References
Aljanabi, S.M., & Martinez, I. (1997). Universal and rapid
salt-extraction of high quality genomic DNA for PCR-based techniques.Nucleic Acids Research , 25 , 4692–4693.
https://doi.org/10.1093/nar/25.22.4692
Andrews, S., & Krueger, F. (2010). FastQC. A quality control tool for
high throughput sequence data (p. 370).
Bandelt, H.J., Forster, P., & Röhl, A. (1999). Median-joining networks
for inferring intraspecific phylogenies. Molecular Biology and
Evolution , 16 , 37–48.
https://doi.org/10.1093/oxfordjournals.molbev.a026036
Banister, K.E. (1973). A revision of the large Barbus (Pisces,
Cyprinidae) of East and Central Africa. Studies of African Cyprinidae.
Part II. Bulletin of the British Museum (Natural History)
Zoology , 26 , 3–148. https://doi.org/10.5962/bhl.part.204
Barluenga, M., Stölting, K.N., Salzburger, W., Muschick, M., & Meyer,
A. (2006). Sympatric speciation in Nicaraguan crater lake cichlid fish.Nature , 439 , 719–723. https://doi.org/10.1038/nature04325
Baumgarten, L., Machado-Schiaffino, G., Henning, F., & Meyer, A.
(2015). What big lips are good for: on the adaptive function of
repeatedly evolved hypertrophied lips of cichlid fishes.Biological Journal of the Linnean Society , 115 , 448–455.
https://doi.org/10.1111/bij.12502
Beshera, K.A., & Harris, P.M. (2014). Mitochondrial DNA phylogeography
of the Labeobarbus intermedius complex (Pisces, Cyprinidae) from
Ethiopia. Journal of Fish Biology , 85 , 228–245.
https://doi.org/10.1111/jfb.12408
Binning, S.A., Chapman, L.J., & Cosandey-Godin, A. (2009). Specialized
morphology for a generalist diet: evidence for Liem’s paradox in a
cichlid fish. Journal of Fish Biology , 75 , 1683–1699.
https://doi.org/10.1111/j.1095-8649.2009.02421.x
Bolnick, D.I., Hund, A.K., Nosil, P., Peng, F., Ravinet, M., Stankowski,
S., Subramanian, S., Wolf, J.B.W., & Yukilevich, R. (2023). A
multivariate view of the speciation continuum. Evolution ,77 , 318–328. https://doi.org/10.1093/evolut/qpac004
Burress, E.D. (2016). Ecological diversification associated with the
pharyngeal jaw diversity of Neotropical cichlid fishes. Journal of
Animal Ecology , 85 , 302–313.
https://doi.org/10.1111/1365-2656.12457
Burress, E.D., Piálek, L., Casciotta, J.R., Almirón, A., Tan, M.,
Armbruster, J.W., & Říčan, O. (2018). Island- and lake-like parallel
adaptive radiations replicated in rivers. Proceedings of the Royal
Society B: Biological Sciences , 285 , 20171762.
https://doi.org/10.1098/rspb.2017.1762
Chen, S., Zhou, Y., Chen, Y., & Gu, J. (2018). fastp: an ultra-fast
all-in-one FASTQ preprocessor. Bioinformatics , 34 ,
i884–i890. https://doi.org/10.1093/bioinformatics/bty560
Colombo, M., Diepeveen, E.T., Muschick, M., Santos, M.E., Indermaur, A.,
Boileau, N., Barluenga, M., & Salzburger, W. (2013). The ecological and
genetic basis of convergent thick-lipped phenotypes in cichlid fishes.Molecular Ecology , 22 , 670–684.
https://doi.org/10.1111/mec.12029
Comtois, D. (2018). Summarytools: Tools to Quickly and Neatly Summarize
Data. R Package Version 0.8. 72018. Available online:
https://CRAN.R-project.org/package=summarytools (accessed on 26 July
2022)
Decru, E., Snoeks, J., Walanga, A., & Vreven, E.J.W.M.N. (2022).
