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Abstract

In this article, we consider the following p-¢g-Laplacian system with singular and crit-

ical nonlinearity

—Apu— Agu =" 4 y_eyelyf in Q,

ur

—Apu—Agu = ha(z) | )\%j_ﬁuo‘vﬂ’l n Q,

T

u,v >0 in Q, u=v=0 on 09,

where () is a bounded domain in R™ with smooth boundary 9. 1 <¢<p<a+f =
p 0 < r < 1l,a,8 > 1,\ € (0,A,) is parameter with A, is a positive constant and
hi(z),ho(x) € L>®, hi(x), ha(xz) > 0. We show the existence and multiplicity of weak
solution of equation above for suitable range of .

Keywords: p-g-Laplacian, Critical exponent, Singular nonlinearity, Weak positive

solution

1 Introduction and main results

In this paper, we study the existence of positive solutions for the p-g-Laplacian problems

with singular and critical nonlinearities

—Apu — Aqu = ICIRE /\a%rﬁuo‘_lvﬁ in ),

—Ap — Agu =12 4 ALyl in (1.1)
u,v >0 in €, u=v=0 on 082,

where 2 is a bounded domain in @ C R"™ with smooth boundary 9. 1 < ¢ < p <
a+B=p"0<r<l,ap>1X¢e (0,A,) is parameter with A, is a positive constant and
hi(x), ha(x) € L, hi(x), ha(z) > 0.

The singular elliptic equation has its biological, chemical and especially physical back-
ground. Up to now, the singular elliptic problem is still the research focus of the elliptic

problem. Li and Gao [21] considered the following single equation with singular term
—Apu = u—hr in Q,
u>0 in Q, (1.2)
u=20 on 09,
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where (2 C R”, n > 3 is a bounded domain with smooth boundary 9f2. The difficulty of such
problems is the lack of integrability of singular terms, Li and Gao [21] used the variational
method to restore the integrability of singular terms under suitable constraints. The problem
(1.2) admitted at least one solution if and only if there exists a ug € VVO1 P(Q) such that
Johuy "dx < oco. Moreover, Cong and Han [8] added a nonlinear term to the equation
(1.2), they obtained the existence of positive solution of above problem on a compatibility
condition. Sun and Wu [28] considered a class of equations with nonlinearity containing
both singular and supercritical terms, the precise lower bound of parameter A is obtained
by means of the relationship between manifolds and fiber mappings, so that the above
equation has a solution for all A € (0, A\*) and no solution for A > \*, where \* is a precise
number. Wang, Qin and Gang [29] also considered similar problems with [28], they proved
the existence of weak positive solutions by using a priori estimation and sub-and super-
solutions methods. Besides, still some general results are known in [27],[26],[5] for singular-
subcritical, nonsingular-critical and singular-nonlinearities cases.

In addition, for elliptic equations with singular and critical nonlinearities, Chen and

Rocha [4] considered the following equation:

—Au — ﬁu =¥ 4 pu? in Q\{0},
u(z) >0 in Q\{0}, (1.3)
u(z) =0 on 0%,

they showed there exists some p* > 0 such that for any p € (0,p*) the problem (1.3)
possesses at least two positive solutions by minimizing the associated energy functional on
some suitable Nehari sets. Moreover, Figueiredo and Montenegro [11] thought about a
harder equation than (1.3) and established the existence of nontrivial nonnegative solution.
Besides, Oliva, Sciunzi and Vaira [22] considered weak solutions to the p-Laplace equation
with a critical Sobolev growth and Hardy potential. For some results of singular elliptic
equations with critical exponents, we can also refer to references [13],[33],[12],[25],[18],[14]
and their contained therein.

In recent years, p-Laplacian equations have been extended to the p-g-Laplacian problems

with singular nonlinear term, Papageorgiou Winkert [23] studied the following equation

{ —Apu — Agu = ANu™"+ a(x)u™ 1] + f(z,u) in Q (1.4)

upgn =0, u>0, A>0, I<7<qg<p 0<n<l.

They obtained positive solutions and established the accurate dependence of the set of
positive solutions of (1.4) on the parameter A > 0 as the latter changes. For a nonlinear
elliptic problem involving p-g-Laplacian, it is worth referring that Sciammetta and Tornatore
[24] gave a systematic research for the existence of two solutions by means of variational
methods and critical points theorems. Yin and Yang [32] found multiple nontrivial weak
solutions by standard variational methods and some analytical techniques. And the existence
results in all of R™ for quasilinear problems with critical term can be seen in [20]. On the

basis of the p-¢g-Laplacian equation with singular term, the critical term was added to above



equation in Kumar, Sreenadh and Radulescu [17]. That is to consider the equation

—Apu — BAu = M0+ 0 in Q,
u>0 in Q, (1.5)
u=20 on 082,

where €2 is a bounded domain in R"™ with smooth boundary. 1 < ¢ < p < r < p*, where
pr == p,O < d < 1l,n>pand A\ B > 0 are parameters. They proved the existence,
multiplicity and regularity of weak solutions of (1.5) for suitable range of A.

On the other hand, the p-¢g-Laplace systems have received much attention, it is closely
related to fluid mechanics. It originates from the study of non-Newtonian fluid problems
and is involved in the theory of quasi-regularization and quasi-projection mapping. There

is no singular term for equation (1.1) they consider

—Apu — Agu = Nu|""2u+ 22 alul®” 2uv|? z € Q,
—Apv — Agv = flv]" "2 + a+6|u| lv|f~20 x € Q, (1.6)
u=v=0 x € 01,

the main difficulty of dealing with the equation (1.6) is presence of the critical term, which
makes some embedding lack compactness. Yin proved at least catq(2) positive solutions of
(1.6) by applying (PS). sequence and mountain-pass theorem. For other related study, see,
e.g[20]. Especially, when p = ¢, Hsu [16] showed the existence and multiplicity results. Very
recently, do 6 and Silva [1] studied the existence of positive ground states solutions for a
large class of nonlinear terms and potential. Relying on concentration-compactness principle,
mountain pass theorem, and genus theory, the existence of nontrivial weak solutions was
established in the work [19].

In this line of thought, Choudhuri, Saoudi and Mouna [7] considered the following

system
—Apu — Agu = Af(z)|u"~ 2u+1)21 o h( )|u|_°‘|v|1_6 mn Q,
—Apv — Agu = Og(z)|v]" 20 + vyt h( Yul'=fv|~F in Q,
. (1.7)
u,v >0 in §,
u=v=0 on 012,
where 0 < a < 1,0< < 1l,2—a—-f<qg< (pl)<p<r<p with p* = . They

studied the existence of multiple nontrivial positive weak solutions for (1.7).

Motivated by [28],[5],[19],[16],]7], in this paper we extend subcritical p-¢g-Laplacian sys-
tems with singular term to critical case. In order to overcome the difficult of lack of com-
pactness, we adopt the property of cutoff function and establish the exact estimate of the
upper bound of parameter A*. As far as we know it is entirely novel.

