
On the nonlocal Schrödinger-Poisson type system in the
Heisenberg group

Zeyi Liua, Min Zhaoa, Deli Zhanga, Sihua Lianga ∗
aCollege of Mathematics, Changchun Normal University, Changchun 130032, Jilin, P.R. China

Abstract

This paper is concerned with the following nonlocal Schrödinger-Poisson type
system: 

−
(
a− b

∫
Ω |∇Hu|

2dx
)

∆Hu+ µφu = λ|u|q−2u, in Ω,

−∆Hφ = u2 in Ω,

u = φ = 0 on ∂Ω,

where a, b > 0 and ∆H is the Kohn-Laplacian on the first Heisenberg group H1, Ω ⊂ H1

is a smooth bounded domain, λ > 0, µ ∈ R are some real parameters and 1 < q < 2.
With the aid of the Ekeland’s variational principle and the mountain pass theorem,
the existence of negative energy solution, positive energy solution and positive ground
state solution are obtained, respectively. Moreover, we also obtain the multiplicity of
solutions by using the Clark theorem. Our result is new even in the Euclidean case.

Keywords: Heisenberg group; Schrödinger-Poisson type system; Ekeland’s variational
principle; Mountain pass lemma; Clark theorem.
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1 Introduction and Main results

Recently, Heisenberg group has attracted the attention of many scholars, and it plays
an important role in quantum mechanics, harmonic analysis, partial differential equations
and other branches. The expansion and contraction of Heisenberg group gives it a very
rich geometric structure, which is essentially different from Euclidean space. The first
mathematicians who study of subelliptic analysis on the Heisenberg group were Folland
and Stein in [13], who consistently created a generalisation of the analysis for more general
stratified groups [14]. And it can also be noted that Rothschild and Stein generalised these
results for general vector fields satisfying the Hormander’s conditions. These results were
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Zhao), zhangdl64@126.com (D. Zhang), liangsihua@163.com (S. Liang).
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published in the famous book by Folland and Stein [15] which laid the anisotropic analysis.
And it is worth noting that homogeneous Lie group is nilpotent.

The present study is concerned with a class of nonlocal Schrödinger-Poisson type system
in the Heisenberg:

−
(
a− b

∫
Ω
|∇Hu|2dx

)
∆Hu+ µφu = λ|u|q−2u, in Ω,

−∆Hφ = u2 in Ω,

u = φ = 0 on ∂Ω,

(1.1)

where a, b > 0 and ∆H is the Kohn-Laplacian on the first Heisenberg group H1, Ω ⊂ H1 is
a smooth bounded domain, λ > 0, µ ∈ R are some real parameters and 1 < q ≤ 2.

The paper was motivated by some works appeared in recent years. On the one hand,
Tyagi in [33] considered the following singular boundary value problem on the Heisenberg
group:  −∆Hnu = µ g(ξ)u

(|z|4+t2)
1
2

+ λf(ξ, t), ξ ∈ Ω,

u|∂Ω = 0,
(1.2)

the existence of weak solutions are obtained by using the Bonanno’s three critical point
theorem. In [3], the authors studied the the following Schrödinger-Poisson type system

−∆Hu+ µφu = λ|u|q−2u+ |u|2u, in Ω,

−∆Hφ = u2v in Ω,

u = φ = 0 on ∂Ω,

(1.3)

where 1 < q < 2, by the Green’s representation formula and the critical point theory, they
obtained at least two positive solutions and a positive ground state solution. In [23], the
author proved that problem (1.3) with q = 2 and µ = 0 admits at least one positive solution.
And then, this result was extended to a critical semilinear boundary problem with singular
nonlinearities, see [24]. In [27], the authors proved the concentration-compactness principles
on the Heisenberg group for treating nonlinear problems involving critical nonlinearities
and Hardy terms. On some recent results recovering the Heisenberg group, we refer to
[6, 7, 23, 28, 29, 30] and the references therein.

On the other hand, the study of Kirchhoff-type problems, which arise in various models
of physical and biological systems, have received more and more attention in recent years, we
refer the reader to [2, 8, 11, 12, 19, 20, 21, 31, 35]. In this paper, we mainly consider a new
type of Kirchhoff equation, that is, the form with a non-local coefficient (a− b

∫
Ω
|∇u|2dx).

Its background is derived from the negative Young’s modulus, when the atoms are pulled
apart rather than compressed together, the strain is negative. Recently, the authors in [36]
first studied this kind of problem{

−
(
a− b

∫
Ω
|∇u|2dx

)
∆u = |u|p−2u, x ∈ Ω,

u = 0, x ∈ ∂Ω,

where 2 < p < 2∗, they obtained the existence of solutions by using the mountain pass
lemma. Furthermore, some interesting results have been obtained for this kind of Kirchhoff-
type problem with sublinear terms, we refer the readers to [10, 25, 34] and the references
therein.
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Inspired by the works in the above references, our main purpose in this paper is to study
the existence and multiplicity of solutions for problem (1.1). To the best of our knowledge,
this paper is the first to deal with Schrödinger-Poisson system with the nonlocal term in the
case of Kohn-Laplacian, our result is new even in the Euclidean case.