Disentangling the diversity of the Labeobarbus taxa
(Cypriniformes: Cyprinidae) from the Epulu Basin (DR Congo, Africa).Diversity , 14 , 1022. https://doi.org/10.3390/d14121022
Drès, M., & Mallet, J. (2002). Host races in plant–feeding insects and
their importance in sympatric speciation. Philosophical
Transactions of the Royal Society of London. Series B: Biological
Sciences , 357 , 471–492. https://doi.org/10.1098/rstb.2002.1059
Edgar, R.C. (2004). MUSCLE: multiple sequence alignment with high
accuracy and high throughput. Nucleic Acids Research , 32 ,
1792–1797. https://doi.org/10.1093/nar/gkh340
Elmer, K.R., Lehtonen, T.K., Kautt, A.F., Harrod, C., & Meyer, A.
(2010). Rapid sympatric ecological differentiation of crater lake
cichlid fishes within historic times. BMC Biology , 8 , 60.
https://doi.org/10.1186/1741-7007-8-60
Esin, E.V., Markevich, G.N., Melnik, N.O., Kapitanova, D.V., & Shkil,
F.N. (2021). Natural toxic impact and thyroid signalling interplay
orchestrates riverine adaptive divergence of salmonid fish.Journal of Animal Ecology , 90 , 1004–1019.
https://doi.org/10.1111/1365-2656.13429
Esin, E.V., Melnik, N.O., & Markevich, G.N. (2022). Life history
variation as a source of diversity for endemic white charr (Salmonidae)
of the lower Kamchatka River. Journal of Fish Biology ,101 , 914–924. https://doi.org/10.1111/jfb.15149
Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of
clusters of individuals using the software STRUCTURE: a simulation
study. Molecular Ecology , 14 , 2611–2620.
https://doi.org/10.1111/j.1365-294X.2005.02553.x
Ewels, P., Magnusson, M., Lundin, S., & Käller, M. (2016). MultiQC:
summarize analysis results for multiple tools and samples in a single
report. Bioinformatics , 32 , 3047–3048.
https://doi.org/10.1093/bioinformatics/btw354
Franchini, P., Fruciano, C., Spreitzer, M.L., Jones, J.C., Elmer, K.R.,
Henning, F., & Meyer, A. (2014). Genomic architecture of ecologically
divergent body shape in a pair of sympatric crater lake cichlid fishes.Molecular Ecology , 23 , 1828–1845.
https://doi.org/10.1111/mec.12590
Franchini, P., Monné Parera, D., Kautt, A.F., & Meyer, A. (2017).
quaddRAD: a new high-multiplexing and PCR duplicate removal ddRAD
protocol produces novel evolutionary insights in a nonradiating cichlid
lineage. Molecular Ecology , 26 , 2783–2795.
https://doi.org/10.1111/mec.14077
Fricke, R., Eschmeyer, W.N., & van der Laan, R. (eds.). (2022).
Eschmeyer’s Catalog of Fishes: Genera, Species, References. Available
online:
http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp
(accessed on 15 February 2022).
Fruciano, C., Franchini, P., Kovacova, V., Elmer, K.R., Henning, F., &
Meyer, A. (2016). Genetic linkage of distinct adaptive traits in
sympatrically speciating crater lake cichlid fish. Nature
Communications , 7 , 12736. https://doi.org/10.1038/ncomms12736
Gibert, J.-M. (2017). The flexible stem hypothesis: evidence from
genetic data. Development Genes and Evolution , 227 ,
297–307. https://doi.org/10.1007/s00427-017-0589-0
Golcher-Benavides, J., & Wagner, C.E. (2019). Playing out Liem’s
paradox: opportunistic piscivory across Lake Tanganyikan cichlids.The American Naturalist , 194 , 260–267.