Our approach to this problem is based on the structul*"e of the constraint set A, with
o p=p* *

A= () () I+l T S ST We now state
the main results of this work.

Theorem 1.1. Suppose that A € (0, A,), then the problem (1.1) has a solution (ug,vo) € X
satisfying I(ug,vo) < 0 and ||(uo,vo)|| < Eo(Eo defined in Lemma 2.3).



Theorem 1.2. Suppose that A € (0, Ay), then the problem of (1.1) has a solution (Uy, Vp) €
X satisfying ||(Uo, Vo)|| > Ex > Ey with Ex — +00 as A — 0.

In Section 2, We give some notations and preliminaries. The proof of Theorem 1.1 and

1.2 are give in Sections 3 and Sections 4.

2 Notations and Preliminaries

For a bounded domain 2 C R", we denote by |- |, | - |, the norm of W, ?(€2) and LP(£)

respectively, that is

3 =
B =

HM@=<AQVuwm>,|mp=<1]mwm>.

Obviously, X := W,?(€2) x W, ?(Q) is a Banach space. Let X' be the dual of X and (-) the
duality pairing between X and X. The norm on X is given by ||(u,v)|, = (|jullh + HUH%)%
Define »
S = inf ﬂpl,,

ueWy P (\{0} (JulP"dx)?™

I(u, vl

in -
@)eX\{O0} ([, |ul*[v|fda)a?

and

Sap =

)

Then, it is easy to get that
8 —=58 8
[ ol < 8, w0l

By Yin and Yang [29,Lemma 2.2], we have

B _a
[+ )7):

Definition 2.1. We say that (u,v) € X is a positive weak solution of (1.1), if (u,v) € X

satisifies

/(|Vu]p_2Vqu01 + |[VoP~2VoVy)dz + / (|Vu|?2VuV, + |Vo|T2VoV,)dx
Q Q

_ _ Ao _ AB _
o h r h r dr — a—1, 8 dr — /aﬁl dr =
/Q(lu 01 + hov™"po)dx a+ﬁ/gu vop1aT a+ﬁguv padx 0()
2.1

for all (p1,¢92) € X.

Consider the Nehari manifold
A= {(w0) € XN{O0)) w0+ w0 = [ (oo =2 [ vz = o,
Q Q
Note that Ny includes all positive weak solutions of (1.1). The functional associated to (1.1)

is

1 1 1 A
I = - by 49— ——— [ (hgu'™" 4 hov'7")dx — / Pz,
(1,0) =l 0) [} + w0 1_r4<ut Fher e = Jy

4



It is easy to know that if (u,v) € N, then
I(u,0) = (= 25 ) I o)+ (4 = 25 ) o) + 2 (5 - ) /Q uvda
= (b= ) 10l + (5= F) ol + (3 = 1k5) [ Gt + oot ")

For ¢ > 0. We define the fibering maps ¢y, := (0,00) x {X\{(0,0)}} - R

1—r A\P*
/(hlul_r—l-hgvl_r)dx—* uvPde,
rJao P Ja

(25 = I(tu = Lp
uy (T tu,t

p ¢ q ¢
(w041 0)llg=7—

B (8) = 77| (w, 0) 5 + 17| (u, 0) 1 — 77 / (A1 ™" + hav'™")da — AP / uvdz,
Q Q

and

1o)== D2 (u, )|l + (g — 1)t972|(u, v) | + 1t /Q<h1u” + hav'")dw

=A(p* — 1)tp*_2/ uvlda.
Q

It is easy to know that (u,v) € N if and only if ¢, , (1) = 0, and more generally, (tu, tv) € N
if and only if ¢, ,(t) = 0.
Therefore, we can divided the Nehari manifold of N, into three parts, that is

N} = {(u,v) € Ny = ¢y, (1) = 0},

N)\_ = {(U,U) € N/\ : ¢Z,v(1) < O}a
N = {(u,v) € Ny : ¢f) (1) > 0}
corresponding to the points of inflection, the local minima, and the local maxima.

Lemma 2.1. Provided that A € (0, A,), then for any (u,v) € X\{(0,0)}, ¢u(t) has exactly

two zero points tT which satisfy

0<t™ <th (ttu,ttv) e Ny, (tu,t v) € Ny

Proof. Since

&l o (8) = 77| (u, )| + 4971ty 0) 0 — £ /Q (Bl + hov! ")z — A"~ /Q WP

= 7 | (u, ) 5+ 7| (u, ) [ — £1TP /

(hiu!™" + hov'™")dx — )\/
Q

u®? dx} .
Q

Let
E(t) =tP7F

(u, 0) |2+ 1977 [ (u, 0) [0 — £177 " / (™" + hav' "),
9]



E'(t) = (p = p) 7 " u,v)l} + (g = " (w,0)
—(Q—r—ptP / (hiu!™" + hov'™")dx
Q
=77 [(p = ) w0l + (g = 9 (w0

—(1=r—p" / (hyu'™" + hgvlf’ﬂ)dw}
Q

Let

D) = (p—p ) (o) |5+ (g =" (w, 0) [ = (L =7 —p") /Q(hlul_r +hov' ") da,

lim ¥(t) = (p*—1+7) / (hiu'™" + hov'™")dx > 0,
)

t—0t

lim ¢(t) = —o0,

t——+o0
V()= (p—p)p =1+ (w05 + (g = p") (g = 1+ 1)t 2| (u,0) |2 < 0.

Thus, E(t) achieves its maximum at tmax = tmax (U, v), where tyax(u, v) is the unique solution

of the equation

(p=p)tP 7w, 0) [+ (g—p 0P| (ay 0) [ = (L—r—p™)t 7P / (hiu' ™" +hov' ") dz = 0.
Q

Moreover, by a direct computation, we have

Btas) = 5 N 0) [+ 52 s 0) = " [ (aut™ 4 o )i
Q

l—-p—1r - l—qg—7r _,_ -
T tmax (0l + =St (s, 0]l > 0

and E'(t) > 0, for t € (0,tmax), E'(t) < 0, for t € (tmax, +00). So the equation E(t) =

)\/ u*vPdz has exactly two solutions ¢t~ < tma < t1 such that E'(t+) < 0, E'(t7) > 0.
Q

Further,

Q') = (HPTIE (1) < 0,¢"(t7) = (¢ TE/(t7) > 0.
This completes the proof. ]

In addition, ¢(t) is decreasing on (0,¢7) and (¢, +00), increasing on (¢t~,¢"). We have

I(t7u,t™v) = inf  I(tu,tv), I(tTu,ttv) = sup I(tu, tv).
0<t<tmax t>0

Lemma 2.2. Provided that X € (0,A.), then N = 0.



