/10.1007/BF00004751
Natarajan, A.V., & Jhingran, A.G. (1961). Index of preponderance – A method of grading the food elements in the stomach analysis of fishes.Indian Journal of Fisheries , 8 , 54–59.
Oellermann, L.K., & Skelton, P.H. (1990). Hexaploidy in yellowfish species (Barbus , Pisces, Cyprinidae) from southern Africa.Journal of Fish Biology , 37 , 105–115. https://doi.org/10.1111/j.1095-8649.1990.tb05932.x
Oliver, M.K., & Arnegard, M.E. (2010). A new genus forMelanochromis labrosus , a problematic Lake Malawi cichlid with hypertrophied lips (Teleostei: Cichlidae). Ichthyological Exploration of Freshwaters , 21 , 209–232.
Palumbi, S.R. (1996). Nucleic acids II: The polymerase chain reaction. In D.M. Hillis, C. Moritz, & B.K. Mable (Eds.), Molecular systematics (pp. 205–247). Sinauer Associates.
Paris, J.R., Stevens, J.R., & Catchen, J.M. (2017). Lost in parameter space: a road map for stacks. Methods in Ecology and Evolution ,8 , 1360–1373. https://doi.org/10.1111/2041-210X.12775
Perdices, A., & Doadrio, I. (2001). The Molecular Systematics and Biogeography of the European Cobitids Based on Mitochondrial DNA Sequences. Molecular Phylogenetics and Evolution , 19 , 468–478. https://doi.org/10.1006/mpev.2000.0900
Pina‐Martins, F., Silva, D.N., Fino, J., & Paulo, O.S. (2017). Structure_threader: an improved method for automation and parallelization of programs structure, fastStructure and MavericK on multicore CPU systems. Molecular Ecology Resources , 17 , e268–e274. https://doi.org/10.1111/1755-0998.12702
Popova, O.A., & Reshetnikov, Y.S. (2011). On complex indices in investigation of fish feeding. Journal of Ichthyology, 51 , 686–691. https://doi.org/10.1134/S0032945211050171
Pritchard, J.K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics ,155 , 945–959. https://doi.org/10.1093/genetics/155.2.945
Rambaut, A. (2014). ”FigTree 1.4. 2 software.” Institute of Evolutionary Biology, Univ. Edinburgh .
Reich, D., Thangaraj, K., Patterson, N., Price, A.L., & Singh, L. (2009). Reconstructing Indian population history. Nature ,461 , 489–494. https://doi.org/10.1038/nature08365
Ribbink, A.J., Marsh, B.A., Marsh, A.C., Ribbink, A.C. & Sharp, B.J. (1983). A preliminary survey of the cichlid fishes of rocky habitats in Lake Malawi: results – The Mbuna – Pseudotropheus .African Zoology , 18 , 157–200. https://doi.org/10.10520/AJA00445096_1688
Roberts, T.R., & Khaironizam, M.Z. (2008). Trophic polymorphism in the Malaysian fish Neolissochilus soroides and other Old World Barbs (Teleostei, Cyprinidae). Natural History Bulletin of the Siam Society , 56 , 25–53.
Robinson, B.W., Wilson, D.S. (1998). Optimal foraging, specialization, and a solution to Liem’s Paradox. The American Naturalist ,151 , 223–235. https://doi.org/10.1086/286113
Rochette, N.C., Rivera-Colón, A.G., & Catchen, J.M. (2019). Stacks 2: Analytical methods for paired-end sequencing improve RADseq-based population genomics. Molecular Ecology , 28 , 4737–4754. https://doi.org/10.1111/mec.15253
RStudio Team. (2021). RStudio: Integrated Development for R ; RStudio, PBC: Boston, MA, USA. Available online: http://www.rstudio.com (accessed on 26 July 2022).
Rüber, L., Verheyen, E., & Meyer, A. (1999). Replicated evolution of trophic specializations in an endemic cichlid fish lineage from Lake Tanganyika. Proceedings of the National Academy of Sciences ,96 , 10230–10235. https://doi.org/10.1073/pnas.96.18.10230
Rundle, H.D., Nagel, L., Boughman, J.W., & Schluter, D. (2000). Natural selection and parallel speciation in sympatric sticklebacks.Science , 287 , 306–308. https://doi.org/10.1126/science.287.5451.306
Savvaitova, K.A., Schanin, A.Yu., & Maksimov, V.A. (1987). On intraspecific speciation of Schizopygopsis stoliczkaiSteindachner, 1866 from Pamir water basins. Moscow University Biological Sciences Bulletin , 2 , 9–17. (In Russ.)
Schemmel, C. (1967). Vergleichende Untersuchungen an den Hautsinnesorganen ober- und unterirdisch lebender Astyanax-Formen.Z. Morphol. Tiere , 61 , 255–316.
Schluter, D. (2000). The ecology of adaptive radiation. New York: Oxford University Press. 300 p.