https://doi.org/10.1086/704169
Golubtsov, A.S., & Krysanov, E.Y. (1993). Karyological study of some
cyprinid species from Ethiopia. The ploidy differences between large and
small Barbus of Africa. Journal of Fish Biology ,42 , 445–455. https://doi.org/10.1111/j.1095-8649.1993.tb00347.x
Golubtsov, A.S., Korostelev, N.B., & Levin, B.A. (2021). Monsters with
a shortened vertebral column: A population phenomenon in radiating fishLabeobarbus (Cyprinidae). PLoS ONE , 16 , e0239639.
https://doi.org/10.1371/journal.pone.0239639
Groenewald, A.A.V.J. (1957). A revision of the genera Barbus andVaricorhinus (Pisces: Cyprinidae) in Transvaal. Annals of
the Transvaal Museum , 23 , 263–330.https://doi.org/10.10520/AJA00411752_1050
Gunter, H.M., Schneider, R.F., Karner, I., Sturmbauer, C., & Meyer, A.
(2017). Molecular investigation of genetic assimilation during the rapid
adaptive radiations of East African cichlid fishes. Molecular
Ecology , 26 (23), 6634-6653.https://doi.org/10.1111/mec.14405
Hoang, D.T., Chernomor, O., von Haeseler, A., Minh, B.Q., & Vinh, L.S.
(2018). UFBoot2: Improving the Ultrafast Bootstrap Approximation.Molecular Biology and Evolution , 35 , 518–522.
https://doi.org/10.1093/molbev/msx281
Jackson, A.L., Parnell, A.C., Inger, R., & Bearhop, S. (2011).
Comparing isotopic niche widths among and within communities: SIBER –
Stable Isotope Bayesian Ellipses in R. Journal of Animal Ecology ,80 , 595–602. https://doi.org/10.1111/j.1365-2656.2011.01806.x
Jombart, T., & Ahmed, I. (2011). adegenet 1.3-1: new tools for the
analysis of genome-wide SNP data. Bioinformatics , 27 ,
3070–3071. https://doi.org/10.1093/bioinformatics/btr521
Junker, J., Rick, J.A., McIntyre, P.B., Kimirei, I., Sweke, E.A.,
Mosille, J.B., Wehrli, B., Dinkel, C., Mwaiko, S., Seehausen, O., &
Wagner, C.E. (2020). Structural genomic variation leads to genetic
differentiation in Lake Tanganyika’s sardines. Molecular Ecology ,29 , 3277–3298. https://doi.org/10.1111/mec.15559
Kassambara, A., & Mundt, F. (2020). factoextra: Extract and Visualize
the Results of Multivariate Data Analyses. R package version 1.0.7.
2020. Available online: https://CRAN.R-project.org/package=factoextra
(accessed on 26 July 2022).
Kautt, A. F., Elmer, K. R., & Meyer, A. (2012). Genomic signatures of
divergent selection and speciation patterns in a ‘natural experiment’,
the young parallel radiations of Nicaraguan crater lake cichlid
fishes. Molecular Ecology , 21 (19), 4770-4786.https://doi.org/10.1111/j.1365-294X.2012.05738.x
Kautt, A. F., Kratochwil, C. F., Nater, A., Machado-Schiaffino, G.,
Olave, M., Henning, F., … & Meyer, A. (2020). Contrasting signatures
of genomic divergence during sympatric
speciation. Nature , 588 (7836), 106-111.
https://doi.org/10.1038/s41586-020-2845-0
Kisekelwa, T., Snoeks, J., Zamba, A.I., Amzati, G.S., Isumbisho, M.,
Masilya, P.M., Lemmens, P., Vreven, E. (2021). Association betweenLabeobarbus spp. (Teleostei: Cyprinidae) and environmental
variables in the Luhoho basin (Eastern Congo River basin; DRC).Journal of Fish Biology , 99 , 321–334.
