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Abstract. We are concerned with the inverse problem of recovering the unknown wave speed and also the
source in a multidimensional wave equation. We show that the wave speed coefficient can be reconstructed from

the observations of the solution taken at a single point. For the source, we may need a sequence of observation

points due to the presence of multiple spectrum and nodal lines. This new method, based on spectral estimation
techniques, leads to a simple procedure that delivers both uniqueness and reconstruction of the coefficients at

the same time.

1. Introduction

We consider the problem of reconstructing the wave speed coefficient ω(x) of an unknown heterogeneous
medium as well as an unknown source p(x) from the observations of solutions u of the wave equation at a single
point b ∈ Ω

(1.1)


utt (x, t) =

1

ω(x)
∆u(x, t) + h(t)p(x), x ∈ Ω ⊂ Rd, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = f(x), ut (x, 0) = g(x) , x ∈ Ω.

We assume that we are given Ω, a connected open domain with a smooth boundary, and also the control
h ∈ L(R+). To be able to observe the solution at any fixed point b ∈ Ω, we assume that ω is a positive
continuous function and the unknown source p, together with the initial conditions f, g, have compact supports
in Ω. Also the initial conditions {f, g} are chosen such that the observation map at a fixed point b ∈ Ω,

(1.2) Γb : {f, g} −→ {u(b, t)}t>0

contains enough spectral data to reconstruct ω, and either p or h.

Statement of the problem:
A. Reconstruct the wave speed ω(x) from the knowledge of the map Γb given by (1.2) only.
B. Reconstruct the source p(x) given h(t) and u(x, T ) for x ∈ Ω.
C. Reconstruct the source p(x) given h(t) and a sequence of maps Γβn .

We shall explain how to extract the spectral data from the observations {u(b, t)}t>0 in Section 3 and how
to reconstruct the wave speed ω(x) in Section 4. In Section 5 we discuss the recovery of the source p(x) given
the control h(t) and vice versa.

The inverse problem for wave equations has important applications ranging from medical imaging, seis-
mology, to radar, and sonar as it models the propagation of acoustic waves inside an unknown medium. For
applications in medical imaging, the wave speed coefficient would reveal the different densities in human body
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which helps identify the various organs, their shapes and any foreign matter, such as tumors. In optical tomog-
raphy, pressure waves are generated inside a body by a pulsed laser, which usually would target a tumor or a
harder object inside a soft organ, say liver for example. The energy from the pulsed laser would force the tumor
to expand quickly and to resonate at a specific frequency, and so acts as a source as it generates pulsed pressure
waves. By listening to the solution, at an arbitrary point inside or on the boundary, the reconstruction of ω(x)
and p(x) would help identify and image the different human tissues, and organs in a non invasive way and with
no radation. By comparing them with healthy ones, one could come up with a better diagnostic.

Our method is fundamentally different from standard scattering methods or echo analysis, as it is confined
to a finite domain and is based on spectral estimation techniques, Weyl’s asymptotic formula for eigenfunctions
and mainly Fourier analysis, [1, 2, 3]. It also uses smooth initial conditions to generate classical solutions,
as opposed to Dirac type of initial conditions which generally lead to weak solutions. This approach was first
developed for heat equations [4], and then extended to wave equations, where we reconstruct a potential q from
one point observation, see [5], of the solution of the wave equation

(1.3) vtt(x, t) = ∆v(x, t) + q(x)v(x, t).

Note that in (1.3), the principal operator ∆ is known, and so is its space, domain and we are looking only for a

perturbation by q. In contrast with (1.3), the principal part
1

ω(x)
∆ of (1.1) is unknown and so are its domain,

range and the inner product space.
In real life, applied control problems require measurements and data to be collected at few points only, by

means of sensors, which is why the proposed method is more appropriate for medical imaging and engineering
applications in general. We also believe that tools from spectral theory will make the interplay between control
theory, identification problems, observability [10], and inverse problems more transparent. For example, in
subsection 5.3 we show why the presence of a multiple spectrum, as it complicates the geometry of nodal lines,
requires more observations and data processing to solve multidimensional inverse problems, compared to one
dimensional inverse problems, [4].

