REFERENCES
Alvarez,
A., Saez,
J.
M., Costa,
J. S.
D., Colin,
V.
L., Fuentes,
M.
S., Cuozzo,
S.
A., …Amoroso,
M. J. (2017).
Actinobacteria:
Current research and perspectives for bioremediation of pesticides and
heavy
metals. Chemosphere,
166 , 41–62.
https://doi.org/10.1016/j.chemosphere.2016.09.070
Anderson, M. J. (2001). A new method for non-parametric multivariate
analysis of variance. Austral Ecology, 26 , 32–46.
https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x
Bao, S. D. (2000). Agriculture and chemistry analysis of soil. China
Agriculture Press, Beijing
Bhattacharyya, R., Pandey, A. K., Gopinath, K. A., Mina, B. L., Bisht,
J. K., & Bhatt, J. C. (2014). Fertilization and Crop Residue Addition
Impacts on Yield Sustainability Under a Rainfed Maize–Wheat System in
the Himalayas. Proceedings of the National Academy of Sciences,
India Section B: Biological Sciences, 86 , 21-32.
https://doi.org/10.1007/s40011-014-0394-8
Bünemann, E. K., Bongiorno, G., Bai, Z., Creamer, R. E., De Deyn, G., de
Goede, R., . . . Brussaard, L. (2018). Soil quality – A critical
review. Soil Biology and Biochemistry, 120 , 105-125.
https://doi.org/10.1016/j.soilbio.2018.01.030
Cai, W., Li, Y., Wang, P. F.,
Niu,
L.
H., Zhang,
W. L., &
Wang,
C. (2016). Revealing the relationship between microbial community
structure in natural biofilms and the pollution level in urban rivers: A
case study in the Qinhuai River basin, Yangtze River Delta. Water
Science and Technology, 74 ,1163-1176.
https://doi.org/10.2166/wst.2016.224
Callahan, B. J., Mcmurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A.
J., & Holmes, S. P. (2016). DADA2: high-resolution sample inference
from illumina amplicon data. Nature Methods, 13 , 581–583.
https://doi.org/10.1038/NMETH.3869
Carter, M. R., & Gregorich, E. G. (2007). Soil sampling and methods of
analysis. Boca Raton, FL: CRC Press.
https://doi.org/10.1201/9781420005271
Chen, Y. L., Xu, T. L., Veresoglou, S. D.,
Hu,
H.
W., Hao,
Z.
P., Hu,
Y. J., …
Chen,
B. D. (2017). Plant diversity represents the prevalent determinant of
soil fungal community structure across temperate grasslands in northern
China. Soil Biology and Biochemistry, 110 , 12-21.
https://doi.org/10.1016/j.soilbio.2017.02.015
Cheng, Z., Zhang, F., Gale, W. J., Wang, W., Sang, W., & Yang, H.
(2017). Effects of reclamation years on composition and diversity of
soil bacterial communities in Northwest China. Canadian Journal of
Microbiology, 64 , 28–40. https://doi.org/10.1139/cjm-2017-0362
Cheng, Z., Chen, Y., & Zhang, F. (2018). Effect of reclamation of
abandoned salinized farmland on soil bacterial communities in arid
Northwest China. Science of the Total Environment, 630 , 799–808.
https://doi.org/10.1016/j.scitotenv.2018.02.259
Cheng, Z., Chen, Y., & Zhang, F. (2019). Effect of cropping systems
after abandoned salinized farmland reclamation on soil bacterial
communities in arid Northwest China. Soil and Tillage Research,
187 , 204–213. https://doi.org/10.1016/j.still.2018.12.015
Crecchio, C., Curci, M., Pellegrino, A., Ricciuti, P., Tursi, N., &
Ruggiero, P. (2007). Soil microbial dynamics and genetic diversity in
soil under monoculture wheat grown in different long-term management
systems. Soil Biology and Biochemistry, 39 , 1391-1400.
https://doi.org/10.1016/j.soilbio.2006.12.016
Delgado-Baquerizo,
M., Maestre,
F.
T., Reich,
P.
B., Jeffries,
T.
C., Gaitan,
J.