https://doi.org/10.1111/jfb.14719
Komarova A.S., Rozanova O.L., & Levin B.A. (2021). Trophic resource
partitioning by sympatric ecomorphs of Schizopygopsis(Cyprinidae) in a young Pamir Mountain lake: preliminary results.Ichthyological Research , 68 , 191–197.
https://doi.org/10.1007/s10228-020-00773-3
Komarova, A.S., Golubtsov, A.S., & Levin, B.A. (2022). Trophic
diversification out of ancestral specialization: an example from a
radiating African cyprinid fish (genus Garra ). Diversity ,14 , 629. https://doi.org/10.3390/d14080629
Kopelman, N.M., Mayzel, J., Jakobsson, M., Rosenberg, N.A., & Mayrose,
I. (2015). Clumpak: a program for identifying clustering modes and
packaging population structure inferences across K. Molecular
Ecology Resources , 15 , 1179–1191.
https://doi.org/10.1111/1755-0998.12387
Kornfield, I., & Carpenter, K.E. (1984). Cyprinids of Lake Lanao,
Philippines: taxonomic validity, evolutionary rates and speciation
scenarios. In A.E. Echelle & I. Kornfield (Eds.), Evolution of
fish species flocks (pp. 69–84). University of Maine Press, Orono.
Leigh, J.W., & Bryant, D. (2015). POPART: full-feature software for
haplotype network construction. Methods in Ecology and Evolution ,6 , 1110–1116. https://doi.org/10.1111/2041-210x.12410
Levin, B., Simonov, E., Franchini, P., Mugue, N., Golubtsov, A., &
Meyer A. (2021a). Rapid adaptive radiation in a hillstream cyprinid fish
in the East African White Nile River basin. Molecular Ecology ,30 , 5530–5550. https://doi.org/10.1111/mec.16130
Levin, B.A., Casal-López, M., Simonov, E., Dgebuadze, Y.Y., Mugue, N.S.,
Tiunov, A.V., Doadrio, I., & Golubtsov, A.S. (2019). Adaptive radiation
of barbs of the genus Labeobarbus (Cyprinidae) in an East African
river. Freshwater Biology , 64 , 1721–1736.
https://doi.org/10.1111/fwb.13364
Levin, B.A., Golubtsov, A.S., Dgebuadze, Y.Y., & Mugue, N.S. (2013).
New evidence of homoplasy within the African genus Varicorhinus(Cyprinidae): An independent origin of specialized scraping forms in the
adjacent drainage systems of Ethiopia inferred from mtDNA analysis.African Zoology , 48 , 400–406.
https://doi.org/10.1080/15627020.2013.11407609
Levin, B.A., Komarova, A.S., Rozanova, O.L., & Golubtsov, A.S. (2021b).
Unexpected diversity of feeding modes among chisel-mouthed EthiopianLabeobarbus (Cyprinidae). Water , 13 , 2345.
https://doi.org/10.3390/w13172345
Levin, B.A., Simonov, E., Dgebuadze, Y.Y., Levina, M., & Golubtsov,
A.S. (2020). In the rivers: Multiple adaptive radiations of cyprinid
fishes (Labeobarbus ) in Ethiopian Highlands. Scientific
Reports , 10 , 7192. https://doi.org/10.1038/s41598-020-64350-4.
Lewis, P.O. (2001). A likelihood approach to estimating phylogeny from
discrete morphological character data. Systematic Biology ,50 , 913–925. https://doi.org/10.1080/106351501753462876
Li, H., & Durbin, R. (2009). Fast and accurate short read alignment
with Burrows–Wheeler transform. Bioinformatics , 25 ,
1754–1760. https://doi.org/10.1093/bioinformatics/btp324
Liem, K.F. (1980). Adaptive significance of intra- and interspecific
differences in the feeding repertoires of cichlid fishes. American
Zoologist , 20 , 295–314. https://doi.org/10.1093/icb/20.1.295
Lysy, M., Stasko, A.D., & Swanson, H.K. (2021). nicheROVER: Niche
Region and Niche Overlap Metrics for Multidimensional Ecological Niches.