2. Preliminaries

For (1.1) we assume that the wave speed coefficient is positive, and Ω is an open bounded domain in
Rd, d > 1, with a smooth boundary, more precisely,

0 < ω0 ≤ ω(x) ∈ C[ d2 ]+1
(
Ω
)
, ∂Ω ∈ C[ d2 ]+1,(2.1)

h ∈ L(R+), p ∈ Hγ
0 (Ω), with γ >

3(d− 1)

2
,(2.2)

as we shall see the dimension d plays an important role in the regularity of the eigenfunctions and solution.
Under the assumptions (2.1), the operator

(2.3)

 A(f)(x) =
−1

ω(x)
∆f(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

is selfadjoint when acting in the weighted Hilbert space

L2
ω(Ω) =

{
f measurable : ‖f‖2ω =

∫
Ω

|f(x)|2ω(x)dx <∞
}
,

and its spectrum is discrete and positive [6, 9].
Let us denote the eigenvalues of (2.3), indexed in the increasing order by λn, taking into account their

multiplicity, and associated eigenfunctions by ϕn ∈ L2
ω (Ω),

(2.4)

{
−∆ϕn(x) = λnω(x)ϕn(x), x ∈ Ω,

ϕn(x) = 0, x ∈ ∂Ω,
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which we normalize by ‖ϕn‖ω = 1. Recall that {ϕn}n≥1 is an orthonormal basis in L2
ω(Ω). For the smoothness

of ϕn, observe that ϕn is the solution of the Poisson equation

(2.5)

{
−∆u(x) = q(x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,

where, from (2.4),

(2.6) q(x) = λnω(x)ϕn(x).

Note that whenever ϕn(x) ∈ Hk(Ω), with k ≤
[
d
2

]
+ 1, then q(x) defined by (2.6) also belongs to Hk(Ω), since

ω(x) ∈ C[ d2 ]+1
(
Ω
)
. It follows from the properties of the Laplacian operator, [9, Theorem 3, Section 2, Chapter

IV],

(2.7) if q ∈ Hk(Ω), then u ∈ Hk+2(Ω).

Thus we deduce from (2.6) and ϕn ∈ L2
ω (Ω) , that q ∈ L2(Ω) = H0(Ω). By (2.7) we then have ϕn = u ∈ H2(Ω).

Since k = 2 ≤
[
d
2

]
+ 1, then q ∈ H2(Ω), and therefore, again by (2.7), ϕn = u ∈ H4(Ω). We can repeat this

process

(2.8) ϕn(x) ∈ H2j (Ω)
2j<[ d2 ]+1
⇒ q(x) = λnω(x)ϕn(x) ∈ H2j (Ω)

∆−1

⇒ ϕn(x) ∈ H2(j+1) (Ω) ,

to reach ϕn(x) ∈ H2j (Ω) , 2j ≥
[
d
2

]
+ 1. Consequently, q ∈ H[ d2 ]+1(Ω). Together with the smoothness of the

domain ∂Ω ∈ C[ d2 ]+1 it follows from [9, Theorem 5, Section 2, Chapter 4], that the generalized eigensolution
ϕn = u of the Poisson equation (2.5) is a classical solution, i.e.,

Lemma 2.1. Assume that (2.1) holds, then ϕn ∈ C2(Ω) ∩ C(Ω).

Recall that the Weyl’s law for the asymptotics of the eigenvalues λn has the form, [2, 3],

(2.9) λn ' δn
2
d , n→∞, where δ =

[
(2
√
π)−d

Γ
(
d
2 + 1

) ∫
Ω

ω
d
2 (x) dx

]− 2
d

,

and for the eigenfunctions ϕn(x), the asymptotics formula

(2.10)
∑

|
√
λn−λ|≤1

ϕ2
n(x) = O

(
λd−1

)
, λ→∞,

holds uniformly on any compact subset K of Ω, [1]. In particular, we deduce that

(2.11) ϕn(x) = O
(
λ
d−1
4

n

)
= O

(
n
d−1
2d

)
, n→∞.

By κn(f) we denote the nth Fourier coefficient of f ∈ L2
ω(Ω) in the basis {ϕn}n≥1, namely

(2.12) κn(f) =

∫
Ω

f(x)ϕn(x)ω(x)dx.