Schneider, R.F., & Meyer, A. (2017). How plasticity, genetic assimilation and cryptic genetic variation may contribute to adaptive radiations. Molecular Ecology , 26 , 330–350. https://doi.org/10.1111/mec.13880
Schneider, R.F., Li, Y., Meyer, A., & Gunter, H.M. (2014). Regulatory gene networks that shape the development of adaptive phenotypic plasticity in a cichlid fish. Molecular Ecology , 23 , 4511–4526. https://doi.org/10.1111/mec.12851
Seehausen, O., & Wagner, C.E. (2014). Speciation in Freshwater Fishes.Annual Review of Ecology, Evolution, and Systematics , 45 , 621–651. https://doi.org/10.1146/annurev-ecolsys-120213-091818
Sibbing, F.A., & Nagelkerke, L.A.J. (2000). Resource partitioning by Lake Tana barbs predicted from fish morphometrics and prey characteristics. Reviews in Fish Biology and Fisheries ,10 , 393–437. https://doi.org/10.1023/A:1012270422092
Sibbing, F.A., Nagelkerke, L.A., Stet, R.J., & Osse, J.W. (1998). Speciation of endemic Lake Tana barbs (Cyprinidae, Ethiopia) driven by trophic resource partitioning; a molecular and ecomorphological approach. Aquatic Ecology , 32 , 217–227. https://doi.org/10.1023/A:1009920522235
Skulason, S., & Smith, T.B. (1995). Resource polymorphisms in vertebrates. Trends in Ecology & Evolution , 10 , 366–370. https://doi.org/10.1016/S0169-5347(00)89135-1
Sowersby, W., Cerca, J., Wong, B.B.M., Lehtonen, T.K., Chapple, D.G., Leal-Cardín, M., Barluenga, M., & Ravinet, M. (2021). Pervasive admixture and the spread of a large-lipped form in a cichlid fish radiation. Molecular Ecology , 30 , 5551–5571. https://doi.org/10.1111/mec.16139
Stankowski, S., & Ravinet, M. (2021). Defining the speciation continuum. Evolution , 75 , 1256–1273. https://doi.org/10.1111/evo.14215
Stiassny, M.L.J., & Meyer, A. (1999). Cichlids of the Rift Lakes.Scientific American , 280 , 64–69. https://doi.org/10.1038/scientificamerican0299-64
Stobie, C.S., Oosthuizen, C.J., Cunningham, M.J., & Bloomer, P. (2018). Exploring the phylogeography of a hexaploid freshwater fish by RAD sequencing. Ecology and Evolution , 8 , 2326–2342. https://doi.org/10.1002/ece3.3821
Sturmbauer, C., Mark, W., & Dallinger, R. (1992). Ecophysiology of Aufwuchs-eating cichlids in Lake Tanganyika: Niche separation by trophic specialization. Environmental Biology of Fishes , 35 , 283–290. https://doi.org/10.1007/BF00001895
Swanson, H.K., Lysy, M., Power, M., Stasko, A.D., Johnson, J.D., & Reist, J.D. (2015). A new probabilistic method for quantifying n-dimensional ecological niches and niche overlap. Ecology ,96 , 318–324. https://doi.org/10.1890/14-0235.1
Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0.Molecular Biology and Evolution , 30 , 2725–2729. https://doi.org/10.1093/molbev/mst197
Tang, Y., Horikoshi, M., & Li, W. (2016). ”ggfortify: Unified Interface to Visualize Statistical Result of Popular R Packages.”. The R Journal , 8 , 478–489.
Torres-Dowdall, J., & Meyer, A. (2021). Sympatric and Allopatric Diversification in the Adaptive Radiations of Midas Cichlids in Nicaraguan Lakes. In M.E. Abate & D.L. Noakes (Eds.), The Behavior, Ecology and Evolution of Cichlid Fishes. Fish & Fisheries Series , vol 40. (pp. 175–216). Springer, Dordrecht. https://doi.org/10.1007/978-94-024-2080-7_6
Tsigenopoulos, C.S., Kasapidis, P., & Berrebi, P. (2010). Phylogenetic relationships of hexaploid large-sized barbs (genus Labeobarbus , Cyprinidae) based on mtDNA data. Molecular Phylogenetics and Evolution , 56 , 851–856. https://doi.org/10.1016/j.ympev.2010.02.006
Vreven, E.J., Musschoot, T., Snoeks, J., & Schliewen, U.K. (2016). The African hexaploid Torini (Cypriniformes: Cyprinidae): Review of a tumultuous history. Zoological Journal of the Linnean Society ,177 , 231–305. https://doi.org/10.1111/zoj.12366
Wagner, C.E., McIntyre, P.B., Buels, K.S., Gilbert, D.M., & Michel, E. (2009). Diet predicts intestine length in Lake Tanganyika’s cichlid fishes. Functional Ecology , 23 , 1122–1131. https://doi.org/10.1111/j.1365-2435.2009.01589.x
West-Eberhard M.J. ’Adaptive Radiation’ // Developmental Plasticity and Evolution (NY, 2003; online edn, Oxford Academic, 12 Nov. 2020). P. 564–597. https://doi.org/10.1093/oso/9780195122343.003.0036
Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis . http://ggplot2.org
Wund, M.A., Baker, J.A., Clancy, B., Golub, J.L., & Foster, S.A. (2008). A Test of the “Flexible Stem” Model of Evolution: Ancestral Plasticity, Genetic Accommodation, and Morphological Divergence in the Threespine Stickleback Radiation. The American Naturalist ,172 , 449–462. https://doi.org/10.1086/590966
Yang, L., Naylor, G.J.P., & Mayden, R.L. (2022). Deciphering reticulate evolution of the largest group of polyploid vertebrates, the subfamily Cyprininae (Teleostei: Cypriniformes). Molecular Phylogenetics and Evolution , 166 , 107323. https://doi.org/10.1016/j.ympev.2021.107323
Yang, L., Sado, T., Hirt, M.V., Pasco-Viel, E., Arunachalam, M., Li, J., Wang, X., Freyhof, J., Saitoh, K., Simons, A.M., Miya, M., He, S., & Mayden, R.L. (2015). Phylogeny and polyploidy: Resolving the classification of cyprinine fishes (Teleostei: Cypriniformes).Molecular Phylogenetics and Evolution , 85 , 97–116. https://doi.org/10.1016/j.ympev.2015.01.014
Data Accessibility and Benefit-Sharing Section
We prepare our data to archive in a publicly accessible repository - in Dryad and GenBank, in particular.