Proof. Arguing by way of contradiction, assume that there exists (u, vi) € N, uy # 0,0, #
0, it follows from (us,vs) € /\/')(\) C N, that

Iars 0+ uns 0l = [ (vl ol = A [ wtolds =0,
Q Q
and consequently
(9= Dl v) 24+ (g — 1)} (e, 0 )[4 + / (™ + hav!~")da = A(p" — 1) / )
Q Q

we have

(= 1+ 7) (s, v)lly < (2 = 14 7)[(uss 0[5 + (g = T+ )| (s, v |1

(2.2
A =14 7) [ atelda, :
Q
(®" =)l (s, vl < (07 = P) (s, vl + (27 — @) (s, v:) [
(2.3)
= =14 [ (bl ot
Q
By the Holder inequality and the Sobolev embedding inequality, we have
Ap* — 1+ r)/ ulvlde < Ap* = 14718, 7 [|(u, v (24)
Q b

and

(" —1+47) / (hu, ™" + hovy™")da
Q

— * *

* p —l4r 1—r " pr—14r —
*Pi p* * p* *pi P* * p*
<@ -1+r) </ h¥ _“”"dx) (/ u? dz) + </ hy ‘“’de> (/ vP dm>
Q Q Q Q

p—14r

r D P P 17 _
< ("= 1+47) (|hal]o 5 + Ih2IZ<1”X>*] ST | (us, v ) 177
) (2.5)
where (1 —r)* = # by (2.2),(2.3),(2.4),(2.5), we get

R
lp_l_i_r pp>1’ P

ol > (5 2215087,

and

1
—14r =i
p* - 1 + T p—q-ﬁ-r P—IIJ+7‘ ’ p —1=r T
[[(us, v4) [ p < o —p [hal ol + lhal [ a2 S :

It implies A > A,, this contradiction shows that there exists a constant A, > 0 such that
NY = for X € (0,A,). O

Lemma 2.3. Provided that X € (0,A), then N\ has a gap structure in the sense that
|(u,v)|lp, < Eo,¥(u,v) € N5 I(U V)|, > Ex > Eo,Y(U,V) € Ny . Clearly, E\ — 0o as
A — 0.

1

T




Proof. If (u,v) € Ny} € Ny, then necessarily

0< (o= 1)l (v + (g = D)l (w, 0)||g +r / (! + hov' ")z — A(p" — 1) / o de
Q Q

= (p = P)l(w, o)l + (¢ = p) (w, 0)IG + (r +p* = 1) /Q(hlulr +hov' ") da
Hence, it follows from (2.5) that

(" =P (w,0) |5 < (" = p)lI(w, I} + (2 — @, v)|§

p—1+47r

L i P —L=r —
<(rep—1) [Ihll,fj(ff:)*+lhz ggfm} 55 s )]

which yields

—1+r — -
p* - 1 + T ﬁ p711)+r pT _ 17 Pl .
[[(u, v)[lp < T —p [ha 7020 + [hel [l S = Ep.

If (U, V) e N, €N,, then
0> (= DIT VG + = DIVl +r [ 0 + 5V e =3 1) [ 09V
Q Q

— (1D UVE+ (- 1+ 0T V)8 A — 1 +r)/QUavﬁdx.

Hence, it follows from (2.4) that
=1+n)IUWF <@ -1+7)[UV)5+ (@ =1+ V)
e .
<Ap" = 1475, 5 IW)E

which yields

% 1
L p—1+r 2 \7r
L = E,.
IVl > (5 2=5sn) " =6
Consequently
1T, V)lp < Eo, ¥(u,v) € NY, (2.6)
[T )lp > Ex, Y(U,V) €N . (2.7)

Surprisingly enough
Eyx=FEy, if A=A,.

We conclude that

H(Uv V)”p > E/\ > EO > H(U’7U)Hp7 V(U,’U) € N;7 V(U7 V) € N)\_a
for all A € (0, Ay). O
Lemma 2.4. Provided that X € (0,A.), then N is closed set in X.

8



Proof. Let {(Uyn,Vy)} is a sequence in N, C Ny with (Uy,,V,) — (U, Vo) in X. Then we

have

[ (Uns Va)IIE + (| (Un, Vi) I8 — / (U + ho V1) da — A/ Uevldz =0,
Q Q

|(Uo, Vo)Iz + 1| (Uo, Vo)llg = Timm [I[(Un, Va5 + (U, Vi) 4]

= lim [/ (hlU,i"Jrthnl")dx—)\/ UﬁVfdx} = /(hlU(}—’“Jrhz%l—’”)dx—A/ Ugvldz,
Q Q Q Q

Jm,
(6= DI Vo) + (0~ DI, Vo)l + [ (3 + o = A [ VgV

= Jim |~ DI VI + (0= DIV + [ (002 navi s = a [ vzvias] <o

this is (Up, Vo) € Ny UNY. Since {U,,V,} C Ny, from Lemma 2.3,

1
1p—1 22\ PF-p
_P +TS"> > 0,

P _ 1 p —
100, Vo)l = tim 0 VI > B = (3 220

we obtain Up, Vo # 0. It follows from Lemma 2.1, (Up, Vp) ¢ N7 for any A € (0, A,).
In turn, (Up, Vo) € N, . Therefore, Ny is closed set. O

3 The proof of Theorem 1.1

Proof. For any (ug,vg) € Ny, we have

I(uo,v0) = (5 = ) o, wo) I + (3 = 3% ) o, wo)llf = (5 — &) /Q (hyug ™" + havy " )de

> (3= &) o, wo) I + (1 = &) liuo, wo)II

p—1+47r

P p > C1er B
- (ﬁ - %) [\hﬂZ(lHS* + [ fuﬁ@*} S™77 || (uo, vo) I

Therefore I is coercive and bounded below in X. From Lemma 2.4, N, /\+ UMY and
N, are two closed sets in X provided that A € (0,A,). This allows us to extract “best”
minimizing sequences by means of Ekeland variational principle.

First, consider 2, 1= (un,vn) C Ny JNY with the following properties:

(i) I(up,vy) < inf I(u,v)+ %;

N UM

(i1) 1(u,v) > I(up,vn) — ||(u = tn,v — v, ¥(u,v) € NJF UNY.

From I(|ul,|v|) = I(u,v), we may assume that u,, v, > 0, since I is bounded below on
N, clearly, z, is bounded in X (denoted by ||(un,v,)|| < C1,C1 > 0 is a constant). Going

if necessary to a sequence, we can suppose that
— — n WyP(Q
Up = Uy Uy =V in Wy (),

Up — W, Vy —> V in L*(Q),1<s<p",



un(x) = u(x), vy (x) — v(zx) almost everywhere in €.