Recall that if f ∈ Hα
0 (Ω) ⊂ L2

ω(Ω), for α ≥ 0, then its Fourier coefficient κn(f) has the asymptotics [1]

(2.13) κn(f) = O
(
λ
−α2
n

)
= O

(
n−

α
d

)
, n→∞,

and the following convergence result will be essential for the pointwise observation of the solution of (1.1).

Lemma 2.2. [1, 7, 8] Let f ∈ Hα
0 (Ω) with α > d

2 . Then the series

(2.14)

∞∑
n=1

κn(f)ϕn(x)

converges absolutely and uniformly to f(x) on any compact subset of Ω.
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The absolute convergence of (2.14) should be understood in the following unconventional way. With the
presence of multiple eigenvalues, let us regroup all eigenvalues into a strictly increasing sequence µ1 < µ2 < . . .
such that the sets {λ1, λ2, · · · , λn, · · · } and {µ1, µ2, · · · , µl, · · · } coincide. Then the absolute convergence of
(2.14) means the convergence of the series

(2.15)

∞∑
l=1

∣∣∣∣∣∣
∑
λn=µl

κn(f)ϕn(x)

∣∣∣∣∣∣ .
The solution of (1.1) can be expessed as

(2.16) u(x, t) =
∑
n≥1

cn(t)ϕn(x),

where

(2.17) cn(t) :=

∫
Ω

u(x, t)ϕn(x)ω(x)dx = κn(u(., t)).

To find the behaviour of cn(t), use the fact that

c′′n(t) =

∫
Ω

utt(x, t)ϕn(x)ω(x)dx

=

∫
Ω

∆u(x, t)ϕn(x)dx + h(t)

∫
Ω

p(x) ϕn(x)ω(x)dx

=

∫
Ω

u(x, t)∆ϕn(x)dx + h(t)

∫
Ω

p(x) ϕn(x)ω(x)dx

= −λn
∫

Ω

u(x, t)ϕn(x)ω(x)dx + h(t)

∫
Ω

p(x) ϕn(x)ω(x)dx

to deduce the initial value problem for each cn(t),

(2.18)

{
c′′n(t) + λncn(t) = h(t)κn (p) ,
cn(0) = κn(f), c′n(0) = κn(g),

whose solution is given by

cn(t) = κn(f) cos(
√
λnt) + κn(g)

sin(
√
λnt)√
λn

+
κn (p)√
λn

∫ t

0

sin(
√
λn(t− η))h(η)dη.

Thus, the solution of (1.1), by (2.16), has the representation

(2.19) u(x, t) =
∑
n≥1

(
κn(f) cos(

√
λnt) +

κn(g)√
λn

sin(
√
λnt) +

κn(p)√
λn

∫ t

0

sin(
√
λn(t− η))h(η)dη

)
ϕn(x),

where, at first sight, the convergence is in L2
ω(Ω). To obtain uniform and absolute convergence of (2.19), we

use Lemma 2.2

Proposition 1. a) Assume (2.1), (2.2), and

(2.20) f ∈ Hγ+1
0 (Ω), g ∈ Hγ

0 (Ω).

Then for any t ≥ 0, the series (2.19) converges uniformly on any compact subset of Ω, and in particular,
converges at any point b ∈ Ω.

b) Assume (2.1) and

(2.21) f, g, p ∈ Hα
0 (Ω), α >

d

2
, h ∈ Lloc[0,∞).

Then for any x ∈ Ω, the series (2.19) converges uniformly on any compact subset of [0,∞).
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Proof. a) Let K be any compact subset of Ω. From (2.9), (2.11), and (2.13), we have
(2.22)

κn(f) cos(
√
λnt)ϕn(x),

κn(g)√
λn

sin(
√
λnt)ϕn(x),

κn(p)√
λn

(∫ t

0

sin(
√
λn(t− η))h(η)dη

)
ϕn(x) = O

(
n
d−2γ−3

2d

)
on K, uniformly in t ∈ [0,∞). Condition γ > 3(d−1)

2 from (2.2) yields d−2γ−3
2d < −1, and therefore, the series

(2.19) converges uniformly on K × [0,∞).
b) Under assumptions (2.21) we can apply Lemma 2.2 to (2.19) to obtain∣∣∣∣∣