We are now in a position to state the existence result as follows.

Theorem 1.1. Let µ < bS3|Ω|− 1
2 and 1 < q < 2 be satisfied. Then, there exists Λ∗ > 0 such

that λ ∈ (0,Λ∗) problem (1.1) has a negative energy solution.

Theorem 1.2. Let µ < bS3|Ω|− 1
2 and 1 < q < 2 be satisfied. Then, there exists Λ∗ > 0 such

that λ ∈ (0,Λ∗) problem (1.1) has a positive energy solution.

Theorem 1.3. Let µ < bS3|Ω|− 1
2 and 1 < q < 2 be satisfied. Then, there exists Λ∗ > 0 such

that λ ∈ (0,Λ∗) problem (1.1) has a positive ground state solution.

We also obtain the multiplicity of solutions for problem (1.1) by using the Clark theorem.

Theorem 1.4. Let −∞ < µ < bS3|Ω|− 1
2 and 1 < q < 2 be satisfied. Then, there exists

Λ > 0 such that λ ∈ (0,Λ) problem (1.1) has at least m− n pairs of solutions.

We point out that problem (1.1) contains nonlocal terms φu and nonlocal coefficient
(a−b

∫
Ω
|∇u|2dx), there is no doubt that we encounter serious difficulties because of the lack

of compactness, it becomes more difficult to give the accurate threshold of c (see Lemma
3.2). In addition, it’s different from the superlinear problem, due to the limitation of λ, it
becomes more difficult to apply the mountain pass theorem (see Theorem 4.2). In order to
overcome these difficulties, we will use some more accurate estimates for related expressions.

This paper is organized as follows. In Section 2, we present some necessary preliminary
knowledge on the Heisenberg group functional setting. In Section 3, we prove the Palais-
Smale compactness condition. In Section 4, we prove Theorem 1.1 and Theorem 1.2 via
the Ekeland’s variational principle and Mountain Pass theorem. In Section 5, we prove that
problem (1.1) has a positive ground state solution. Finally, Section 6 is devoted to the proof
of Theorems 1.4, that is to the proof of existence and multiplicity of solutions for problem
(1.1) by using the Clark theorem.

2 Preliminaries

In this section, we briefly recall the relevant definitions and notations related to the
Heisenberg group functional setting. For a complete treatment, we refer to [16, 17, 22, 26].
The Heisenberg group H1 is identified with R3 under the following group composition: if
ξ = (x, y, t) ∈ H1, then the group law is defined by

τ : H1 → H1, τξ(ξ
′) = ξ ◦ ξ′,

where
ξ ◦ ξ′ = (x+ x′, y + y′, t+ t′ + 2(x′y − y′x)), ∀ ξ, ξ′ ∈ H1.
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For s > 0, a natural group of dilation on H1 is defined by δs(ξ) = (sx, sy, s2t). Hence,
δs(ξ0 ◦ ξ) = δs(ξ0) ◦ δs(ξ). The homogeneous dimension of H1 is Q = 4. For ξ ∈ H1 , |ξ|H is
the intrinsic distance of the point ξ to the origin, namely

|ξ|H =
[
(x2 + y2)2 + t2

] 1
4 , ξ ∈ H1.

The Kohn Laplacian ∆H on H1 is defined as

∆Hu = divH(∇Hu),

where

∇Hu = (X, Y ), X =
∂

∂x
+ 2y

∂

∂t
, Y =

∂

∂y
− 2x

∂

∂t
,

and ∇H is the horizontal gradient, X and Y is a basis for Lie algebra of left-invariant vector
fields on H1. The left-invariant distance dH on H1 is accordingly defined by

dH(ξ0, ξ) = |ξ−1 ◦ ξ0|H .

It is well known that ∆H is a very degenerate elliptic operator and Bony’s maximum principle
is satisfied (see [5]).

In the paper, statements involving measure theory are always understood to be with
respect to Haar measure on H1, which coincides with the L3 dimensional Lebesgue measure
(see [27]); then

|BH(ξ0, r)| = αQr
Q,

where BH(ξ0, r) is the Heisenberg ball of radius r centered at ξ0, that is

BH(ξ0, r) =
{
ξ ∈ H1 : dH(ξ0, ξ) < r

}
and αQ = |BH(0, 1)|.

The Folland-Stein space S1
0(Ω) is defined as the closure of C∞0 (Ω) with respect to the

norm

‖u‖2 = ‖u‖2
S1
0(Ω) =

∫
Ω

|∇Hu|2dξ.

Let

‖u‖pp =

∫
Ω

|u|pdξ, u ∈ Lp(Ω),

denotes the usual Lp-norm. We denote by Bρ the closed ball of radius ρ centered at zero in
the Folland-Stein space S1

0(Ω), and by Sρ its relative boundary, that is,

Bρ = {u ∈ S1
0(Ω) : ‖u‖ ≤ ρ}, Sρ = {u ∈ S1

0(Ω) : ‖u‖ = ρ}.