R package version 1.1.0. 2021. Available online:
https://CRAN.R-project.org/package=nicheROVER (accessed on 26 July
2022).
Machado-Schiaffino, G., Kautt, A.F., Torres-Dowdall, J., Baumgarten, L.,
Henning, F., & Meyer, A. (2017). Incipient speciation driven by
hypertrophied lips in Midas cichlid fishes? Molecular Ecology ,26 , 2348–2362. https://doi.org/10.1111/mec.14029
Manousaki, T., Hull, P.M., Kusche, H., Machado-Schiaffino, G.,
Franchini, P., Harrod, C., Elmer, K.R., & Meyer, A. (2013). Parsing
parallel evolution: ecological divergence and differential gene
expression in the adaptive radiations of thick-lipped Midas cichlid
fishes from Nicaragua. Molecular Ecology , 22 , 650–669.
https://doi.org/10.1111/mec.12034
Martin, C.H., & Wainwright, P.C. (2011). Trophic novelty is linked to
exceptional rates of morphological diversification in two adaptive
radiations of Cyprinodon pupfish. Evolution , 65 ,
2197–2212. https://doi.org/10.1111/j.1558-5646.2011.01294.x
Matthes, H. (1963). A comparative study of the feeding mechanisms of
some African Cyprinidae (Pisces, Cypriniformes). Bijdragen tot de
Dierkunde , 33 , 3–35. https://doi.org/10.1163/26660644-03301001
Meyer, A. (1987). Phenotypic plasticity and heterochrony inCichlasoma managuense (Pisces, Cichlidae) and their implications
for speciation in cichlid fishes. Evolution , 41 ,
1357–1369. https://doi.org/10.1111/j.1558-5646.1987.tb02473.x
Mina, M.V., Mironovsky, A.N., Dgebuadze, Y. (1996). Lake Tana large
barbs: phenetics, growth and diversification. Journal of Fish
Biology , 48 , 383–404.
https://doi.org/10.1111/j.1095-8649.1996.tb01435.x.
Mina, M.V., Mironovsky, A.N., Golubtsov, A.S., & Dgebuadze, Y.Y.
(1998). II – Morphological diversity of ”large barbs” from Lake Tana
and neighbouring areas: Homoplasies or synapomorphies? Italian
Journal of Zoology , 65 (S1), 9–14.
https://doi.org/10.1080/11250009809386789
Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D.,
Von Haeseler, A., & Lanfear, R. (2020). IQ-TREE 2: New models and
efficient methods for phylogenetic inference in the genomic era.Molecular Biology and Evolution , 37 , 1530–1534.
doi.org/10.1093/molbev/msaa015
Mironovsky, A.N., Mina, M.V., & Dgebuadze, Y.Y. (2019). Large African
barbs with hypertrophied lips and their relationship with generalized
forms of species of the genus Barbus (Labeobarbusauctorum ). Journal of Ichthyology , 59 , 327–335.
https://doi.org/10.1134/S0032945219030111
Muschick, M., Nosil, P., Roesti, M., Dittmann, M.T., Harmon, L., &
Salzburger, W. (2014). Testing the stages model in the adaptive
radiation of cichlid fishes in East African Lake Tanganyika.Proceedings of the Royal Society B: Biological Sciences ,281 , 20140605. https://doi.org/10.1098/rspb.2014.0605
Nagelkerke, L.A.J., Sibbing, F.A., van den Boogaart, J.G.M., Lammens,
E.H.R.R., & Osse, J.W.M. (1994). The barbs (Barbus spp.) of Lake
Tana: a forgotten species flock? Environmental Biology of Fishes ,39 , 1–22. https://doi.org/10.1007/BF00004751
Natarajan, A.V., & Jhingran, A.G. (1961). Index of preponderance – A
method of grading the food elements in the stomach analysis of fishes.Indian Journal of Fisheries , 8 , 54–59.