J., Encinar,
D., …
Singh,
B. K. (2016).
Microbial diversity
drives multifunctionality in terrestrial ecosystems. Nature
Communications, 7 , 10541. https://doi.org/10.1038/ncomms10541
Djukic, I., Zehetner, F., Tatzber, M., & Gerzabek, M. H. (2010). Soil
organicmatter stocks and characteristics along an alpine elevation
gradient. Journal of Plant Nutrition and Soil Science, 173 ,
30–38. https://doi.org/10.1002/jpln.200900027
Domínguez,
M.
T., Panettieri,
M., Madejón,
E., &
Madejón,
P. (2020).
Thistle
crops in marginal lands after compost addition: Plant biomass and effect
on soil physical, chemical and biological properties. Land
Degradation & Development, 31 , 1167–1175.
https://doi.org/10.1002/ldr.3510
Ellouze, W., Esmaeili Taheri A, Bainard, L. D., Yang, C., Bazghaleh, N.,
Navarro-Borrell, A., … Hamel, C. (2014). Soil fungal resources in
annual cropping systems and their potential for management. Biomed
Research International, 2014 , 1–15.
https://doi.org/10.1155/2014/531824
Ferreira, A. C. C., Leite, L. F. C., de Araújo, A. S. F., & Eisenhauer,
N. (2016). Land-Use Type Effects on Soil Organic Carbon and Microbial
Properties in a Semi-arid Region of Northeast Brazil. Land
Degradation & Development, 27 , 171-178.
https://doi.org/10.1002/ldr.2282
Fierer, N., & Jackson, R. B. (2006). The diversity and biogeography of
soil bacterial communities. Proceedings of the National Academy of
Sciences, 103 , 626–631. https://doi.org/10.1073/pnas.0507535103
Franco-Otero, V. G., Soler-Rovira, P., Hernández, D., López-de-Sá, E.
G., & Plaza, C. (2012). Short-term effects of organic municipal wastes
on wheat yield, microbial biomass, microbial activity, and chemical
properties of soil. Biology and Fertility Soils, 48 , 205–216.
https://doi.org/10.1007/s00374-011-0620-y
Gao, L., Wang, R., Gao, J. M., Li, F. M., Huang, G. H., Huo, G., …
Shen, G. M. (2020). Analysis of the structure of bacterial and fungal
communities in disease suppressive and disease conducive
tobacco-planting soils in China. Soil Research, 58 , 35-40.
https://doi.org/10.1071/sr19204
Gong, L., He, G., & Liu, W. (2016). Long-term cropping effects on
agricultural sustainability in Alar oasis of Xinjiang, China.Sustainability, 8 , 1–11. https://doi.org/10.3390/su8010061
Hendrix, M. S. (2000). Evolution of mesozoic sandstone compositions,
southern Junggar, northern Tarim, and western Turpan basins, northwest
China: A detrital record of the ancestral Tian Shan. Journal of
Sedimentary Research, 70 , 520–532.
https://doi.org/10.1306/2DC40924-0E47-11D7-8643000102C1865D
Huhe., Chen, X. J., Hou, F. J., Wu, Y. P., & Cheng, Y. X. (2017).
Bacterial and fungal community structures in Loess Plateau grasslands
with different grazing intensities. Frontiers in Microbiology, 8 ,
606. https://doi.org/10.3389/fmicb.2017.00606
Kemp, P. F., & Aller, J. Y. (2004). Bacterial diversity in aquatic and
other environments: what 16S rDNA libraries can tell us. FEMS
Microbiology Ecology, 47 , 161–177.
https://doi.org/10.1016/S0168-6496(03)00257-5
Kerfahi, D., Tripathi, B. M., Dong, K., Go, R., & Adams, J. M. (2016).
Rainforest conversion to rubber plantation may not result in lower soil
diversity of bacteria, fungi, and nematodes. Microbial Ecology,
72 , 359-371.
https://doi.org/10.1007/s00248-016-0790-0
Kowalchuk, G. A., Buma, D. S., de Boer, W., Klinkhamer, P. G. L., & van
Veen, J. A. (2002). Effects of above-ground plant species composition
and diversity on the diversity of soil-borne microorganisms.Antonie van Leeuwenhoek, 81 , 509–520.
https://doi.org/10.1023/A:1020565523615
Köberl, M., Müller, H., Ramadan, E. M., & Berg, G. (2011). Desert
farming benefits from microbial potential in arid soils and promotes
diversity and plant health. PLoS ONE, 6 , e24452.
https://doi.org/10.1371/journal.pone.0024452
Lange, M., Eisenhauer, N., Sierra, C.