∞∑
n=1

(
κn(f) cos(

√
λnt) +

κn(g)√
λn

sin(
√
λnt) +

κn(p)√
λn

∫ t

0

sin(
√
λn(t− η))h(η)dη

)
ϕn(x)

∣∣∣∣∣
≤
∞∑
l=1

∣∣∣∣∣∣
∑
λn=µl

κn(f)ϕn(x) cos(
√
µlt)

∣∣∣∣∣∣+

∞∑
l=1

∣∣∣∣∣∣
∑
λn=µl

κn(g)ϕn(x)
sin(
√
µlt)√
µl

∣∣∣∣∣∣
+

∞∑
l=1

∣∣∣∣∣∣
∑
λn=µl

κn(p)ϕn(x)
1
√
µl

∫ t

0

sin(
√
µl(t− η))h(η)dη

∣∣∣∣∣∣(2.23)

≤
∞∑
l=1

∣∣∣∣∣∣
∑
λn=µl

κn(f)ϕn(x)

∣∣∣∣∣∣+
1√
λ1

∞∑
l=1

∣∣∣∣∣∣
∑
λn=µl

κn(g)ϕn(x)

∣∣∣∣∣∣+
‖h‖L(0,t)√

λ1

∞∑
l=1

∣∣∣∣∣∣
∑
λn=µl

κn(p)ϕn(x)

∣∣∣∣∣∣ <∞.
Thus the Weierstrass M test yields the uniform convergence of (2.19) in any compact subset of [0,∞). �

3. Extracting spectral data

To reconstruct a function, we only need a basis and its coordinates in the given basis. In our case we are
interested in reconstructing the weight ω and the source p and as we shall see in the next section, the coordinates
of ϕ1(x)ω(x) in the basis {ψn}n≥1 are nothing else than {κ1 (ψn)}n≥1 , while {κn (p)}n≥1 are coordinates of

the source p in the basis {ϕn}n≥1 . Thus we need to extract the coefficients {κ1 (ψn)}n≥1 and {κn (p)}n≥1 from

the series (2.19), which is the observation of the solution of (1.1) at a single point b ∈ Ω.
To do so, recall that C∞0 (Ω), the space of infinitely differentiable functions with compact support in Ω, is

dense in L2(Ω), and so we can choose an orthonormal basis {ψn}n≥1 of L2(Ω) from C∞0 (Ω) as initial conditions
and so conditions (2.20) or (2.21) can hold. Denote then the observation of the solution at the fixed point
b ∈ Ω, by uf,g(b, t) when its initial conditions are {f, g} = {ψ2k−1, ψ2k} , k = 1, 2, · · · , or {0, 0}. Proposition 1
allows us to express the observed solutions in the form

uψ2k−1,ψ2k
(b, t) =

∑
n≥1

(
κn(ψ2k−1) cos(

√
λnt) +

κn(ψ2k)√
λn

sin(
√
λnt) +

κn(p)√
λn

∫ t

0

sin(
√
λn(t− η))h(η)dη

)
ϕn(b),

u0,0(b, t) =
∑
n≥1

κn(p)ϕn(b)√
λn

∫ t

0

sin(
√
λn(t− η))h(η)dη,

(3.1)

where the convergence is uniform in [0,∞). Consequently,

(3.2) uψ2k−1,ψ2k
(b, t)− u0,0(b, t) =

∑
n≥1

(
κn(ψ2k−1) cos(

√
λnt) +

κn(ψ2k)√
λn

sin(
√
λnt)

)
ϕn(b), k = 1, 2 · · · ,

converges uniformly on [0,∞), which allows to apply the Laplace transform

F (s) = (Lf)(s) =

∫ ∞
0

e−st f(t) dt
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to (3.1) and (3.2) termwise, to deduce, with U = Lu,H = Lh,

Uψ2k−1, ψ2k
(b, s) =

∑
n≥1

sκn(ψ2k−1) + κn(ψ2k) +H(s)κn(p)

s2 + λn
ϕn(b),

U0,0(b, s) = H(s)
∑
n≥1

κn(p)

s2 + λn
ϕn(b),(3.3)