For any z := (u,v) € N;f (C N,), we have

Tw,0) = (3 = 5 o)+ (3= 22) I o)l = A (& - %) /Q uvda

—1 —1
(3= 55 N olfp + (5= 225 ) M)l = A (3 = 25 ) |2 )lE + 2 s )

= ot 5w vl + S (w0l < 0

IN

It means that inf I < 0for A € (0,A,), from Lemma 2.1 we get that NY = {(0,0)}. Together,
N,

A
these imply that (uy,,vy,) € N, ;r for n largely and

inf [=infl <O.
NYUNY N

Thus, by the weak lower semi-continuity of || - ||, - |l
I(ug,vo) < lim inf I'(up,v,) = inf I<O0,
n—00 N’;r UNE

we see that ug Z 0,v9 Z 0 and (up, v,) C Ny

Proposition 3.1. There exists € > 0 such that ug > €ey,vg > €eq, for Vx € Q.
Proof. First we will show that when A\ € (0, Ay)

i (6" = ) s+ (0" = )l ) ] < 79 1) [ (™ + a7,
(3.1)
since (un,vn) C Ny, then

lim inf[(p"™ — p) || (un, va) I + (0" — Dl (un, vn)lIg] < (r +p" - 1)/9(h1uc1>_7" + havy™")da,

n—oo

by A € (0,A.), we have

(0" = )| (un, vn)llp > (r +p* = 1)/ (h1uy " + havy ") d,
Q

SO
Jin (9" = ) v+ 0 = 015 = 4" 1) [ (™ + haof )i

which is clearly impossible. By (3.1), we may choose a subsequence such that

(P = )l (tn, o) llp + (0" = @) (i, vn)llg = (r +p* = 1)/ (h1un ™" + hav,™")dz < —=Ch
! (3.2)
for n large enough and a appropriate positive constant Cs.
Fix (¢1,92) € X with 1,02 > 0. We use the implicit function theorem at the point
(0,1), there exist a continuous function f,(t) such that f,(0) = 1 and (up,vn), fn(t)(un +

10



to1,vn + tpa) C N3F(C N, for all sufficiently small ¢ > 0. It follows from (un,v,) C Ny
and fi(t)(un + to1, vn + tpa) C Ny that

([ (s va) 5 + [ (un, vn) [[§ — /(hlu "+ hovy ")dx — /U%vﬁdﬂﬁ =0,
Q Q
and

Fh @) (tn 4 tor, vn + tea)|[p — fﬁr(t)/ﬂ(hl(un + 1) "+ ho(vy + tpe)' T )da

+ R ()] (un + tor, vy + tpa)||d — Afﬁ* (t)/ﬂ(un + to1)* (Un + tg2)Pda = 0.
So we have that

0 < [fn(®) = Ul (un + 01, vn + t02) o + ([ (un + 601, v + t02) [ = Il (un; vn) 1)

H () = Ul (un + o1, v + t02) 1§ + (| (un + tp1, 00 + tpa)l[g = [[(un, va)l[3)

- ;—T@>——1{/"0u<un—+twlr-¢~+fm<vn—+thf-¢>dx
Q

—)\[fﬁ* (t) — 1}/9(%, + tp1)*(vn + tg@)ﬁdx — )\/ {(un + to1)*(vn + twg)ﬁ — u%vﬁ] dz.

Q

Dividing by ¢t > 0 and taking the limit for ¢ — 0, we derive that

0 < pfr(0) (un, va)lIp + p/{)(vuﬁ_lvwl)d@“ +p/ﬂ(vvﬁ_lvwz)dﬂf + afn(0)[|(un, vn) Il
-l—q/Q(Vu?LIchl)dx + q/{l(Vv,%chpg)dx —(1=7)f1(0) /Q(hlu " 4 hovlT")dx
—Ap*f1(0) fQu d:r: — )\/ un 1 ngpl + ﬂuavﬂ 1@2)(138
= F200) [l )1 + a0 = 1= ) [ e o) = [ ol
+p /Q (Vub ™ 'Vpr + Vb 'Vo)dz + g /Q (Vul 'V + Vol V) de
—)\/ U~ Y cpl + Bu%ﬂ 1 po)dx
= fn(O)[(P = 2 ) (un, va) 15 + (¢ = P) | (un, v) lg = (L =7 = p*)/g(hwi—r + hav, ") da]
+p /Q (Vub ™ 'Vepr + Vb Vo )dr + g /Q (Vul 'V + Vol V) da
—)\/ auo‘ LB + Buvl~ 1@2) dx.

From (3.2) and (3.3), we know immediately that f}(0) # —oc.

11



Now we show that f},(0) # +o00. Arguing that contradiction, we assume that f},(0) =

+00. Since
| fn () = L[| (uns va) || + Lf ()] (1, 2) ]
> || ([fn(®) = Nun 4+t fr(t) o1, [fn(t) — Hvn + tfa(t)p2) || (3.4)
= || (fa () (un + tp1) = un, fu(t)(vn + tp2) — va) I,

and

fn(t) > fn(o) =1,

for n sufficiently large, from the definition of derivative f(0), applying condition (ii) with
U= fo(t)(un +tp1),v = fn(t)(vy + tpa) and z = (u,v) € Ny, we clearly have that

’fn( ) . 1| H(un,vn)H + tfn(t) H((Pl?a;OQ)” > H(fn(t)(un + t(pl) - un,,;fn(t)(’l)n + t(pg) - ’Un)H

> I(um Un) - I(fn(t)(un + t@l)) fn(t)(vn + t@2))

m o)+ (3 = 755 Ml = A (75 = ) [ e
FRON(n + b1, vn + to2)llh = (3 = 755 FLO I (un + 101, va + t2)
A (= 1) £ [ (o t0)" 0+ t90) o

(IICun + to1, vn + tw2)llp — || (un, va) lIp)

() = [ (un + tpr, vn + t2) 1

A ( 1_ #) 7 /Q [(un + 1) (0 + tipa)® — ugvﬂ dz.

Diving by ¢ > 0 and passing to the limit as ¢ — 0, we can obtain that

o)l w2

> p=0-n) [ [ v+ wz—lwz)dx] T 2200 103ty ) 2
Q

20 | [ Qa9+ Vo D] + 10 o)
Q

12



*_(1—p _ _ * 1 —
—)\B *(glr))/ (cuy 1v,€g01 + Buf{vg 1@2)dm — AMfT/L(O)/ ugfugdaj
Q p*(1—r) Q

= L) [(p — 14 7)|| (e, 0n)llp + (@ = L+ 1) (i, 0n) g — AP — 1+ r)/ngdex}

e [/ (Vul ™'V + Vol V) dx] + g [/ (Vud 'V + Vol Vo) dw]
Q Q

_)‘](?1_7});?/Q (04“3 Lol + Busvl~ 1902> dx,
that is

H(wl;;pz)ll > Jl”é_(oz [(p — )|ty v) 1B + (@ = p7)| (e, 0) |2 —

(1 = 1)l (un, vn) |

-1
—(1—=r— )/ (hyul™" 4 houp™ r)dl‘:| 17—:7' [/ (VU™ 'V, + Vb~ ' Vg da
Q - Q

—|—qu-:7’ [/ (VugflVng —|—V2)31V(p2)dx] )\7()1_7})‘*‘7"/(041% 1 5901 _|_l8u04 B— 1(p2)d.73,
Q Q
(3.5)

which is impossible, because f,(0) = +o00 and

(® = P [ (wn, va)llp + (@ = ) (e, va) Ig — (1 =7 — p*)/Q(hlu "+ havy, ")d
_(1_T)||S}blnvvn)|| Z 02 _ (1—;)01 > 0.

In conclusion, |f},(0)| # +oo. Furthermore, (3.2) with ||(un,vn)|| < Ci(n = 1,2,--+)
and the two inequalities (3.3) and (3.5) also imply that |f),(0)| < Cs for n sufficiently large
and a proper constant Cs > 0.