A., Bessler, H., Engels, C., Griffiths, R. I., … Gleixner, G.
(2015). Plant diversity increases soil microbial activity and soil
carbon storage. Nature Communications, 6 , 1–8.
https://doi.org/10.1038/ncomms7707
Lauber, C. L., Hamady, M., Knight, R., & Fierer, N. (2009).
Pyrosequencingbased assessment of soil pH as a predictor of soil
bacterial community structure at the continental scale. Applied
and Environmental Microbiology, 75 , 5111–5120.
https://doi.org/10.1128/AEM.00335-09
Li, H., Chi, Z. F., Li, J. L., Wu, H. T., & Yan, B. X. (2019).
Bacterial community structure and function in soils from tidal
freshwater wetlands in a Chinese delta: Potential impacts of salinity
and nutrient. Science of the Total Environment, 696 , 134029.
https://doi.org/10.1016/j.scitotenv.2019.134029
Li, J. B., Liu, G. M., Kwak, J-H., Chang, S. X., Gao, H. C., Wu, Q. C.,
… Chen J. L. (2020). Reclamation of desert land to continuous cotton
cropping affects soil properties and microbial communities in the
desert-oasis ecotone of Xinjiang, China. Journal of Soils and
Sediments, 20 , 862–873. https://doi.org/10.1007/s11368-019-02469-2
Li, J. B., Pokharel, P., Liu, G. M., & Chen, J. L. (2020). Reclamation
of desert land to different land-use types changes soil bacterial
community composition in a desert-oasis ecotone. Land Degradation
& Development, 32 , 1389–1399. https://doi.org/10.1002/ldr.3803
Li, X. G., Ding, C. F., Zhang, T. L., & Wang, X. X. (2014). Fungal
pathogen accumulation at the expense of plant-beneficial fungi as a
consequence of consecutive peanut monoculturing. Soil Biology &
Biochemistry, 72 , 11–18. 10.1016/j.soilbio.2014.01.019
Liu, X. B., Liu, J. D., Xing, B. S., Herbert, S. J., Meng, K., Han, X.
Z., & Zhang, X. Y. (2005). Effects of long-term continuous cropping,
tillage, and fertilization on soil organic carbon and nitrogen of black
soils in China. Communications in Soil Science and Plant Analysis, 36,
1229–1239. https://doi.org/10.1081/CSS-200056917
Lu, R. (1999). Analytical methods of soil and agricultural chemistry.
China Agricultural Science and Technology Press, Beijing
Ma, J. Y., Sun, W., Sun, H. L., & Wang, S. M. (2012). Stable carbon
isotope characteristics of desert plants in the Junggar Basin, China.Ecological Research, 27 , 115–124.
https://doi.org/10.1007/s11284-011-0878-4
Maestre, F. T., Delgado-Baquerizo, M., Jeffries, T. C.,
Eldridge,
D.
J., Ochoa,
V., Gozalo,
B., …
Singh,
B. K. (2015). Increasing aridity reduces soil microbial diversity and
abundance in global drylands. Proceedings of the National Academy
of Sciences, 112 , 15684-15689. https://doi.org/10.1073/pnas.1516684112
Maron,
P.
A., Sarr,
A., Kaisermann,
A., Leveque,
J., Mathieu,
O., Guigue,
J., …
Ranjard,
L. (2018).
High
microbial diversity promotes soil ecosystem functioning. Applied
and Environmental Microbiology, 84 , e02738-17.
https://doi.org/10.1128/AEM.02738-17
Meng, M., Lin, J., Guo, X., Liu, X., Wu, J., Zhao, Y., & Zhang, J.