Oellermann, L.K., & Skelton, P.H. (1990). Hexaploidy in yellowfish
species (Barbus , Pisces, Cyprinidae) from southern Africa.Journal of Fish Biology , 37 , 105–115.
https://doi.org/10.1111/j.1095-8649.1990.tb05932.x
Oliver, M.K., & Arnegard, M.E. (2010). A new genus forMelanochromis labrosus , a problematic Lake Malawi cichlid with
hypertrophied lips (Teleostei: Cichlidae). Ichthyological
Exploration of Freshwaters , 21 , 209–232.
Palumbi, S.R. (1996). Nucleic acids II: The polymerase chain reaction.
In D.M. Hillis, C. Moritz, & B.K. Mable (Eds.), Molecular
systematics (pp. 205–247). Sinauer Associates.
Paris, J.R., Stevens, J.R., & Catchen, J.M. (2017). Lost in parameter
space: a road map for stacks. Methods in Ecology and Evolution ,8 , 1360–1373. https://doi.org/10.1111/2041-210X.12775
Perdices, A., & Doadrio, I. (2001). The Molecular Systematics and
Biogeography of the European Cobitids Based on Mitochondrial DNA
Sequences. Molecular Phylogenetics and Evolution , 19 ,
468–478. https://doi.org/10.1006/mpev.2000.0900
Pina‐Martins, F., Silva, D.N., Fino, J., & Paulo, O.S. (2017).
Structure_threader: an improved method for automation and
parallelization of programs structure, fastStructure and MavericK on
multicore CPU systems. Molecular Ecology Resources , 17 ,
e268–e274. https://doi.org/10.1111/1755-0998.12702
Popova, O.A., & Reshetnikov, Y.S. (2011). On complex indices in
investigation of fish feeding. Journal of Ichthyology, 51 ,
686–691. https://doi.org/10.1134/S0032945211050171
Pritchard, J.K., Stephens, M., & Donnelly, P. (2000). Inference of
population structure using multilocus genotype data. Genetics ,155 , 945–959. https://doi.org/10.1093/genetics/155.2.945
Rambaut, A. (2014). ”FigTree 1.4. 2 software.” Institute of
Evolutionary Biology, Univ. Edinburgh .
Reich, D., Thangaraj, K., Patterson, N., Price, A.L., & Singh, L.
(2009). Reconstructing Indian population history. Nature ,461 , 489–494.
https://doi.org/10.1038/nature08365
Ribbink, A.J., Marsh, B.A., Marsh, A.C., Ribbink, A.C. & Sharp, B.J.
(1983). A preliminary survey of the cichlid fishes of rocky habitats in
Lake Malawi: results – The Mbuna – Pseudotropheus .African Zoology , 18 , 157–200.
https://doi.org/10.10520/AJA00445096_1688
Roberts, T.R., & Khaironizam, M.Z. (2008). Trophic polymorphism in the
Malaysian fish Neolissochilus soroides and other Old World Barbs
(Teleostei, Cyprinidae). Natural History Bulletin of the Siam
Society , 56 , 25–53.
Robinson, B.W., Wilson, D.S. (1998). Optimal foraging, specialization,
and a solution to Liem’s Paradox. The American Naturalist ,151 , 223–235. https://doi.org/10.1086/286113
Rochette, N.C., Rivera-Colón, A.G., & Catchen, J.M. (2019). Stacks 2:
Analytical methods for paired-end sequencing improve RADseq-based
population genomics. Molecular Ecology , 28 , 4737–4754.
https://doi.org/10.1111/mec.15253
RStudio Team. (2021). RStudio: Integrated Development for R ;
RStudio, PBC: Boston, MA, USA. Available online: http://www.rstudio.com
(accessed on 26 July 2022).