Now, using (3.3) and condition (ii) again, we infer that
L1 fa®) = 11l s o)l + a8 (01, 22)1
> L (falt) (i + t01) = thn, Fa(8) 0+ t02) = )|
> I(tns 0n) = TS (ttn + 1), fult) (0n + ti22))
> —La0-1)(

n t
ttns v [B = L (| (tn + o1, v + ) [ = ([, v [7)

2(t)—1
— B a0 [18 — 2 (|| (i, + 01, v + £02) 14 = 1 (t, 0 19)

1—r
+f"(t)1/ (h1(un + to1) "+ ha (v, + twg)lﬂ") dz
Q

L / (R [(tn + t00) '™ — 6l + hal(vn + tip2) ") — 0177]) da
Q

T A
+)\f5p* 1/ (U + t01)* (vn + tpo)Pdx + prs / [(un + 1) (v + t2)? — ulv? | da.
Q Q

13



Dividing by ¢t > 0 and passing to the limit for ¢ — 0", we can get that

(1A O (o, va) | + 11 (o1, 02) ]

> 7(0) {Hwn,vn)uﬁ v = [ (k4 k) o= uzvﬁdm}
Q Q
— / (Vub 'V + Vb 'Vp,) dz — / (Vul 'V + Vol Vi) da
Q Q

+;*/Q (au%_lvgm + Bu%vf‘lg@) dx

dzx

+ lim inf
t—0+

1 / ha[(un +t1)' ™" — w7+ ho[(vn + t@2) " — 0h 7]
1—7r
0 t

= —/ (Vul 'V + Vol 'V, do — / (Vul 'V + Vol 'V,) do
Q Q0
i [ (o oo + Bugel o) do

dx,

1 / ha[(un +te1)' ™" — uy "] + ha[(vn + ta)' " — vy ]
1—r
Q

+ lim inf
t—0+ t

which gives,

lim inf
t—0+

1/ hal(un + to1) " — ub7"] + hol(vn + tp2) ™" — 0] dx
1—r
Q t

< / (Vul 'V + Vob 'V, da + / (Vul 'V + Vol 'V,) do
Q Q

_ _ 1
3 [ (ot i+ Butoll~ ) do -+ O )l + r ),

_ 1—
T*’U,n T

(untter)

1 1—7r_,1-r
since h 7 + ho (U"thm)t Un__ >0,Vt > 0.

By Fatou’s Lemma we have that

1 / ha[(un +t@1)' ™" — w7+ hol(vn + t@2)' ™" — 0,77
0 t

dx

lim inf
t—0t 1—7r

is integrable and

/ lim inf 1 hl <un + t(pl)lir - U}lir + h2 (Un + thQ)lfr — ’U}lir i
Qt—0+ 1—7r P -

< / (Vul ™'V + Vb 'Vp,) do —|—/ (Vud 'Vr + Vol 'Vis) dz
Q Q

o— o, B— 1
[ (o ofion + Bt ) da 1A Ol o)+ 1, 22
0 n

Note that

1 ( (up +to) 7" —ul"
hi
.

(Vn + tpo) 7T — LT t—0t
h n
11— + ho

t t

14



0, if at least one of the uy(x),v,(x) is zero, 1(x), pa(x) =0,
+o00, if at least one of the u,(x),vy(x) is zero, p1(x), p2(x) > 0,

hz(r)QO + ’U(T )QO 2 Zf un(x),vn(a}) > 07 @1(1’),@2(1') > 07

we consider up(z),vn(z) > 0,p1(x),p2(x) = €1 as a test function in (3.6), applying the

Fatou’s Lemma once more, we infer that

/(h1u0 01 + hovy " po)dr < lim inf (hlugrgol + hQU,jTng) dx
Q t—0+ Q

< lim inf [/ (VuP=IV o, + VP V) dz +/ (VUZ_IV% + va_1V¢2) dz
Q Q

C1Cs + || (o1,
_I% Q<aug LB o1 + Bulvl~ 1¢2> do + 21O3 [ (¢1 @2)”]

n
= /Q(Vug_1Vg01 + Vol 'Vy)dz + /Q(Vu8_1Vg01 + Vol Vi) da
—p)‘*/g(aug‘lvggpl + 5u8v€71g02)dx.

Note that in particular, /Q(hlungol + hovg "p2)dxr < co. Which guarantees that 3 g9 > 0,

s.t. ug > ge1,vg > €eq a.e. in . O

In other words, (u,v) € X,u > 0,0 > 0 for any (¢1,92) € X,p1 > 0,02 > 0, there
holds

/ (Vub ™ 'Vr + Vb ' V) dz + / (Vuld™ 'V, + Vol ' Vo) da
Q Q

(3.7)
A _
—/ (h1ug "1 + hovg "p2)dx — p*/ (augflvggol + 5ugvg Yoo)dz > 0,
Q Q
using (3.6) with (¢1, v2) = (u,v), we get that
o, )l o, o) = [ (g™ + b "o = A [ wgodn =0, @38)

Proposition 3.2. (ug,vy) € Ny with A € (0, A,).
Proof. Denote

ag = [|(uo, vo)|l; + II(UO,vo)IIZ—/Q(hlu "+ havy ") dﬂf—A/ ugvyda

By (3.8), we know ag > 0. Let us argue by contradiction and assume that ap > 0. In
the following we will concentrate on a contradiction.

By the assumption ag > 0, there exists a unique Cy > 0 such that
CgBl + CgBQ — /\Cé’*Al = —ay,

where

1(@PUe, B2U- )2 = ( + B)||[UelZ = By + 0(e™7"),

15



/ (UL ) (B3 U, 0)Pdz = s 35 / UP,dz = Ay + o(e"7),
Q Q

Ueall BP
. H,Mﬁ:Aa,
* P p
(/ Ugad:c>
0
1 1 B a
[(@? Uz a, B2 Ue,a)llp (a+p)BP AN AT
Sa,p = P =\5) T\a 5

a B p
(/ (a;Ua,a)a(B;U&a)ﬁdx)p [0 %3 5? Ap
Q

1 1 g q q g n—p
[(a? Usa, B2 Ue,a) 1§ = (a7 + B7)[|Ucalld = (a? + B7)B? +o(e v ),
a B
(a+ B)BP := By, (a? Br)A = Ay, (ar + f7)B 1= Bs.