By [13], we know the Folland-Stein space is a Hilbert space and the embedding

S1
0(Ω) ↪→ Lθ(Ω) for θ ∈ [1, Q∗)

is compact, where Q∗ := 2Q
Q−2

. While it is only continuous if θ = Q∗, the best Sobolev
constant

S = inf
u∈S1

0(H1)

∫
H1 |∇Hu|2dξ

(
∫
H1 |u|Q∗dξ)

2
Q∗

(2.1)
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is achieved by the C∞ function

U(x, y, t) =
c0√

(1 + x2 + y2)2 + t2
,

where c0 is a suitable positive constant (see [18]). On the other hand, the function U is a
positive solution of the following equation:

−∆Hu = u3, u ∈ S1
0(H1) (2.2)

and satisfies ∫
H1

|∇HU |2dξ =

∫
H1

|U |4dξ = S2.

Set

uε(ξ) = ϕ(ξ)Uε(ξ) =
c0εϕ(ξ)√

(ε+ x2 + y2)2 + t2
(2.3)

where ϕ ∈ C∞0 (BH(0, r0)), 0 ≤ ϕ ≤ 1 and ϕ = 1 in BH(0, r0
2

) (see [3]).
Let us first consider the following problem:{

−∆φ = u2 in Ω

φ = 0 on ∂Ω.
(2.4)

It follows from the Lax-Milgram theorem that, for every u ∈ S1
0(Ω), problem (2.4) has a

unique solution φu ∈ S1
0(Ω). In addition, from the maximum principle, we have φu ≥ 0.

Moreover, φu > 0 if u 6= 0. We give some properties of the solution φu, the detailed proof
process can be found in [3].

Proposition 2.1. For each solution φu ∈ S1
0(Ω) of problem (2.4), we have

(i) φtu = t2φu for all t 6= 0;

(ii) For all u ∈ S1
0(Ω), there holds that∫

Ω

φuu
2dξ =

∫
Ω

|∇Hφu|2dξ ≤ S−1‖u‖4
8
3
≤ S−3|Ω|

1
2‖u‖4; (2.5)

(iii) Let un ⇀ u in S1
0(Ω). Then φun → φu in S1

0(Ω) and∫
Ω

φununvdξ →
∫

Ω

φuuvdξ, ∀ v ∈ S1
0(Ω).

Now, we define a weak solution to problem (1.1).

Definition 2.1. We say that u ∈ S1
0(Ω) is a weak solution of problem (1.1) if and only if

a

∫
Ω

∇u∇vdξ − b
∫

Ω

|∇u|2dξ
∫

Ω

∇u∇vdξ + µ

∫
Ω

φuuvdξ − λ
∫

Ω

|u|q−2uvdξ = 0

for any v ∈ S1
0(Ω).
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The corresponding energy functional Iλ(u) : S1
0(Ω)→ R to problem (1.1) is defined by

Iλ(u) =
a

2
‖u‖2 − b

4
‖u‖4 +

µ

4

∫
Ω

φuu
2dξ − λ

q

∫
Ω

|u|qdξ. (2.6)

From Proposition 2.1, we know that the functional Iλ is well defined and Iλ ∈ C1(S1
0(Ω),R)

(see [32]). Moreover, the Fréchet derivative of Iλ is given by

〈I ′λ(u), v〉 =

∫
Ω

∇Hu∇Hvdξ − b
∫

Ω

|∇Hu|2dξ
∫

Ω

∇Hu∇Hvdξ

+ µ

∫
Ω

φuuvdξ − λ
∫

Ω

|u|q−2uvdξ, (2.7)

for all u, v ∈ S1
0(Ω). Thus, the (weak) solutions of problem (1.1) coincide with the critical

points of Iλ.

3 (PS)c condition

In this section, we first begin giving the following general mountain pass theorem (see [1]).

Theorem 3.1. Let E be a Banach space and Iλ ∈ C1(E,R), with Iλ(0) = 0. Suppose that
(I1) there exist ρ, α > 0 such that Iλ(u) ≥ α for all u ∈ E, with ‖u‖ = ρ;
(I2) there exists e ∈ E satisfying ‖e‖E > ρ such that Iλ(e) < 0.
Define Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = e} .

c = inf
γ∈Γ

max
0≤t≤1

Iλ(γ(t)) ≥ α

and there exists a (PS)c sequence {un}n ⊂ E.

Now, we begin proving that Iλ satisfies the assumptions of the mountain pass theorem.

Lemma 3.1. Assume that µ < bS3|Ω|− 1
2 and 1 < q < 2 are satisfied. Then there exists

Λ∗ > 0 such that for each λ ∈ (0,Λ∗), the functional Iλ satisfies the mountain pass geometry,
that is,

(i) there exist α, ρ > 0 such that Iλ(u) ≥ α for any u ∈ S1
0(Ω) such that ‖u‖ = ρ;

(ii) there exists e ∈ S1
0(Ω) with ‖e‖ > ρ such that Iλ(e) < 0.

Proof. We will prove the main conclusion in two cases:
Case I: µ ≤ 0.
If 1 < q < 2, we have

Iλ(u) ≥ ‖u‖q
[
a

2
‖u‖2−q − d0‖u‖4−q − λ

q
S−

q
2 |Ω|

4−q
4

]
,

where d0 = b−µS−3|Ω|
1
2

4
.
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Let
η(s) =

a

2
s2−q − d0s

4−q.