Rüber, L., Verheyen, E., & Meyer, A. (1999). Replicated evolution of
trophic specializations in an endemic cichlid fish lineage from Lake
Tanganyika. Proceedings of the National Academy of Sciences ,96 , 10230–10235. https://doi.org/10.1073/pnas.96.18.10230
Rundle, H.D., Nagel, L., Boughman, J.W., & Schluter, D. (2000). Natural
selection and parallel speciation in sympatric sticklebacks.Science , 287 , 306–308.
https://doi.org/10.1126/science.287.5451.306
Savvaitova, K.A., Schanin, A.Yu., & Maksimov, V.A. (1987). On
intraspecific speciation of Schizopygopsis stoliczkaiSteindachner, 1866 from Pamir water basins. Moscow University
Biological Sciences Bulletin , 2 , 9–17. (In Russ.)
Schemmel, C. (1967). Vergleichende Untersuchungen an den
Hautsinnesorganen ober- und unterirdisch lebender Astyanax-Formen.Z. Morphol. Tiere , 61 , 255–316.
Schluter, D. (2000). The ecology of adaptive radiation. New York: Oxford
University Press. 300 p.
Schneider, R.F., & Meyer, A. (2017). How plasticity, genetic
assimilation and cryptic genetic variation may contribute to adaptive
radiations. Molecular Ecology , 26 , 330–350.
https://doi.org/10.1111/mec.13880
Schneider, R.F., Li, Y., Meyer, A., & Gunter, H.M. (2014). Regulatory
gene networks that shape the development of adaptive phenotypic
plasticity in a cichlid fish. Molecular Ecology , 23 ,
4511–4526. https://doi.org/10.1111/mec.12851
Seehausen, O., & Wagner, C.E. (2014). Speciation in Freshwater Fishes.Annual Review of Ecology, Evolution, and Systematics , 45 ,
621–651. https://doi.org/10.1146/annurev-ecolsys-120213-091818
Sibbing, F.A., & Nagelkerke, L.A.J. (2000). Resource partitioning by
Lake Tana barbs predicted from fish morphometrics and prey
characteristics. Reviews in Fish Biology and Fisheries ,10 , 393–437. https://doi.org/10.1023/A:1012270422092
Sibbing, F.A., Nagelkerke, L.A., Stet, R.J., & Osse, J.W. (1998).
Speciation of endemic Lake Tana barbs (Cyprinidae, Ethiopia) driven by
trophic resource partitioning; a molecular and ecomorphological
approach. Aquatic Ecology , 32 , 217–227.
https://doi.org/10.1023/A:1009920522235
Skulason, S., & Smith, T.B. (1995). Resource polymorphisms in
vertebrates. Trends in Ecology & Evolution , 10 , 366–370.
https://doi.org/10.1016/S0169-5347(00)89135-1
Sowersby, W., Cerca, J., Wong, B.B.M., Lehtonen, T.K., Chapple, D.G.,
Leal-Cardín, M., Barluenga, M., & Ravinet, M. (2021). Pervasive
admixture and the spread of a large-lipped form in a cichlid fish
radiation. Molecular Ecology , 30 , 5551–5571.
https://doi.org/10.1111/mec.16139
Stankowski, S., & Ravinet, M. (2021). Defining the speciation
continuum. Evolution , 75 , 1256–1273.
https://doi.org/10.1111/evo.14215
Stiassny, M.L.J., & Meyer, A. (1999). Cichlids of the Rift Lakes.Scientific American , 280 , 64–69.
https://doi.org/10.1038/scientificamerican0299-64
Stobie, C.S., Oosthuizen, C.J., Cunningham, M.J., & Bloomer, P. (2018).