But as I(un,vn) — po := inf I = inf I with (up,v,) € N (C N)), by the Brezis-
NYUNY Ay
Lieb Lemma we have

Ho + 0(1) = I(un, Un)
—(;—;)Wwww%+(;—;)wwww%—(fr—;)émw§”+m%”Mx
(5= ) I 5B + (2 = ) 1, 5l + 0(1),

where u,, = u, — u, U, = v, — v, and

0 = [[(un, vn)l[p + [[(un, vn)[[§ = fo(hau' ™" + hov!™")dz — nguﬁdx

= ag + | (un, vn) [l + | (m, vn) 17 — /\/ w0 d + o(1)
Q

E %
o0 S ([t ) sl ([emt) < [ ot
Q ’ Q Q

which would imply that lim [, w0, dx exists and
n—oo

o a B x *
lim unavnﬂda:Zapﬂng A=Cl A
n—oo Q

In other words, (u,v) satisfies
po = (=) Nwooolls+ (3= ) o, vl = (25 = ) [ (™ + oo
+(L- L)+ (- E) cima
(3.9)

On the other hand, for any (u,v) € X with

auw = |[(u, ) |5 + [|(u, v) |7 - /Q(hlulT + hgvl%)d:v — )\/ﬂuo‘vﬁdx.

16



We can find R > 0 such that
aty 0)1[E + (s 0) 19 — /Q(hlu” hov! TVdz — A /Q woPde + RPBy + R9By — NRP" A1 < 0,
and thus
|(u+ RarUs v+ RB U o) 5+ [|(u + RavUs 0, v+ RAFUL o)
- /Q [+ RavUo) ™" + ha(v + RBPUe) | do — A /Q (u+ RavU.,)*(v + RBvUL. ) da
= ay,y + RPB1 + R1By — ARP" A; < 0.
This allow us to take 0 < Cp < R to satisty

1 1 1 1
(w4 Cocar Uz q,v + CoerUca)llp + ||(u+ Coca?Ue g, v + Co 87 Usa)ll
1 _ 1 _r
—/ [hl(u + Coca?Us o) ™" + ha(v+ Co 7 Usq)! ] dx (3.10)
Q
-\ / (u+ CO,EQ%UE7a)°‘(v + CO7EB%U5,G)de =0,
Q

1 1
that is (u + CocarUsq,v + C’07EBEUE,G> e N,.

Furthermore, since a,, > 0, let Cy, , > 0 is the unique that
CP By + Cl By — \C A1 = —ay,,
then

1
By \PF-r
CuvB —_— .
v (AA1>

From (3.10) it follows that 0 = ay, + C% By + Ci v B2 — )\Cﬁijl + o(1) and hence
Coe = Cyp, ase—0. (3.11)
Which yield

1 1
[(u+ Coea?Us g, v + Co 7 Ue o) |lh

n—p n

_r
> Clo(a+ B)BP > (/\37111) "T"Bi=(3) " Sa g fore>0 small,

where

Necessarily
1 1
H (u + CO,eap Ue,aa v+ 007551’ Ue,a)Hp

n—p n ﬁ p*—p
1\ 2 qp? p—1+r 1 g»p _
> (X) P Soz,ﬁ > (p*—l—i—r)\sa,ﬁ) = E\.

17



1 1
The gap structure of N guarantees (u + Coea?Ue 4,0 + Co 7 U, q) € Ny in view of the

fact inf I = inf I we derive that
N N

1 1
po < I (U + CO,Ea;UE,av v+ CO,EB;Ua,a>

= (b= ) Mol + (3= ) Nl = (5 = 5+) [ (e '~

bS]

+ (5= %) BB+ (2 - ) CBa +01),

that is

ho= G) - pi) I, o)z + (é B 1%> s 0)llg - (1%r - pi> /Q(hlulr + hov'™")dx

+ (5= &) CluBy+ (L = &) CluBy +o(1).

Now, putting together (3.9) and (3.12), we see that
o= (3= ) lwo,w0)h+ (2 = ) I wo,w)§ — (5 — ) /Q (g™ + houy ")

+ (3= ) apBri+ (L - 2) CiBa+ (1),

(3.13)
This implies that, necessarily (ug,vp) is a local minimizer for the functional:

(3= ) Mol (3= ) Do vl = (i = ) [ (o™ + o )

1
+(5-F)cBi+ (L - ) ciB =0

(3.14)
For the function C ,, let ¢1,¢p2 € C°(2) and evaluate g(t) := Cugttpy,vo+tpo iD a small

neighborhood of t = 0 that is
l9()P By + [9(t)]7B2 — Mg(£)]"" Ay

= — [l (w0 + ti1, vo + t2) If + Il (w0 + tio1, vo + t)
—/ (hl(uo + tgpl)l_r + ha(vg + tgpg)l_r) dx — )\/ (u+ tpr)*(v+ tgpg)ﬁd:n .
Q Q

By ag > 0, we know that ¢(t) exists, with g(0) = Cp, moreover, since uy > epe1,vg > €pe1

in €, by Dominated convergence Theorem

/hl(uo —|—tg01)1_’"dx — /hlué_rdx
Q2 Q = / (1 —7)hi(ug + Otpr) "dx
t supp 1

120, / (1 =7r)hiuy "prdx = /(1 —r)hiug " prde,
supp 1 Q

18



and consequently

{[9(0) +0(g(t) — 9(0)]P~' B1 + [9(0) + 0(g(t) — g(0))]* ' Be

Mg (0) + #g(t) — g0y 1, } I =IO

_ [9®)1PB1 + [g(1)]"B2 — Mg(®)]”" A1 — [9(0)]"B1 + [9(0)]B>
t

=~ { o + b0+ )l + o+ 1,0+ g = A [ (o +ti1) (0 + t2)P
—/Q(hl(uo +t01) ™" 4 ha(vo + tipa) ' )da — [[(uo, vo) 1B + [|(uo, vo) |2
—/ (haup™" + havg ™ ")dx — /\/ ug‘vgdx}
Q Q
20, {p/Q(Vu81V<,01 + vaﬂchg)da: + q/Q(Vu81V<,01 + V0871Vg02)d$

—(1- r)/ (hiug "@1 + hovy "p2)da — /\a/ ug‘_lvgwldx — )\6/ ug‘vg_lcpgdx ,
Q Q Q

which implies that ¢’(0) exists and

-1
'(0) = : Vub 'V + Vol T V) da
90 = G e Ll [ (770 i

—i—q/ (Vug_1Vg01 + va_1V<p2)d:1; —(1- 7')/ (hiug "1 + hovy "p2)dx
Q Q

)\a/ ug‘flvgcpldq: — )\B/ ug‘vgflcpgdx].
Q Q

Resuming from (3.14) we see that

d{ L1 || (uo + ¢ + tpa)||P + 11 I|(uo + ¢ +tp2)||2
- - — — U v - — — U v
i » P 0 T 11, Vo T 1¥2)|lp . 0 T 11, Vo T+ 1P2)|lq

— (17; — }%) /Q (hl(UO + tgol)l_r + hg(’UO + thQ)l_T) dx

+ (3= L) opB+ (L= &) le@lBa}|_ =0

for all ¢1,¢2 € C§°(£2). Since from Theorem 3.1 follows immediately that hiu,", hovy" €
L*>(9). Hence, for all (¢1,p2) € X, we conclude that

_ _ 1 1 _ _
0= (l — i*) p | (Vi 'V, + Vb ' Vs)de + (= — — ) q [ (Vul 'V + Vol V) de
Py Q q ) Jo

_ (L - pL) (1- 7")/ (hiug "p1 + havy "p2)d
Q

(3.15)
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We use the famous estimates as follows

/ VugVUg qdz = 0,
Q
/ Vug_1VUg,adx =o0 (EP&:%) ,

Q
/ VU, Vugda = o (s?) :
Q

* n—p 1 n—p
/ VUspa_lvuodl‘ = UO(a) pp / p__np—n+p dx +o ( pp) )
Q ’ R (14 |z|P=7) »
*_1 n—p ugiln n—p
/ Vug VU odr =€ » ———dr +o0 (5 > .
Q R™ (|;p — a|E)T

In particular, as hiuy ", hovy " € L>(2), we can reevaluate

/hl(uo + Co,soa%UE,a)l_rdw — /hlu(l)_rdx
Q Q

- / h(1 = )(up + 0a? Co cUs )" a? Co U adst
Q

n—

=g P

)

x —alp-1) P

(1 —'r)ouva’o/hluaT 77p e dx + o(1)
@ (I

write Co . = Cy + d¢, by Cp. — Cpy as € — 0, we get 6. — 0.