Then

ρ0 =

(
a(2− q)

2d0(4− q)

) 1
2

is the maximum value point of η(s), that is,

η(ρ0) = max
s>0

η(s) =
a

4− q

(
a(2− q)

2d0(4− q)

) 2−q
2

> 0.

Set

Λ∗ =
1

2
qS

q
2 |Ω|

q−4
4 η(ρ0).

Then, for all λ ∈ (0,Λ∗), we have

Iλ(u) ≥ η(ρ0)

2
ρq0 > 0, for all u ∈ S1

0(Ω) with ‖u‖ = ρ, .

where ρ small enough.
Case II: 0 < µ < bS3|Ω|− 1

2 .
In this case, it is easy to prove that condition (i) of Lemma 3.1 holds.
On the other hand, let u ∈ S1

0(Ω) \ {0}, it follows from the Hölider inequality,

0 < µ < bS3|Ω|− 1
2 and 1 < q < 2 that

Iλ(tu) =
a

2
‖u‖2t2 − b

4
‖u‖4t4 +

µt4

4

∫
Ω

φuu
2dξ − tqλ

q

∫
Ω

|u|qdξ

≤ a

2
‖u‖2t2 − b

4
‖u‖4t4 +

µt4

4
S−3|Ω|

1
2‖u‖4dξ − tqλ

q

∫
Ω

|u|qdξ

=
a

2
‖u‖2t2 −

(
b− µS−3|Ω| 12

4

)
‖u‖4t4 − tqλ

q

∫
Ω

|u|qdξ.

So, we have

Iλ(tu)→ −∞ as t→∞.

Furthermore, if µ ≤ 0, it is obvious that Iλ(tu)→ −∞ as t→ +∞. Thus, for µ < bS3|Ω|− 1
2 ,

there exists e ∈ S1
0(Ω)\Bρ0 such that Iλ(e) < 0. This completes the proof of Lemma 3.1.

We recall that a C1 functional Iλ on Banach space S1
0(Ω) is said to satisfy the Palais-Smale

condition at level c ((PS)c in short) if every sequence {un} ⊂ S1
0(Ω) satisfying lim

n→∞
I(un) = c

and lim
n→∞

‖I(un)‖S1
0(Ω)∗ = 0 has a convergent subsequence.

Lemma 3.2. Assume that µ < bS3|Ω|− 1
2 and 1 < q < 2 are satisfied. Then for each λ > 0,

there exists a positive constant M which is independent of λ such that

lim sup
n→∞

‖un‖ ≤M.
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Proof. Let {un} be a sequence in S1
0(Ω) such that

c+ o(1) = Iλ(un) =
a

2
‖un‖2 − b

4
‖un‖4 +

µ

4

∫
Ω

φunun
2dξ − λ

q

∫
Ω

|un|qdξ (3.1)

and

o(1)‖un‖ = 〈I ′λ(un), v〉 =

∫
Ω

∇Hun∇Hvdξ − b
∫

Ω

|∇Hun|2dξ
∫

Ω

∇Hun∇Hvdξ

+µ

∫
Ω

φununvdξ − λ
∫

Ω

|un|q−2unvdξ. (3.2)

By (3.1) and (3.2), we have

c+ o(1)‖un‖ = Iλ(un)− 1

q
〈I ′λ(un), un〉

=
(q − 2)a

2q
‖un‖2 +

(4− q)b
4q

‖un‖4 − µ(4− q)
4q

∫
Ω

φunun
2dξ

≥ −(2− q)a
2q

‖un‖2 +
(4− q)

4q
(b− µS−3|Ω|

1
2 )‖un‖4. (3.3)

From the Young’s inequality, we have

(2− q)a
2q

‖un‖2 ≤ 1

2ε

[
(2− q)a

2q

]2

+
ε

2
‖un‖4.

Let ε = (4−q)
4q

(b− µS−3|Ω| 12 ) > 0. It follows from (3.3) that

c+ o(1)‖un‖ = Iλ(un)− 1

q
〈I ′λ(un), un〉

≥ (4− q)
8q

(b− µS−3|Ω|
1
2 )‖un‖4 − (2− q)2a2

2q(4− q)

(
b− µS−3|Ω|

1
2

)−1

.

This means that {un} is also bounded in S1
0(Ω) since µ < bS3|Ω|− 1

2 and 1 < q < 2. Thus for
each λ > 0, there exists a positive constant M which is independent of λ such that

lim sup
n→∞

‖un‖ ≤M.

This completes the proof of Lemma 3.2.