Uψ2k−1,ψ2k
(b, s)− U0,0(b, s) =

∑
n≥1

sκn(ψ2k−1) + κn(ψ2k)

s2 + λn
ϕn(b)(3.4)

=
∑
l≥1

∑
λn=µl

sκn(ψ2k−1) + κn(ψ2k)

s2 + λn
ϕn(b), k = 1, 2 · · · .(3.5)

Let K be any compact subset of the complex plane C. Then there exists a positive real number R > 1 such that
|s| < R if s ∈ K. Since λn →∞, there exists N such that λn > 2R2 as n ≥ N . Thus, for any s ∈ K and n ≥ N ,

(3.6)

∣∣∣∣ s

s2 + λn

∣∣∣∣ < R

2R2 −R2
=

1

R
,

∣∣∣∣ 1

s2 + λn

∣∣∣∣ < 1

2R2 −R2
=

1

R2
<

1

R
.

From (2.11) we have

(3.7) ϕn(b) = O
(
n
d−1
2d

)
.

As ψk ∈ C∞0 (Ω) ⊂ Hα
0 (Ω) for any α > 0, from (2.13) it follows

(3.8) κn(ψk) = O
(
n−α

)
for any α > 0. Combining (3.6), (3.7), and (3.8), we obtain that for any ε > 0 there exists M such that for any
m ≥M and any s ∈ K

(3.9)

∣∣∣∣∣∣
∑
n≥m

sκn(ψ2k−1) + κn(ψ2k)

s2 + λn
ϕn(b)

∣∣∣∣∣∣ ≤ C
∑
n≥m

n−2 < ε.

Thus, the series (3.4) converges uniformly on any compact K, not containing {±i
√
λn}n≥1, and therefore,

Uψ2k−1,ψ2k
(b, s)−U0,0(b, s) is a meromorphic function with possible poles at {±i√µl}l≥1. However, it is possible

that ϕn(b) = 0 for all n such that λn = µl (b is a nodal point of the eigenfunction ϕn(x)), in that case ±i√µl are
not poles of Uψ2k−1,ψ2k

(b, s) − U0,0(b, s), and therefore, that eigenvalue µl does not appear in the observations
uf,g(b, t). Nevertheless, we have

Proposition 2. We can determine uniquely λ1 and κ1(ψk)ϕ1(b), for k = 1, 2, · · · , from the observations
u0,0(b, t) and uψ2k−1,ψ2k

(b, t), k = 1, 2, · · · .

Proof. By taking the Laplace transforms of observations we get the meromorphic functions Uψ2k−1,ψ2k
(b, s)−

U0,0(b, s), k = 1, 2, · · · , and therefore, we can find their poles uniquely. Denote the set of poles of Uψ2k−1,ψ2k
(b, s)−

U0,0(b, s), k = 1, 2, · · · , by {τ1, τ2, · · · }. From (3.5) it is clear that the poles of the meromorphic functions
Uψ2k−1,ψ2k

(b, s)− U0,0(b, s) are inside the set {±i√µl}l≥1

{τ1, τ2, · · · } ⊂ {±i
√
µl}l≥1.
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Then we compute the residues of Uψ2k−1,ψ2k
(b, s)− U0,0(b, s) at ±i√µm

lim
s→±i√µm

(
s∓ i√µm

) (
Uψ2k−1,ψ2k

(b, s)− U0,0(b, s)
)

(3.10)

= lim
s→±i√µm

(s∓ i√µm)
∑
l≥1

∑
λn=µl

sκn(ψ2k−1) + κn(ψ2k)(
s+ i

√
λn
) (
s− i

√
λn
) ϕn(b)

=
∑

λn=µm

±i√µmκn(ψ2k−1) + κn(ψ2k)

±2i
√
µm

ϕn(b)(3.11)

=
∑

λn=µm

ϕn(b)

2

(
κn(ψ2k−1)∓ iκn(ψ2k)

√
µm

)
.(3.12)

Consequently, the Fourier coefficients
∑
λn=µm

κn(ψk)ϕn(b) of
∑
λn=µm

ϕn(b)ϕn(x)ω(x) in the basis {ψk}k≥1

can be computed through the residues∑
λn=µm

κn(ψ2k−1)ϕn(b) = Resi√µm
(
Uψ2k−1,ψ2k

(b, s)− U0,0(b, s)
)