(2019). Impacts of forest conversion on soil bacterial community
composition and diversity in subtropical forests. Catena, 175 ,
167–173. https://doi.org/10.1016/j.catena.2018.12.017
McArdle, B. H., & Anderson, M. J. (2001). Fitting multivariate models
to community data: a comment on distance-based redundancy analysis.Ecology, 82 , 290-297.
https://doi.org/10.1890/0012-9658(2001)082[0290:fmmtcd]2.0.co;2
Morvan, X., Saby, N. P., Arrouays, D., Le Bas, C., Jones, R. J.,
Verheijen, F. G., . . . Kibblewhite, M. G. (2008). Soil monitoring in
Europe: a review of existing systems and requirements for harmonisation.Sci Total Environ, 391 (1), 1-12.
https://doi.org/10.1016/j.scitotenv.2007.10.046
Mouazen, A. M., Steffens, M., &
Borisover, M. (2016). Reflectance and fluorescence spectroscopy in soil
science—Current and future research and developments. Soil and
Tillage Research, 155 , 448-449.
https://doi.org/10.1016/j.still.2015.09.002
Nanganoa, L. T., Okolle, J. N., Missi,
V., Tueche, J. R., Levai, L. D., & Njukeng, J. N. (2019). Impact of
different land-use systems on soil physicochemical properties and
macrofauna abundance in the humid tropics of Cameroon. Applied and
Environmental Soil Science, 2019 , 1–9.
https://doi.org/10.1155/2019/5701278
Neilson, J. W., Califf, K., Cardona, C., Copeland, A., van Treuren, W.,
Josephson, K. L., … Maier, R. M. (2017). Significant impacts of
increasing aridity on the arid soil microbiome. Systems, 2 ,
e00195-16. https://doi.org/10.1128/mSystems.00195-16
Oliver, D. P., Bramley, R. G. V., Riches, D., Porter, I., & Edwards, J.
(2013). Review: soil physical and chemical properties as indicators of
soil quality in Australian viticulture. Australian Journal of
Grape and Wine Research, 19 (2), 129-139.
https://doi.org/10.1111/ajgw.12016
Porras-Alfaro, A., Herrera, J., Natvig, D. O.,
Lipinski,
K., &
Sinsabaugh,
R. L. (2011). Diversity and distribution of soil fungal communities in
a semiarid grassland. Mycologia, 103 , 10-21.
https://doi.org/10.3852/09-297
Prober, S. M., Leff, J. W., Bates, S. T.,
Borer, E.
T.,
Firn, J.,
Harpole, W.
S., …
Fierer,
N. (2015). Plant diversity predicts beta but not alpha diversity of soil
microbes across grasslands worldwide. Ecology Letters, 18 , 85-95.
https://doi.org/10.1111/ele.12381
Qiao, H. X., Zhang, L. H., Shi, H. T.,
Song, Y. Z., & Bian, C. Z. (2018). Astragalus affects fecal microbial
composition of young hens as determined by 16S Rrna sequencing.AMB Express, 8 , 70. https://doi.org/10.1186/s13568-018-0600-9
Ramirez, K. S., Leff, J. W., Barberán, A., Bates, S. T., Betley, J.,
Crowther, T. W., … Fierer, N. (2014). Biogeographic patterns in
belowground diversity in New York City’s Central Park are similar to
those observed globally. Proceedings. Biological Sciences, 281 ,
20141988. https://doi.org/10.1098/rspb.2014.1988
Salama, F. M., Abd El-Ghani, M. M., El-Tayeh, N. A., Amro, A., &
Abdrabbu, H. S. (2017). Correlations between soil variables and weed
communities in major crops of the desert reclaimed lands in southern
Egypt. Rendiconti Lincei, 28 (2), 363-378.
https://doi.org/10.1007/s12210-017-0604-4
Schmidt, S. K., Nemergut, D. R., Darcy, J. L., & Lynch, R. (2014). Do
bacterial and fungal communities assemble differently during primary
succession? Molecular Ecology, 23 , 254-258.
https://doi.org/10.1111/mec.12589
Segata, N., Izard, J., Waldron, L.,
Gevers, D., Miropolsky, L., Garrett, W. S., & Huttenhower, C. (2011).