Lemma 3.3. Assume that µ < bS3|Ω|− 1
2 and 1 < q < 2 are satisfied. Then for each λ > 0,

the functional Iλ satisfies the (PS)c condition with c < a2

4b
−Dλ, where

D =

(
4− q

4q

)
S−

q
2 |Ω|

4−q
4 M q,

M is given by Lemma 3.2.
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Proof. Let {un} be a (PS)c sequence, by Lemma 3.2, {un} is bounded in S1
0(Ω). Since S1

0(Ω)
is reflexible. Therefore, we still may assume that un ⇀ u0 weakly in S1

0(Ω) and un → u0

strongly in Lθ(Ω) with 1 ≤ θ < 4.
Set wn = un − u0, then ‖wn‖ → 0. Otherwise, there exists a subsequence (still denoted

by wn) such that
lim
n→∞

‖wn‖ = l. (3.4)

For every v ∈ S1
0(Ω), it holds

〈Iλ(un), v〉 = (a− b‖un‖2)

∫
Ω

∇un∇vdξ + µ

∫
Ω

φununvdξ − λ
∫

Ω

|un|q−2unvdξ = o(1). (3.5)

Using the Brézis-Lieb lemma (see [4]) and let n→∞, we have

[a− (bl2 + b‖u0‖2)]

∫
Ω

∇u0∇vdξ + µ

∫
Ω

φu0u0vdξ − λ
∫

Ω

|u0|q−2u0vdξ = o(1). (3.6)

Particularly, take v = u0 in (3.6), there is

[a− (bl2 + b‖u0‖2)]

∫
Ω

|∇u0|2dξ + µ

∫
Ω

φu0u0
2dξ − λ

∫
Ω

|u0|qdξ = o(1). (3.7)

Furthermore, as n→∞, it holds

〈I ′λ(un), un〉 = a‖un‖2 − b‖un‖4 + µ

∫
Ω

φunun
2dξ − λ

∫
Ω

|un|qdξ. (3.8)

Using the Brézis-Lieb lemma again, we get

o(1) = a‖wn‖2 + a‖u0‖2 − 2b‖wn‖2‖u0‖2 − b‖u0‖4 − b‖wn‖4

+µ

∫
Ω

φunun
2dξ − λ

∫
Ω

|un|qdξ. (3.9)

By (3.7) and (3.9), we have

al2 − bl4 − bl2‖u0‖2 = 0, l > 0. (3.10)

So that
l2 =

a

b
− ‖u0‖2. (3.11)

On the one hand, from (3.9) we have

b‖u0‖4 = a‖u0‖2 − bl2‖u0‖2 − b‖u0‖4 + µ

∫
Ω

φu0u0
2dξ − λ

∫
Ω

|u0|qdξ. (3.12)
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Recalling that ‖un‖ ≤M , using (3.12) and the Hölider inequality, it follows that

Iλ(u0) =
a

2
‖u0‖2 − a

4
‖u0‖2 +

bl2

4
‖u0‖2 − µ

4

∫
Ω

φu0u0
2dξ +

λ

4

∫
Ω

|u0|qdξ

+
µ

4

∫
Ω

φu0u0
2dξ − λ

q

∫
Ω

|u0|qdξ

=
a

4
‖u0‖2 +

bl2

4
‖u0‖2 −

(
4− q

4q

)
λ

∫
Ω

|u0|qdξ

≥ a

4
‖u0‖2 +

bl2

4
‖u0‖2 −

(
4− q

4q

)
λS−

q
2 |Ω|

4−q
4 M q

=
a

4
‖u0‖2 +

bl2

4
‖u0‖2 −Dλ, (3.13)

where D =
(

4−q
4q

)
S−

q
2 |Ω| 4−q4 M q.

On the other hand, from (3.10) and (3.11), we have

Iλ(u0) =
a

2
‖u0‖2 − b

4
‖u0‖4 +

µ

4

∫
Ω

φu0u0
2dξ − λ

q

∫
Ω

|u0|qdξ

= Iλ(un)− a

2
‖wn‖2 +

b

4
‖wn‖4 +

b

2
‖wn‖2‖u0‖2 + o(1)

= c− a

4
‖wn‖2 +

b

4
‖wn‖2‖u0‖2 + o(1)

<
a2

4b
−Dλ− a

4

(a
b
− ‖u0‖2

)
+
b

4
‖wn‖2‖u0‖2

=
a

4
‖u0‖2 +

b

4
l2‖u0‖2 −Dλ, (3.14)

which is a contradiction by comparing the calculations from (3.13) with (3.14). Therefore,
l = 0, it implies that un → u0 in S1

0(Ω). This completes the proof of Lemma 3.3.

4 Proof of Theorem 1.1 and Theorem 1.2

In this section, we apply Ekeland’s variational principle and mountain pass theorem to prove
that Theorem 1.1 and Theorem 1.2.

Proof of Theorem 1.1. On the one hand, for any u ∈ S1
0(Ω) \ {0}, we have

lim
s→0+

Iλ(su)

sq
= −λ

q

∫
Ω

|u|qdξ < 0 (4.1)

which means that there exists u ∈ Bρ0 such that Iλ(u) < 0, that is,

inf
u∈Bρ0

Iλ(u) < 0.

On the other hand, from Lemma 3.1, we have

inf
u∈Bρ0

Iλ(u) < 0 < inf
u∈Sρ0

Iλ(u).

10



Noting that Iλ(|u|) = Iλ(u), by applying Ekeland’s variational principle in Bρ0 , there exists
a minimizing sequence un ⊂ Bρ0 such that

Iλ(un) < inf
u∈Bρ0

Iλ(u) +
1

n
and Iλ(v) ≥ Iλ(un)− 1

n
‖v − un‖ for all v ∈ Bρ0 .