+Res−i√µm
(
Uψ2k−1,ψ2k

(b, s)− U0,0(b, s)
)
,

∑
λn=µm

κn(ψ2k)ϕn(b) = i
√
µmResi√µm

(
Uψ2k−1,ψ2k

(b, s)− U0,0(b, s)
)
− i√µmRes−i√µm

(
Uψ2k−1,ψ2k

(b, s)− U0,0(b, s)
)
,

k = 1, 2, · · · .(3.13)

Recall that the first eigenvalue λ1 = µ1 is simple [6], and therefore, the formula for the first Fourier coefficient
has the form

κ1(ψ2k−1)ϕ1(b) = Resi
√
λ1

(
Uψ2k−1,ψ2k

(b, s)− U0,0(b, s)
)

+Res−i
√
λ1

(
Uψ2k−1,ψ2k

(b, s)− U0,0(b, s)
)
,

κ1(ψ2k)ϕ1(b) = i
√
λ1Resi

√
λ1

(
Uψ2k−1,ψ2k

(b, s)− U0,0(b, s)
)
− i
√
λ1Res−i

√
λ1

(
Uψ2k−1,ψ2k

(b, s)− U0,0(b, s)
)
,

k = 1, 2, · · · .(3.14)

If ϕn(b) = 0 for all λn = µm, then ±i√µm are not poles of Uf,g(b, s) for any initial conditions {f, g}, and
therefore, cannot be detected from observations uf,g(b, t). Recall that the first eigenfunction ϕ1(x) does not
change sign in Ω, therefore, ϕ1(b) 6= 0, [6]. Since {κ1(ψk)}k≥1 are the Fourier coefficients of ω(x)ϕ1(x) 6≡
0 in the basis {ψk}k≥1, at least one of them is not zero. In other words, there exists k ≥ 1 such that(
Uψ2k−1,ψ2k

(b, s)− U0,0(b, s)
)

has a pole at ±i
√
λ1. Consequently, the first eigenvalue λ1 can be found uniquely

from the set of poles

(3.15) λ1 := min{|τ1|2, |τ2|2, · · · },

and the Fourier coefficients κ1(ψk)ϕ1(b), k = 1, 2, · · · , from (3.14). �

4. Reconstructing ω(x)

We now can determine ω(x) in Ω and to do so we recall formula (2.12)

κ1(ψk) =

∫
Ω

ω(x)ϕ1(x)ψk(x) dx,

and since {ψk}k≥1 is an orthonormal basis of L2(Ω), we obtain

(4.1) ϕ1(b)ϕ1(x)ω(x) = q(x) :=
∑
k≥1

κ1(ψk)ϕ1(b)ψk(x) in L2(Ω).

In case {ψk}k≥1 were eigenfunctions of some self-adjoint positive elliptic differential operator of the second
order, we would have pointwise or even uniform convergence in (4.1) under some extra assumptions. Observe
that although the series in (4.1) converges almost everywhere in Ω to ϕ1(b)ϕ1(x)ω(x) in the L2 sense, we recall
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that it was shown by Lemma 2.1 that ϕ1(x) ∈ C2 (Ω) ∩ C
(
Ω
)
. We explain now how to find the continuous

weight ω(x).
Consider the Poisson equation with the Dirichlet boundary condition{

∆u(x) = −λ1q(x), x ∈ Ω,
u(x) = 0, x ∈ ∂Ω,

where q(x) = ϕ1(b)ϕ1(x)ω(x) is given by (4.1) in Ω. By Poisson’s formula [6, 9], u(x) is uniquely determined

in Ω and since u(x) = ϕ1(x)ϕ1(b), we can then find the first eigenfunction ϕ1(x) = u(x)√
u(b)

and the sought wave

speed coefficient

ω(x) =
q(x)

u(x)
in Ω.

Proposition 3. Assume that conditions (2.1) and (2.2) hold, and {ψk}k≥1 ⊂ C∞0 (Ω) is a basis of L2(Ω).
Then we can reconstruct ω on Ω from a sequence of measurements at one point b ∈ Ω which are generated by
the initial conditions {0, 0}, {ψ2k−1, ψ2k}k≥1 .