Exploring the phylogeography of a hexaploid freshwater fish by RAD
sequencing. Ecology and Evolution , 8 , 2326–2342.
https://doi.org/10.1002/ece3.3821
Sturmbauer, C., Mark, W., & Dallinger, R. (1992). Ecophysiology of
Aufwuchs-eating cichlids in Lake Tanganyika: Niche separation by trophic
specialization. Environmental Biology of Fishes , 35 ,
283–290. https://doi.org/10.1007/BF00001895
Swanson, H.K., Lysy, M., Power, M., Stasko, A.D., Johnson, J.D., &
Reist, J.D. (2015). A new probabilistic method for quantifying
n-dimensional ecological niches and niche overlap. Ecology ,96 , 318–324. https://doi.org/10.1890/14-0235.1
Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S.
(2013). MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0.Molecular Biology and Evolution , 30 , 2725–2729.
https://doi.org/10.1093/molbev/mst197
Tang, Y., Horikoshi, M., & Li, W. (2016). ”ggfortify: Unified Interface
to Visualize Statistical Result of Popular R Packages.”. The R
Journal , 8 , 478–489.
Torres-Dowdall, J., & Meyer, A. (2021). Sympatric and Allopatric
Diversification in the Adaptive Radiations of Midas Cichlids in
Nicaraguan Lakes. In M.E. Abate & D.L. Noakes (Eds.), The
Behavior, Ecology and Evolution of Cichlid Fishes. Fish & Fisheries
Series , vol 40. (pp. 175–216). Springer, Dordrecht.
https://doi.org/10.1007/978-94-024-2080-7_6
Tsigenopoulos, C.S., Kasapidis, P., & Berrebi, P. (2010). Phylogenetic
relationships of hexaploid large-sized barbs (genus Labeobarbus ,
Cyprinidae) based on mtDNA data. Molecular Phylogenetics and
Evolution , 56 , 851–856.
https://doi.org/10.1016/j.ympev.2010.02.006
Vreven, E.J., Musschoot, T., Snoeks, J., & Schliewen, U.K. (2016). The
African hexaploid Torini (Cypriniformes: Cyprinidae): Review of a
tumultuous history. Zoological Journal of the Linnean Society ,177 , 231–305. https://doi.org/10.1111/zoj.12366
Wagner, C.E., McIntyre, P.B., Buels, K.S., Gilbert, D.M., & Michel, E.
(2009). Diet predicts intestine length in Lake Tanganyika’s cichlid
fishes. Functional Ecology , 23 , 1122–1131.
https://doi.org/10.1111/j.1365-2435.2009.01589.x
West-Eberhard M.J. ’Adaptive Radiation’ // Developmental Plasticity and
Evolution (NY, 2003; online edn, Oxford Academic, 12 Nov. 2020). P.
564–597. https://doi.org/10.1093/oso/9780195122343.003.0036
Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis .
http://ggplot2.org
Wund, M.A., Baker, J.A., Clancy, B., Golub, J.L., & Foster, S.A.
(2008). A Test of the “Flexible Stem” Model of Evolution: Ancestral
Plasticity, Genetic Accommodation, and Morphological Divergence in the
Threespine Stickleback Radiation. The American Naturalist ,172 , 449–462. https://doi.org/10.1086/590966
Yang, L., Naylor, G.J.P., & Mayden, R.L. (2022). Deciphering reticulate
evolution of the largest group of polyploid vertebrates, the subfamily
Cyprininae (Teleostei: Cypriniformes). Molecular Phylogenetics and
Evolution , 166 , 107323.
https://doi.org/10.1016/j.ympev.2021.107323
Yang, L., Sado, T., Hirt, M.V., Pasco-Viel, E., Arunachalam, M., Li, J.,
Wang, X., Freyhof, J., Saitoh, K., Simons, A.M., Miya, M., He, S., &
Mayden, R.L. (2015). Phylogeny and polyploidy: Resolving the
classification of cyprinine fishes (Teleostei: Cypriniformes).Molecular Phylogenetics and Evolution , 85 , 97–116.
https://doi.org/10.1016/j.ympev.2015.01.014
Data Accessibility and Benefit-Sharing Section
We prepare our data to archive in a publicly accessible repository - in
Dryad and GenBank, in particular.