Therefore
Iλ(un)→ c and I ′λ(un)→ 0 as n→∞.

Since un ≤ ρ0 and un ≥ 0, there exists uλ ∈ Bρ0 with uλ ≥ 0 such that un ⇀ uλ in S1
0(Ω) as

n→∞. By Lemma 3.3, we can obtain un → uλ in S1
0(Ω) and

d = lim
n→∞

Iλ(un) = Iλ(uλ) < 0.

Hence, we have uλ ≥ 0 with uλ 6= 0 is a solution of problem (1.1). By the maximum principle
[5], we can know that uλ > 0 in Ω. The proof of Theorem 1.1 is complete.

Lemma 4.1. Let µ < bS3|Ω|− 1
2 and 1 < q < 2 be satisfied. Then, there exists Λ2 > 0 such

that if λ ∈ (0,Λ2),

sup
t≥0

Iλ(uλ + tuε) <
a2

4b
−Dλ. (4.2)

Proof. Let uε as defined in (2.3). Since uλ is a positive solution of (1.1) and Iλ(uλ) < 0, if

0 < µ < bS3|Ω|− 1
2 , it holds that

Iλ(uλ + tuε) =
a

2
‖uλ + tuε‖2 − b

4
‖uλ + tuε‖4 − λ

q

∫
Ω

|uλ + tuε|qdξ +
µ

4

∫
Ω

φu+tuε(uλ + tuε)
2dξ

=
a

2
‖uλ‖2 + at

∫
Ω

(∇uλ∇uε)dξ +
at2

2
‖uε‖2 − b

4
‖uλ‖4 − bt4

4
‖uε‖4

−bt‖uλ‖2

∫
Ω

(∇uλ∇uε)dξ − bt2
(∫

Ω

(∇uλ∇uε)dξ
)2

− bt2

2
‖uλ‖2‖uε‖2

−bt3‖uε‖2

∫
Ω

(∇uλ∇uε)dξ −
λ

q

∫
Ω

|uλ + tuε|qdξ +
µ

4

∫
Ω

φuλ+tuε(uλ + tuε)
2dξ

≤ Iλ(uλ) +
at2

2
‖uε‖2 − bt4

4
‖uε‖4 − bt2

2
‖uλ‖2‖uε‖2

+
µ

4

(∫
Ω

φuλ+tuε(uλ + tuε)
2 − φuλuλ2 − 4tφuλuλuεdξ

)
−λ
q

(∫
Ω

|uλ + tuε|q − |uλ|qdξ
)

+ λt

∫
Ω

uλ
q−1uεdξ

≤ at2

2
‖uε‖2 − bt4

4
‖uε‖4 − bt2

2
‖uλ‖2‖uε‖2 + λt

(∫
Ω

uλ
3dξ

) q−1
3
(∫

Ω

uε
3

4−q dξ

) 4−q
3

+
µ

4

(∫
Ω

φuλ+tuε(uλ + tuε)
2 − φuλuλ2 − 4tφuλuλuεdξ

)
=

at2

2
‖uε‖2 − bt4

4
‖uε‖4 − bt2

2
‖uλ‖2‖uε‖2 + λt‖uλ‖q−1

3 ‖uε‖ 4−q
3

+
µ

4

(∫
Ω

φuλ+tuε(uλ + tuε)
2 − φuλuλ2 − 4tφuλuλuεdξ

)
. (4.3)
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On the other hand, we have∫
Ω

(φuλ+tuε(uλ + tuε)
2 − φuλuλ2 − 4tφuλuλuε)dξ

≤
∫

Ω

(6t2φuλuε
2 + 4t3φuεuλuε + t4φuεuε

2)dξ. (4.4)

From (4.3) and (4.4), one has

Iλ(uλ + tuε) ≤
at2

2
‖uε‖2 − bt4

4
‖uε‖4 − bt2

2
‖uλ‖2‖uε‖2 (4.5)

+
µ

4

(∫
Ω

(6t2φuλuε
2 + 4t3φuεuλuε + t4φuεuε

2)dξ

)
+ λt‖uλ‖q−1

2 ‖uε‖ 3−q
2
.

It follows from the Hölder inequality and Lemma 2.1 of [3] that

‖uε‖2 = S2 +O(ε2),

∫
Ω

φuλuε
2dξ ≤ ‖φuλ‖4‖uε‖2

8
3
≤ Cε,∫

Ω

φuεuλuεdξ ≤ ‖φuλ‖4‖uλ‖ 8
3
‖uε‖ 8

3
≤ Cε

3
2 ,∫

Ω

φuεuε
2dξ ≤ ‖φuε‖4‖uλ‖2

8
3
≤ Cε2.

Noting that ∫
Ω

φuεuε
2 ≤ S−3|Ω|

1
2‖uε‖4.

Thus, it follows from (4.5) that

Iλ(uλ + tuε) ≤ at2
(
S2

2
+ Cε

)
− a0t

4(S2 +O(ε4))

4

−bt
2

2
‖uλ‖2‖uε‖2 + Ct3ε

3
2 + λt‖uλ‖q−1

2 ‖uε‖ 3−q
2
, (4.6)

where
a0 = b− µS−3|Ω|

1
2 > 0.