5. Reconstructing the source p(x) or the control h(t).

Once ω has been recovered by Proposition 3, then {ϕn}n≥1 can also be reconstructed from (2.4). These
{ϕn}n≥1 provide a new basis that helps determine either h(t) or p(x) respectively from the knowledge of p(x)

or h(t).

5.1. Determination of h(t). Assume p(x) ∈ Hγ
0 (Ω) is given, then from (3.3) we have

(5.1) H(s) =
U0,0(b, s)∑

n≥1

κn(p)ϕn(b)

s2 + λn

,

and so h(t) can be determined uniquely by taking the Laplace inverse of H(s) given by (5.1).

5.2. Reconstructing p(x) from u0,0(x, T ). We now examine the reconstruction of the source p if we have
more data, for example u0,0(x, T ) for all x ∈ Ω , where T > 0 is a certain fixed positive time. We also assume
that h(t) is given in L2(0, T ). From the given data we deduce

(5.2)

∫
Ω

u0,0(x, T )ϕn(x)ω(x)dx =
κn (p)√
λn

∫ T

0

sin(
√
λn(T − η))h(η)dη.

It is readily seen that to solve (5.2) for κn (p) we need to choose the control h such that

(5.3) ψ(
√
λn) :=

∫ T

0

sin(
√
λn(T − η))h(η)dη 6= 0 for all λn.

To this end it is readily seen that h(t) = t ∈ L(0, T ), yields

(5.4)

∫ T

0

η sin(
√
λn(T − η)) dη =

T
√
λn − sin

(
T
√
λn
)

λn
> 0 for all λn > 0.

Consequently, we can find the complete sequence {κn(p)}n≥1

(5.5) κn(p) =
(λn)3/2

T
√
λn − sin

(
T
√
λn
) ∫

Ω

u0,0(x, T )ϕn(x)ω(x)dx,

and so reconstruct the source p in L2
ω(Ω)

(5.6) p(x) =
∑
n≥1

κn (p)ϕn(x).

Since p ∈ Hγ
0 (Ω) with γ > 3(d−1)

2 > d
2 , Lemma 2.2 yields the uniform convergence of (5.6) on any compact

subset of Ω. Thus we have proved
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Proposition 4. Given the overdetermination u0,0(x, T ) for all x ∈ Ω, we can reconstruct the source p by
choosing the control h(t) = t on (0, T ).

In practice it is difficult, if not impossible, to have the data, u0,0(x, T ) for all x ∈ Ω. We now show a method
that recovers p(x), by observing the solution at most over a sequence of points.

5.3. Reconstructing p from measurements at countable set of points. We start with the following
lemma that helps us extract data in the presence of multiple eigenvalues.

Lemma 5.1. Let f1(x), f2(x), · · · , fn(x) ∈ C(Ω), n > 1, be linearly independent. Then there exist points
x1, x2, · · · , xn ∈ Ω such that the matrix

(5.7) (fi(xj))i,j=1,··· ,n

is nonsingular.

Proof. Assume the contrary, that the matrix (5.7) is singular for any set of points {x1, · · · , xn}. Without
loss of generality we can assume that the matrix (5.7) has rank k ≤ n−1, and that the submatrix (fi(xj))i,j=1,··· ,k
is nonsingular. Since the matrix (fi(xj))i,j=1,··· ,k+1 is singular, its row vectors are linearly dependent, and the

last row vector can be expressed as a linear combination of the other rows

(5.8) fk+1(xj) = α1f1(xj) + α2f2(xj) + · · ·+ αkfk(xj), j = 1, 2, · · · , k + 1.

