References:
1. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical
Characteristics of Coronavirus Disease 2019 in China. N Engl J Med.
2020.
2. Amirfakhryan H, Safari F. Outbreak of SARS-CoV2: Pathogenesis of
infection and cardiovascular involvement. Hellenic J Cardiol.
2021;62(1):13-23.
3. Awadasseid A, Wu Y, Tanaka Y, Zhang W. Current advances in the
development of SARS-CoV-2 vaccines. Int J Biol Sci. 2021;17(1):8-19.
4. Cevik M, Kuppalli K, Kindrachuk J, Peiris M. Virology, transmission,
and pathogenesis of SARS-CoV-2. BMJ. 2020;371:m3862.
5. Phan T. Novel coronavirus: From discovery to clinical diagnostics.
Infect Genet Evol. 2020;79:104211.
6. Bhat EA, Khan J, Sajjad N, Ali A, Aldakeel FM, Mateen A, et al.
SARS-CoV-2: Insight in genome structure, pathogenesis and viral receptor
binding analysis - An updated review. Int Immunopharmacol.
2021;95:107493.
7. Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T,
Erichsen S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and
Is Blocked by a Clinically Proven Protease Inhibitor. Cell.
2020;181(2):271-80 e8.
8. Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, et al. Structure of the
SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor.
Nature. 2020;581(7807):215-20.
9. Speiser DE, Bachmann MF. COVID-19: Mechanisms of Vaccination and
Immunity. Vaccines (Basel). 2020;8(3).
10. Casalino L, Gaieb Z, Goldsmith JA, Hjorth CK, Dommer AC, Harbison
AM, et al. Beyond Shielding: The Roles of Glycans in the SARS-CoV-2
Spike Protein. ACS Cent Sci. 2020;6(10):1722-34.
11. Lane TF, Eber RM, Gansky S, Reddy MS. Vaccines for COVID-19: An
Overview. Compend Contin Educ Dent. 2021;42(6):298-304; quiz 5.
12. Malik JA, Mulla AH, Farooqi T, Pottoo FH, Anwar S, Rengasamy KRR.
Targets and strategies for vaccine development against SARS-CoV-2.
Biomed Pharmacother. 2021;137:111254.
13. Zinkhan S, Ogrina A, Balke I, Resevica G, Zeltins A, de Brot S, et
al. The impact of size on particle drainage dynamics and antibody
response. J Control Release. 2021;331:296-308.
14. Mohsen MO, Augusto G, Bachmann MF. The 3Ds in virus-like particle
based-vaccines: ”Design, Delivery and Dynamics”. Immunol Rev. 2020.
15. Zeltins A, West J, Zabel F, El Turabi A, Balke I, Haas S, et al.
Incorporation of tetanus-epitope into virus-like particles achieves
vaccine responses even in older recipients in models of psoriasis,
Alzheimer’s and cat allergy. NPJ Vaccines. 2017;2:30.
16. Bessa J, Kopf M, Bachmann MF. Cutting edge: IL-21 and TLR signaling
regulate germinal center responses in a B cell-intrinsic manner. J
Immunol. 2010;184(9):4615-9.
17. Bachmann MF, Zeltins A, Kalnins G, Balke I, Fischer N, Rostaher A,
et al. Vaccination against IL-31 for the treatment of atopic dermatitis
in dogs. J Allergy Clin Immunol. 2018;142(1):279-81 e1.
18. Fettelschoss-Gabriel A, Fettelschoss V, Thoms F, Giese C, Daniel M,
Olomski F, et al. Treating insect-bite hypersensitivity in horses with
active vaccination against IL-5. J Allergy Clin Immunol.
2018;142(4):1194-205 e3.
19. Zha L, Hongxin Z, Mohsen MO, Hong L, Zhou Y, Chen H, et al.
Development of a vaccine against the newly emerging COVID-19 virus based
on the receptor binding domain displayed on virus-like particles.
BioRxiv. 2020.
20. Zha L, Chang X, Zhao H, Mohsen MO, Hong L, Zhou Y, et al.
Development of a Vaccine against SARS-CoV-2 Based on the
Receptor-Binding Domain Displayed on Virus-Like Particles. Vaccines
(Basel). 2021;9(4).
21. Krueger CC, Thoms F, Keller E, Leoratti FMS, Vogel M, Bachmann MF.
RNA and Toll-Like Receptor 7 License the Generation of Superior
Secondary Plasma Cells at Multiple Levels in a B Cell Intrinsic Fashion.
Front Immunol. 2019;10:736.
22. Organization WH. Temperature sensitivity of vaccines 2006
[Available from: https://apps.who.int/iris/ handle/10665/69387.
23. Wang J, Peng Y, Xu H, Cui Z, Williams RO, 3rd. The COVID-19 Vaccine
Race: Challenges and Opportunities in Vaccine Formulation. AAPS
PharmSciTech. 2020;21(6):225.