Define

g(t) = at2
(
S2

2
+ Cε

)
− a0t

4(S2 +O(ε4))

4
− bt2

2
‖uλ‖2‖uε‖2 + Ct3ε

3
2 + λt‖uλ‖q−1

2 ‖uε‖ 3−q
2
.

Since
lim
t→0+

g(t) > 0 and lim
t→∞

g(t) = −∞.

Thus, there exists tε > 0 such that

sup
t≥0

g(t) = g(tε),
dg

dt
|t=tε= 0.
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Therefore, there exist two positive constants t1, t2 independent of ε, λ such that

0 < t1 < tε < t2 <∞.

Moreover, it holds from (4.6) that

sup
t≥0

Iλ(uλ + tuε) ≤ sup
t≥0

g(t)

≤ sup
t≥0

(
at2

2
‖uε‖2 − bt4

4
‖uε‖4

)
− C2S

2 + C1ε+ λC3ε

<
a2

4b
− C2S

2 + C1ε+ λC3ε. (4.7)

Let

ε = λ and Λ2 :=

(
C2S

2

2C1 +D

)
.

Then
Cε ≥ λCε.

Furthermore,

−C2S
2 + C1ε

3
2 + λC3ε ≤ −C2S

2 + 2C1ε < λ(2C1)− λ(2C1 +D) = −Dλ

for all 0 < λ < Λ2. Combining this with (4.7) implies that

sup
t≥0

Iλ(uλ + tuε) <
a2

4b
−Dλ.

On the other hand, it is easy to verify that

sup
t≥0

Iλ(uλ + tuε) <
a2

4b
−Dλ for µ ≤ 0.

In either case, we have

sup
t≥0

Iλ(uλ + tuε) <
a2

4b
−Dλ

for µ < bS3|Ω|− 1
2 and 1 < q ≤ 2. The proof of Lemma 4.1 is complete.

Proof of Theorem 1.2. Let

Λ∗ = min

{
Λ∗,Λ2,

a2

4bD

}
.

Applying the mountain pass lemma (see [1]), there exists un ∈ S1
0(Ω) such that

Iλ(un)→ c and I ′λ(un)→ 0 as n→∞.

where
c = inf

γ∈Γ
max
0≤t≤1

Iλ(γ(t))
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and
Γ = {γ ∈ C([0, 1], E) : γ(0) = uλ, γ(1) = e} .

It follows from Lemma 3.3 that {un} has a convergent subsequence (still denoted by {un})
such that un → u1 in S1

0(Ω). Moreover, we obtain u1 is a non-negative weak solution of
problem (1.1) and

Iλ(u1) = lim
n→∞

Iλ(un) = c > 0.

It follows that uλ 6= u1 and u1 6= 0. In fact, similar to the proof of Theorem 1.1, we also
have u1 > 0 and hence u1 is a second positive solution of problem (1.1).

5 Proof of Theorem 1.3

In this section, we will prove that problem (1.1) has a positive ground state solution, where
1 < q < 2. To this end, we define

ψ = inf
u∈N

Iλ(u), N =
{
u ∈ S1

0(Ω) : u 6= 0, 〈I ′λ(u), u〉 = 0
}
. (5.1)

Proof of Theorem 1.3. Obviously, if u ∈ N , one has Iλ(|u|) = Iλ(u), therefore we can
consider a nonnegative minimizing sequence {un} ⊂ N and such that

Iλ(un)→ ψ as n→∞. (5.2)

By Iλ(uλ) < 0 and Lemma 3.2, we can see that ψ < 0 and {un} is bounded in S1
0(Ω). We

may assume that un ⇀ u2 weakly in S1
0(Ω) and un → u2 strongly in Lθ(Ω) with 1 ≤ θ < 4,

Then u2 6= 0. In fact, if u2 ≡ 0 and lim
n→∞

‖un‖2 = l, we have

〈I ′λ(un), un〉 = a‖un‖2 − b‖un‖4 + µ

∫
Ω

φunun
2dξ − λ

∫
Ω

|un|qdξ. (5.3)

So, we get
al − bl2 = 0.

From this fact, we obtain l = 0 or l = a
b
.

If l = 0, we have Iλ(un)→ 0 as n→∞. This is a contradiction from (5.2).
If l = a

b
, we have Iλ(un) → a2

4b
. This is a contradiction from Lemma 4.1. Therefore, we

must have u2 6= 0 in S1
0(Ω).