Inserting all the above estimates into (3.10), we obtain

0=~ [CEB1 + C§By = ACY 43| + C§.By + €Y By ~ Al Ay

pCo. [/Q(W“g_lww + BV VU o)de| + aCoc | /Q (ar Vud ' VUL,

+5%vug—1vz]5,a)dx] —er(1- r)co/ (hiug" + hovy") T _dr+o <g%) ,
P\ 5
@ <|IL‘ — a|P—1> b

which gives

pCE By + aC§ T By — 2w CE T Ay (—6)
= pCo. [ / (aVub'VU. . + ﬁwg—lvu;,a)dx] +qCo. [ / (ar Vul VU,
Q Q

+BgVU81VUE,a)d4 -(1- T)CO/ (hiug" + hovy " )dz + 0 (5%> — )\p*CngAl.
Q

Furthermore, from (3.15) follows that
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(Vub™ 'V + Vb~ ' Vodr)

\

(;,g>

P *
1
p

CEYrRTT ey

1 1
(ﬁ—pi*) / (Riug "1 + hovg "p2) d + (q - p*) q/ (Vul 'V, + Vol 1Vy)de
Q Q

11 -1 11 -1
(5_17*>ng Bl+(5—p7)ch Bo

)\p*CP*—lAl n—p
—— 1 ——T—toler ).
pCE By +qCe ' Bya—Ap*CE 1 Ay

(3.16)
Also,—0d —0(5 Pp>.
Now, we can proceed to get the contradiction. Since ag > 0, clearly,

pCE By 4 qCI By — Ap*CP M Ay < 2 [chl +CUBy — ACY Al] = Py <0,

1 1
subsequently, in virtue of (u + CocarUq,v+ Cocfr Ue,a> € N, applying (3.14) and (3.16),

we obtain

1 1
I(u + 00,60“’ Us,aa v+ CO,EBP Us,a)
11 1 1 p
= (f - 17) ||(u + CO,eapUs,aav + CO,eBpUs,a)Hp

p

1 1
(3= &) I+ CoarUea, v+ CocBUea)

=m0+ (5= 7) pCE 0B + (= ) a0
L p—1 1 p—1
+pCoe | (a?Vuy VU o+ Br Vg VU q)dx
Q
4Co. / (a7 V™ YUz o + B V0 VU, 4)da
Q

~ (5 = #) (1= 1)Co Jo (g + havg")da

Ap*Cl A,
pCE ™ Bi4+qC Bo—Ap*CE 1Ay

= po + K% - ]%) PC(I))715EB1 + (% - pi) chfl(seBz]

+o0 (6%) < o,
which is clearly impossible. This ends the proof of Proposition 3.2. O

Proposition 3.3. (ug,vg) is a solution of (1.1) .
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Proof. For ¢1,p9 € Wol’p(Q),s > 0. Define
Uy = (ug + E(p1)+ S W&’p(Q), Uy = (vo + EQOQ)+ S Wol’p(Q),

O = {z|ug +ep1 >0}, Q1 = {z|vg +ep2 >0}, Q" =Q - N, QT =Q; NQy.

Using Proposition 3.2 and inserting 1, Qs into (3.7), we see that
0< /Q(vuglv\pl + Vb T V) d + /Q(vuglwl + Vol 'V 0y)dx
—/Q(hluo_"\lll + hovy ") dx — ;/Q(aug‘_lvg\lll + 6u8‘vg_1\112)dx
_ /m (V™ V (o + 1) + Vel 'V (v + ) ) d
+ /Q+ (Vu?flV(uo +epr) + wg*lvwg + 5g02)) dz
- /Q+ (hlugr(uo +ep1) + havg " (vo + apg)) dx
— 5 Q+(a“3_1”g(uo +ep1) + Bugvy ' (vo + ea))da
=¢ [ /Q (Vub ™ 'Vr + Vol ' Vy)dz + /Q (Vud™' Vi + Vol ' Vo) da
_/ (hiug "1 + hovy "p2)da — );/ (Oéuf;—lvg(pl + Bugvg_lm) dw]
Q P Ja
- /_ (Vul ™'V (ug + ep1) + Vb "'V (v + ep9))da
— [T o+ o) + Ve Voo + )
+ /Q (hiug " (uo + ep1) + havy " (vo + ep2)) da
5 /Q_ (04“8_1”5(“0 +ep1) + Buguy ' (vo + sz)) dx
<e [ /Q (Vub ™ 'Vr + Vol ' V) dz + /Q (Vud™'Vr + Vol ' Vo) da
—/Sz(h1uaT901 + hovy "p2)dx — ;/Q(ozuf;_lvgtpl + Bugvg_lgpg)dx]

- /_ (Vub ™'V (ug + ep1) + Vb 'V (v + ep9))da

- / (Vud "V (ug + ep1) + Vol 7'V (vo + e92))d.
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Since the measure of domain of integration [ug + ep1 < 0], [vg + ep2 > 0] tend to zero as

e — 0, it follows that

/ (Vu€_1V(uo +ep1) 4 Vb 'V (v + Egog)) dx
0-

+/ (VU871V(UQ +ep1) + VU%AV(UO + 6902)) dzx — 0.
-
Dividing by € and letting € — 0 therefore shows

/ (Vub ™'V 4+ Vol Vo) da + / (Vud 'V + Vol ' Vs)dx
Q Q

_ _ A _ _
—/ (h1ug "1 + havg "p2)dx — p*/ (g~ vy 1 + Bugvy " pa)da > 0,
Q Q

and since this holds equally well for —p;, —p9, it follows that (ug,vg) is a solution of the
(3.7). O

Since u, — ug, vy — vg weakly in VVO1 (), by the weak lower semi-continuity of norm,

we conclude that ||(ug, vo)|| = lim inf ||(un, vy)|| < Ep, Proposition 3.2 and the gap structure
n—oo

of Ny in turn imply that (ug,vo) € Ny . At this point, from I(uy,v,) — in£ I, we see that
N,

A

inf 72 (3= ) o o)l + (3 = ) Mool = (5 = ) [ (™ + haof

A
= I(u07 UO)v

that is I(ug,vo) = in£ I(u,v). This ends the proof of Theorem 1.1. O
N.