24. Polack FP, Hoffman SJ, Crujeiras G, Griffin DE. A role for
nonprotective complement-fixing antibodies with low avidity for measles
virus in atypical measles. Nat Med. 2003;9(9):1209-13.
25. Klasse PJ. How to assess the binding strength of antibodies elicited
by vaccination against HIV and other viruses. Expert Review of Vaccines.
2016;15(3):295-311.
26. Tay MZ, Poh CM, Renia L, MacAry PA, Ng LFP. The trinity of COVID-19:
immunity, inflammation and intervention. Nat Rev Immunol.
2020;20(6):363-74.
27. Bachmann MF, Mohsen MO, Zha L, Vogel M, Speiser DE. SARS-CoV-2
structural features may explain limited neutralizing-antibody responses.
NPJ Vaccines. 2021;6(1):2.
28. Hazenbos WL, Heijnen IA, Meyer D, Hofhuis FM, Renardel de Lavalette
CR, Schmidt RE, et al. Murine IgG1 complexes trigger immune effector
functions predominantly via Fc gamma RIII (CD16). J Immunol.
1998;161(6):3026-32.
29. Canton R, De Lucas Ramos P, Garcia-Botella A, Garcia-Lledo A,
Gomez-Pavon J, Gonzalez Del Castillo J, et al. New variants of
SARS-CoV-2. Rev Esp Quimioter. 2021.
30. Chang X, Augusto GS, Liu X, Kundig TM, Vogel M, Mohsen MO, et al.
BNT162b2 mRNA COVID-19 vaccine induces antibodies of broader
cross-reactivity than natural infection, but recognition of mutant
viruses is up to 10-fold reduced. Allergy. 2021.
31. Harvey WT, Carabelli AM, Jackson B, Gupta RK, Thomson EC, Harrison
EM, et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat
Rev Microbiol. 2021.
32. Bosnjak B, Stein SC, Willenzon S, Cordes AK, Puppe W, Bernhardt G,
et al. Low serum neutralizing anti-SARS-CoV-2 S antibody levels in
mildly affected COVID-19 convalescent patients revealed by two different
detection methods. Cell Mol Immunol. 2021;18(4):936-44.
33. Sparrow E, Wood JG, Chadwick C, Newall AT, Torvaldsen S, Moen A, et
al. Global production capacity of seasonal and pandemic influenza
vaccines in 2019. Vaccine. 2021;39(3):512-20.
34. Rts SCTP. Efficacy and safety of RTS,S/AS01 malaria vaccine with or
without a booster dose in infants and children in Africa: final results
of a phase 3, individually randomised, controlled trial. Lancet.
2015;386(9988):31-45.
35. Bachmann MF, Mohsen MO, Zha LS, Vogel M, Speiser DE. SARS-CoV-2
structural features may explain limited neutralizing-antibody responses.
Npj Vaccines. 2021;6(1).
36. Huang Y, Yang C, Xu XF, Xu W, Liu SW. Structural and functional
properties of SARS-CoV-2 spike protein: potential antivirus drug
development for COVID-19. Acta Pharmacol Sin. 2020;41(9):1141-9.
37. Liu X, Chang X, Rothen D, Derveni M, Krenger P, Roongta S, et al.
AP205 VLPs Based on Dimerized Capsid Proteins Accommodate RBM Domain of
SARS-CoV-2 and Serve as an Attractive Vaccine Candidate. Vaccines
(Basel). 2021;9(4).
38. Balke I, Zeltins A. Use of plant viruses and virus-like particles
for the creation of novel vaccines. Adv Drug Deliver Rev.
2019;145:119-29.
39. Sterlin D, Mathian A, Miyara M, Mohr A, Anna F, Claer L, et al. IgA
dominates the early neutralizing antibody response to SARS-CoV-2. Sci
Transl Med. 2021;13(577).
40. Bessa J, Zabel F, Link A, Jegerlehner A, Hinton HJ, Schmitz N, et
al. Low-affinity B cells transport viral particles from the lung to the
spleen to initiate antibody responses. Proc Natl Acad Sci U S A.
2012;109(50):20566-71.
41. Rodriguez A, Tjarnlund A, Ivanji J, Singh M, Garcia I, Williams A,
et al. Role of IgA in the defense against respiratory infections IgA
deficient mice exhibited increased susceptibility to intranasal
infection with Mycobacterium bovis BCG. Vaccine. 2005;23(20):2565-72.
42. Vogel M, Augusto GS, Chang X, Liu X, Speiser D, Mohsen MO, et al.
Molecular definition of SARS-CoV-2 RBD mutations: receptor affinity
versus neutralization of receptor interaction. Allergy. 2021.
43. Brigger D, Horn MP, Pennington LF, Powell AE, Siegrist D, Weber B,
et al. Accuracy of serological testing for SARS-CoV-2 antibodies: First
results of a large mixed-method evaluation study. Allergy.
2021;76(3):853-65.