It follows from Lemma 3.3 that un → u2 in S1
0(Ω). It means that u2 is a positive solution

of problem (1.1) and Iλ(u2) ≥ ψ.
Next, we will prove Iλ(u2) ≤ ψ. By the Fatou’s Lemma, we get

ψ = lim
n→∞

{
Iλ(un)− 1

q
〈I ′λ(un), un〉

}
= lim

n→∞

{
q − 2

2q
‖un‖2 − b(4− q)

4q
‖un‖4 − µ(4− q)

4q

∫
Ω

φunun
2dξ

}
≥ q − 2

2q
‖u2‖2 − b(4− q)

4q
‖u2‖4 − µ(4− q)

4q

∫
Ω

φu2u2
2dξ. (5.4)
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In addition, since u2 is a positive solution of problem (1.1), one has

Iλ(u2) = Iλ(u2)− 1

q
〈I ′λ(u2), u2〉 =

q − 2

2q
‖u2‖2− b(4− q)

4q
‖u2‖4− µ(4− q)

4q

∫
Ω

φu2u2
2dξ. (5.5)

It follows from (5.4) that Iλ(u2) ≤ ψ. Thus Iλ(u2) = ψ and ψ 6= 0. This proves that u2 is a
positive ground state solution of problem (1.1).

6 Proof of Theorem 1.4

In this section, we apply the Clark critical point theorem (see [9]) to prove that problem (1.1)
has at least m − n pairs of negative energy solutions. Note that Υ is a closed, symmetric
subset of X \ {0} at the origin. If A ∈ Υ define genus

γ(A) = min{k ∈ N|∃φ ∈ C(A,Rk \ {0}), φ(−x) = φ(x)}

and
Γ(A) = {A ∈ Υ; γ(A) ≥ k}.

Theorem 6.1. If Iλ ∈ C1(S1
0(Ω),R) is even, Iλ(0) = 0, Iλ satisfies (PS)c condition and the

following conditions:
(I1) There is an m dimensional subspace Xm and a constant r > 0, Sr(0) = {u ∈
S1

0(Ω)|‖u‖ = r} such that sup
u∈Sr(0)

⋂
Xm

Iλ(u) < 0.

(I2) If there exist an n dimensional subspace Xn(n < m) such that inf
u∈X⊥n

Iλ(u) > −∞.

Then, Iλ(u) has at least m− n pairs of critical points with negative critical value, where

cj = inf
A∈Γj

max
u∈A

Iλ(u).

Remark 6.1. Assume that 1 < q < 2, µ < bS3|Ω|− 1
2 and c < 0, then for each

λ ∈
(

0, a
2

4b
D−1

)
, the functional Iλ satisfies the (PS)c condition, where D is given by Lemma

3.3.

Proof. If λ ∈
(

0, a
2

4b
D−1

)
, we have a2

4b
−Dλ > 0 > c. Then, the conclusion of Remark 6.1 is

the corollary of Lemma 3.3.

Proof of Theorem 1.4. To prove Theorem 1.4, we shall use Theorem 6.1. Note that S1
0(Ω)

is a Banach space, Iλ ∈ C1 be an even functional and Iλ(0) = 0.
Next, we divide the proof process into two steps.
Step I: Let 0 6= u ∈ Xm ⊂ S1

0(Ω), where Xm is an m dimensional subspace, we define
u = τmv with ‖v‖ = 1 and τm = ‖u‖.

If 0 < µ ≤ bS3|Ω|− 1
2

Iλ(u) =
τ 2
ma

2
− τ 4

mb

4
+
τ 4
mµ

4

∫
Ω

φvv
2dξ − τ qmλ

q

∫
Ω

|v|qdξ

≤ τ 2
ma

2
− τ qmλ

q

∫
Ω

|v|qdξ.
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Since 1 < q < 2 and the finite dimensions space all norms are equivalent, so there exists
τ0 > 0 small enough such that

Iλ(u) ≤ τ 2
ma

2
− τ qmλ

q

∫
Ω

|v|qdξ < 0 for all τ ∈ (0, τ0). (6.1)

Besides, if µ ≤ 0, it is obvious that there (6.1) still holds. Thus

sup
u∈Sr(0)

⋂
Xm

Iλ(u) < 0,

where Sr(0) = {u ∈ S1
0(Ω)|‖u‖S1

0(Ω) = r}. This fact means that (I1) in Theorem 6.1 holds
true.

Step II: If −∞ < µ ≤ 0, by (2.5) and the Hölider inequality, we get

Iλ(u) =
a

2
‖u‖2 − b

4
‖u‖4 +

µ

4

∫
Ω

φuu
2dξ − λ

q

∫
Ω

|u|qdξ

≥ a

2
‖u‖2 − b

4
‖u‖4 +

µ

4
S−3|Ω|

1
2‖u‖4 − λS−

q
2 |Ω|

4−q
4 ‖u‖q

>
a

2
‖u‖2 − C1‖u‖4 − C1‖u‖q,

(6.2)

where C1 = b
2

and C2 = λS−
q
2 |Ω| 4−q4 . Since 1 < q < 2, we can choose small ‖u‖ and an n

dimensional subspace Xn ⊂ Xm(n < m) such that

inf
u∈X⊥n

Iλ(u) > −∞.

Besides, if 0 < µ ≤ bS3|Ω|− 1
2 , it is easy to verify that (6.2) still holds. Hence, (I2) in

Theorem 6.1 is valid.
Let

Λ :=

{
Λ∗,

a2

4b
D−1

}
.

It follows from Remark 6.1 and Lemma 3.3 that Iλ satisfies the (PS)c condition at all levels
c < 0. Consequently, by theorem 6.1, we know that the problem (1.1) has at least m − n
pairs of negative solutions.
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