Metagenomic biomarker discovery and explanation. Genome Biology,
l1 , R60. https://doi.org/10.1186/gb-2011-12-6-r60
Sharma, N. K., Singh, R. J., Mandal, D., Kumar, A., Alam, N. M., &
Keesstra, S. (2017). Increasing farmer’s income and reducing soil
erosion using intercropping in rainfed maize-wheat rotation of Himalaya,
India. Agriculture, Ecosystems & Environment, 247 , 43-53.
https://doi.org/10.1016/j.agee.2017.06.026
Smith, B. F. L., & Bain, D. C.
(1982). A sodium hydroxide fusion method for the determination of total
phosphate in soils. Communications in Soil Science and Plant
Analysis, 13 , 185–190. https://doi.org/10.1080/00103628209367257
Szoboszlay, M., Dohrmann, A. B., Poeplau, C., Don, A., & Tebbe, C. C.
(2017). Impact of land-use change and soil organic carbon quality on
microbial diversity in soils across Europe. FEMS Microbiology
Ecology, 93 , 1–12. https://doi.org/10.1093/femsec/fix146
Thomson, B. C., Tisserant, E., Plassart, P., Uroz, S., Griffiths, R. I.,
Hannula, S. E., … Lemanceau, P. (2015). Soil conditions and land
use intensification effects on soil microbial communities across a range
of European field sites. Soil Biology and Biochemistry, 88 ,
403–413. https://doi.org/10.1016/j.soilbio.2015.06.012
Tian, Q., Taniguchi, T., Shi, W. Y., Li, G., Yamanaka, N., & Du, S.
(2017). Land-use types and soil chemical properties influence soil
microbial communities in the semiarid Loess Plateau region in China.Scientific Reports, 7 , 45289. https://doi.org/10.1038/srep45289
Tosi, M., Correa, O. S., Soria, M. A., Vogrig, J. A., Sydorenko, O., &
Montecchia, M. S. (2016). Land-use change affects the functionality of
soil microbial communities: A chronosequence approach in the Argentinian
Yungas. Applied Soil Ecology, 108 , 118-127.
https://doi.org/10.1016/j.apsoil.2016.08.012
Wang, B., Zhang, C., Liu, J., Zeng,
X., Li, F. R., Wu, Y. C., … Jia, Z. J. (2012). Microbial
community changes along a land-use gradient of desert soil origin.Pedosphere, 22 , 593–603.
https://doi.org/10.1016/S1002-0160(12)60044-7
Wasmund, K., Mußmann, M., & Loy, A. (2017). The life sulfuric:
Microbial ecology of sulfur cycling in marine sediments.Environmental Microbiology Reports, 9 , 323–344.
https://doi.org/10.1111/1758-2229.12538
Wu, W. C., Dong, C. X., Wu, J. H., Liu, X. W., Wu, Y. X., Chen, X. B.,
& Yu, S. X. (2017). Ecological effects of soil properties and metal
concentrations on the composition and diversity of microbial communities
associated with land use patterns in an electronic waste recycling
region. Science of Total Environment, 601 , 57–65.
https://doi.org/10.1016/j.scitotenv.2017.05.165
Xu, C. Y., Wang, T., Jia, C. B., & Guo, Y. (2020). Effects of different
desert plants on the soil chemical properties and enzyme activities in
helanshan Eatern region. Ecology and Environment, 29 , 2346–2354.
https://doi.org/10.16258/j.cnki.1674-5906.2020.12.005
Yang, H. C., Zhang, F. H., Chen, Y., Xu, T. B., Cheng, Z. B., & Liang,
J. (2016). Assessment of reclamation treatments of abandoned farmland in
an arid region of China. Sustainability, 8 , 1183.
https://doi.org/10.3390/su8111183
Yang, R., Du, Z., Kong, J., Su, Y., Xiao, X., Liu, T., . . . Fan, G.
(2019). Patterns of soil nitrogen mineralization under a land use change
from desert to farmland. European Journal of Soil Science .
https://doi.org/10.1111/ejss.12823
Zumsteg, A., Luster, J., Göransson, H.,
Smittenberg,
R.
H., Brunner,
I., Bernasconi,
S. M., …
Frey,
B. (2012). Bacterial, archaeal and fungal succession in the forefield
of a receding glacier. Microbial Ecology, 63 , 552-564.
https://doi.org/10.1007/s00248-011-9991-8