In particular,

(5.9) α1f1(xj) + α2f2(xj) + · · ·+ αkfk(xj) = fk+1(xj), j = 1, 2, · · · , k.
Consider (5.9) as a k × k system of linear equations with the unknown vector (α1, · · · , αk)T . Since
det (fi(xj))i,j=1,··· ,k 6= 0, the linear system (5.9) has the unique solution (α1, · · · , αk)T . In other words, the

constants α1, · · · , αk, depend only on (fi(xj))
j=1,··· ,k
i=1,··· ,k+1, but are independent of (f1(xk+1), · · · , fk+1(xk+1)), i.e.,

independent of xk+1. In particular, denote x = xk+1, equation (5.8) for j = k + 1 becomes

(5.10) fk+1(x) = α1f1(x) + α2f2(x) + · · ·+ αkfk(x), k + 1 ≤ n,
for any x ∈ Ω, and α1, · · · , αk, are independent of x, that contradicts the linear independence of f1, · · · , fn on
Ω. �

Let λn−1 < λn = λn+1 = · · · = λn+m−1 = µl < λn+m, i.e. the eigenvalue µl has the multiplicity m > 1.
According to Lemma 5.1 there exist points βn, · · · , βn+m−1 from Ω such that the matrix (ϕi(βj))i,j=n,··· ,n+m−1

is nonsingular. If λn is a simple eigenvalue, λn−1 < λn < λn+1, then take βn such that ϕn(βn) 6= 0. Choose
β1, β2, · · · , in that way. Let 0 6≡ h(t) ∈ L(R+) be given. From the observations u0,0(b, t), uψ2k−1,ψ2k

(b, t), k =
1, 2, · · · , we can find {ϕn}n≥1 as above. Assume further that we observe the solution at points x = βj , j =
1, 2, · · · , with the homogeneous initial conditions {f, g} = {0, 0}, i.e. u0,0(βj , t), j = 1, 2, · · · . Then (3.3) with
b replaced by βj yields

U0,0(βj , s) = H(s)
∑
n≥1

κn (p)

s2 + λn
ϕn(βj), j = 1, 2, · · · .

Thus the ratios

U0,0(βj , s)

H(s)
=
∑
n≥1

κn (p)ϕn(βj)

s2 + λn
=
∑
l≥1

1

s2 + µl

∑
λn=µl

κn (p)ϕn(βj), j = 1, 2, · · · ,

are meromorphic functions. Finding the residues of
U0,0(βj , s)

H(s)
at i
√
µl, we obtain

(5.11)
n+m−1∑
i=n

κi (p)ϕi(βj) =
∑
λi=µl

κi (p)ϕi(βj) = 2i
√
µl Ress=i√µl

U0,0(βj , s)

H(s)
, j = n, · · · , n+m− 1, m ≥ 1.
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Since the matrix (ϕi(βj))i,j=n,··· ,n+m−1 is nonsingular, from (5.11) we can find κi(p), i = n, · · · , n + m − 1,

uniquely, and p can be reconstructed by (5.6).

Proposition 5. Assume that the observed points β1, β2, · · · , are chosen as above. Then from observations
uψ2k−1,ψ2k

(b, t), u0,0(b, t), u0,0(βk, t), k = 1, 2, · · · , we can reconstruct p by solving (5.11) and (5.6).

Remark 5.2. Clearly in Proposition 5 one can take β1 = b.

Assume after observing the solution at x = b we discover that all the eigenvalues µ1, µ2, · · · , are simple. As
each nodal set ϕ−1

n (0) has measure zero, the set

(5.12) N =
⋃
n≥1

ϕ−1
n (0),

which is their countable union also has measure zero. In other words we can find β ∈ Ω−N such that ϕn(β) 6= 0
for all n ≥ 1. In formula (5.11) now we have m = 1, and therefore,

(5.13) κn (p) =
2i
√
λn

ϕn(β)
Ress=i

√
λn

U0,0(β, s)

H(s)
, n = 1, 2, · · · .

So the observation u0,0(β, t) with β ∈ Ω−N will determine p uniquely, and we arrive at

Proposition 6. Assume that from the observations u0,0(b, t), uψ2k−1,ψ2k
(b, t), k = 1, 2, · · · , it is found that

all the eigenvalues of (2.3) are simple. If b ∈ Ω−N then we can reconstruct p uniquely by (5.13) (where β = b)
and (5.6). If b ∈ N , then one more observation u0,0(β, t) with β ∈ Ω−N will determine p uniquely.

In other words, if after reconstructing ω, one discovers that the spectrum is simple, then at most one more
observed point is enough to determine the source p(x).
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