References
1. Gao W, Liang S, Wang R, et al. Industrial carbon dioxide
capture and utilization: state of the art and future challenges.Chem Soc Rev. 2020;49:8584-8686.
2. Chung WC, Chang MB. Review of catalysis and plasma
performance on dry reforming of CH4 and possible
synergistic effects. Renew Sust Energ Rev. 2016;62:13-31.
3. Cui W-G, Hu T-L, Bu X-H. Metal–organic framework materials
for the separation and purification of light hydrocarbons. Adv
Mater. 2020;32:1806445.
4. Hosono N, Kitagawa S. Modular design of porous soft
materials via self-organization of metal–organic cages. Acc Chem
Res. 2018;51:2437-2446.
5. Kitagawa S, Matsuda R. Chemistry of coordination space of
porous coordination polymers. Coord Chem Rev. 2007;251:2490-2509.
6. Chen B, Eddaoudi M, Hyde ST, Keeffe M, Yaghi OM. Interwoven
metal-organic framework on a periodic minimal surface with extra-large
pores. Science. 2001;291:1021.
7. Liao P-Q, Huang N-Y, Zhang W-X, Zhang J-P, Chen X-M.
Controlling guest conformation for efficient purification of butadiene.Science. 2017;356:1193.
8. Li L, Lin R-B, Krishna R, et al. Ethane/ethylene separation
in a metal-organic framework with
iron-peroxo sites. Science 2018;362:1443-446.
9. Hou Q, Zhou S, Wei Y, Caro J, Wang H. Balancing the grain
boundary structure and the framework flexibility through bimetallic
metal–organic framework (MOF) membranes for gas separation. J Am
Chem Soc. 2020;142:9582-9586.
10. Lyndon R, You W, Ma Y, et al. Tuning the structures of
metal–organic frameworks via a mixed-linker strategy for
ethylene/ethane kinetic separation. Chem Mater.2020;32:3715-3722.
11. Rodenas T, Luz I, Prieto G, et al. Metal–organic framework
nanosheets in polymer composite materials for gas separation. Nat
Mater. 2015;14:48-55.
12. Bae T-H, Lee JS, Qiu W, Koros WJ, Jones CW, Nair S. A
high-performance gas-separation membrane containing submicrometer-sized
metal–organic framework crystals. Angew Chem Int Ed.2010;49:9863-9866.
13. Li Y-S, Liang F-Y, Bux H, Feldhoff A, Yang W-S, Caro J.
Molecular sieve membrane: Supported metal–organic framework with high
hydrogen selectivity. Angew Chem Int Ed. 2010;49:548-551.
14. Hu Y, Wei J, Liang Y, et al. Zeolitic imidazolate
framework/graphene oxide hybrid nanosheets as seeds for the growth of
ultrathin molecular sieving membranes. Angew Chem Int Ed.2016;55:2048-2052.
15. Liu Q, Wang N, Caro J, Huang A. Bio-inspired polydopamine:
A versatile and powerful platform for covalent synthesis of molecular
sieve membranes. J Am Chem Soc. 2013;135:17679-17682.
16. Liu G, Chernikova V, Liu Y, et al. Mixed matrix
formulations with MOF molecular sieving for key energy-intensive
separations. Nat Mater. 2018;17:283-289.
17. Song Q, Nataraj SK, Roussenova MV, et al. Zeolitic
imidazolate framework (ZIF-8) based polymer nanocomposite membranes for
gas separation. Energy Environ Sci. 2012;5:8359-8369.
18. Wang Y, Jin H, Ma Q, et al. A MOF glass membrane for gas
separation. Angew Chem Int Ed. 2020;59:4365-4369.
19. Ban Y, Li Z, Li Y, et al. Confinement of ionic liquids in
nanocages: Tailoring the molecular sieving properties of ZIF-8 for
membrane-based CO2 capture. Angew Chem Int Ed.2015;54:15483-15487.
20. Liao P-Q, Chen X-W, Liu S-Y, et al. Putting an ultrahigh
concentration of amine groups into a metal–organic framework for
CO2 capture at low pressures. Chem Sci.2016;7:6528-6533.
21. Lin Y, Lin H, Wang H, et al. Enhanced selective
CO2 adsorption on polyamine/MIL-101(Cr) composites.J Mater Chem A. 2014;2:14658-14665.
22. Suh BL, Lee S, Kim J. Size-matching ligand insertion in
MOF-74 for enhanced CO2 capture under humid conditions.J Phys Chem C. 2017;121:24444-24451.
23. Kang M, Kang DW, Hong CS. Post-synthetic
diamine-functionalization of MOF-74 type frameworks for effective carbon
dioxide separation. Dalton Trans. 2019;48:2263-2270.
24. Chen Y-Q, Qu Y-K, Li G-R, et al. Zn(II)-benzotriazolate
clusters based amide functionalized porous coordination polymers with
high CO2 adsorption selectivity. Inorg Chem.2014;53:8842-8844.
25. Li N, Chang Z, Huang H, et al. Specific
K+ binding sites as CO2 traps in a
porous MOF for enhanced CO2 selective sorption.Small. 2019;15:1900426.
26. Wang B, Côté AP, Furukawa H, O’Keeffe M, Yaghi OM. Colossal
cages in zeolitic imidazolate frameworks as selective carbon dioxide
reservoirs. Nature. 2008;453:207-211.
27. Yang L, Cui X, Zhang Y, et al. Anion pillared
metal–organic framework embedded with molecular rotors for
size-selective capture of CO2 from CH4and N2. ACS Sustain Chem Eng. 2019;7:3138-3144.
28. Li S, Zeng S, Tian Y, Jing X, Sun F, Zhu G. Two flexible
cationic metal-organic frameworks with remarkable stability for
CO2/CH4 separation. Nano Res.2021;https://doi.org/10.1007/s12274-021-3329-8.
29. Mohan M, Essalhi M, Durette D, et al. A rational design of
microporous nitrogen-rich lanthanide metal–organic frameworks for
CO2/CH4 separation. ACS Appl Mater
Interfaces. 2020;12:50619-50627.
30. Wriedt M, Sculley JP, Yakovenko AA, et al. Low-energy
selective capture of carbon dioxide by a pre-designed elastic
single-molecule trap. Angew Chem Int Ed. 2012;51:9804-9808.
31. Du L, Lu Z, Ma M, Su F, Xu L. A porous cobalt-based MOF
with high CO2 selectivity and uptake capacity. Rsc
Adv. 2015;5:29505-29508.
32. Wang Z-S, Li M, Peng Y-L, Zhang Z, Chen W, Huang X-C. An
ultrastable metal azolate framework with binding pockets for optimal
carbon dioxide capture. Angew Chem Int Ed. 2019;58:16071-16076.
33. Wang B, Huang H, Lv X-L, Xie Y, Li M, Li J-R. Tuning
CO2 selective adsorption over N2 and
CH4 in UiO-67 analogues through ligand
functionalization. Inorg Chem. 2014;53:9254-9259.
34. Li J-R, Kuppler RJ, Zhou H-C. Selective gas adsorption and
separation in metal–organic frameworks. Chem Soc Rev.2009;38:1477-1504.
35. Barnett BR, Parker ST, Paley MV, et al. Thermodynamic
separation of 1-butene from 2-butene in metal–organic frameworks with
open metal sites. J Am Chem Soc. 2019;141:18325-18333.