A

4 The proof of Theorem 1.2

Proof. We provide only a sketch, as the arguments are by now familiar. Then consider

(Un, V) C N, the best minimizing sequence for jl\I/lf I. Since (U,, V,) is bounded in X, after
A
passing to a subsequence, we may assume that U, — Uy, V,, — Vy weakly in I/VO1 P(Q). The

result
Jim inf[(p* — )| (Un, Vi[5 + (0 = )| (Un, V) I3] > (0" +7 = 1)/Q(h1U5_’” +haVy "),
follows easily with an argument by contradiction. In fact provided that

T i [ = D) U V)l + (0 = )| (U VI = 07 +7 = 1) [ (U3 + V")

there exists a subsequence of (Uy, V), called (Ui, Vi) and recalling ||(U,V)|| > E, for all
(U, V) e Ny C N, we have
E\ < H(Unka Vnk’)”pv
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e, (p— 141 Unes Vi) £ < AP —1+7) / e Viidz,
Q
and

1(Uner Vi) 2+ (| (Ui, Vit 19 — /Q(hlU;,;T V") de — )\/Q UV dr = 0,

(2 = 2*) Unk, Vi) 5 + (@ = ) Uk, Vo) [1g — (0 = 1 +7) /Q(hlUﬁ;ZT + hoV\ 7" )d < 0.

Consequently

*

pT—p p—1+r P —q
0> (1= Z o - P 0 v+ (1= S ) I VeI

which is clearly impossible.
Thus, we can proceed as in the proof of Theorem 1.1 to obtain Uy(x) > gpe1(z), Up(z) >
eoer(z), Vo € Q. And

/ (VU 'V, + VVI ' Vy)dr + / (VU 'Ver + VI Vi) da
Q Q

T T )\ a— (6% -
—/Q(hon p1+ haVy " p2)d — p*/Q(OéUo Vior + BUSVY ™ pa)da > 0.
By taking ¢1 = Up, p2 = V, we know that
(0o, V)l + | W0 Vo)l — | (U3 + haVl—yde = [ UgVde =0,

all that remains is to prove that (Up, V) € N,.

Arguing by contradiction and assume that
Ao = (U0 O+ 1T Vo)l — [ (U3 + oV o= x [ U3viae >0,
then there would exist a unique point é’vo > 0 such that
Co Dy + Co Dy — Aaap*El = —ap.

Since I(Uy, Vy) = mo = inf I with (Uy, Vy,) € Ny (C N,), we have
Ny

7o + 0(1) = I(Uy, Vi)

= (5= #) N0+ (3= )10 Vol = (s = ) [ (0L + it s

p p*

= (2= F) N0 V)5 + (2 = ) 1T, Va)ll§ + o(1),
where i]\; =U, — UO,T/; =V, —Vy, and

0 = [|(Un, V)IIE + [| (U, Vi) 4 / (U 4 ho V") — /\/ Uev iy
Q Q

= Ao + 1T, V) I+ (@, Vi)l — A / 0,V dz + o(1)
Q

P a
3

—axp \T L —a=p, \7? —a—p
> Ag+ Sap U, V., dx + Saﬁ U, V., dx — X[ U, V, dx+o(1),
Q Q Q
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which would imply that lim fQ (A]:Laﬁﬁdx exists and
n—oo

~ o~ a B —~—p* %
lim [ 0,"V. dz > a5 85Cy" D = Cy’ Dy,

n—oo Q

and sequently

moz (3= ) 000+ (4= ) 100 Vo) = (5 = ) [ (U3 + haV "o

+ (5= )Gy + (3 - &) G Ds.
(4.1)

As shown in the proof of Theorem 1.1 for any (U, V) € X with

Auw = |(UV)|P+ (U, V)1 - /(hlUl’” + ho VI ") da — )\/ U*vBdz,
Q Q

we can alway find 0 < C,'O; < R—;) such that (U + CA'O;a%UE@, V+ CA'();B%UM) S NA_ for
€ > 0 small. Sequently

3 =

70 < I(U + Coea” Una, V + Co a7 Us.a)

- (% - ]%) IVl + (é B pi) 1wVl - (ﬁ B I%) /Q(hlUl_T =+ hQVl_r)dx

# (3= 3) i (5= 35) P o)

(4.2)
Putting together (4.1) and (4.2), we get that

e (- G (- 2) G () 0+

q p*

+ (l - i) Co Dy + (1 - i) Co' D2 +o(1),

and that for every o1, p2 € C§°(2)

${ (B INOVIE+ (=2 IOV (5 = ) [0 + bV o

|

where

- ) G@rD + (- L) [G@IDa}| =0,

D=

[G(®)]P D1 + [G(1)]2D2 — A[G(1)]P" B
= - [H(U +to1, V A+ toa)|lp + (U + te1, V + too) g

—/ (hl(U—Ft(,Ol)l_r + hQ(V+t<p2)1_r)d$ — )\/ (U+t<,01)°‘(V+tcpg)5dx s
Q Q

and we can proceed as in (3.15), (3.16) to reach a contradiction. The desire result that
(Uo, Vo) is a solution of the problem (1.1).

Still no location information can be obtained for (Uy, Vj). Consequently, we prove that
(Uo, Vo) € Ny .
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Proposition 4.1. Suppose that A € (0,A.), then the solution (Uy, Vo) € N, .

Proof. Now consider

= ) € V00 e () > 1 oo

W= ) € 000 () <1}

Then N, disconnect X in two connected components W and Wy and X\Ny = Wy |J Wy, for
each (u,v) € Ny, we have 1 < tpax((u,v)) <t~ ((u,v)), since t~((u,v)) = ”(u%v)”t_ (||EZ:3||)’
then ;¥ € Wi. In particular, (ug,vo) € Wi. 1 )

Now we claim that there exists Ry > 0 such that (uo + RoarUe 4,00 + RoﬁEUE,a> e Ws.
First, we find a constant C' > 0 such that

1 1

0<t” ( ( (o +RQZU5’“’UO + RBZUE’“) )) < C, YR > 0.
H(UO + RapUs,a» vo + RﬁpUe,a)H

Otherwise, there exists a sequence { Ry} such that, as k — oo, Ry — oo and

1 1
— < ( (UO + Ra’;Ua,aaUO + RBTUE,a) >> o
H(UO + RO&EUe,aa Vo + RBEUE,a)H

Let ) )
(uo + RparUe q,v0 + R 7 Us q)

T T .
[[(uo + Rrar Ueya,v0 + RiB7 Ue,a) ||
Since ¢~ ((ug, o)) (uk, v%) € Ny C Ny and by the Dominated convergence Theorem,

(g, ) =

lim / (2, 0) [ [ (x, 0) P dx
k—oo Q

/ |(U0 + Rka%UE,a)(fE, 0)‘a|’00 + RkB%Ug,a”ﬁdl‘
= lim T T
hyeo [(uo + Rpa?Ue ,vo + RSP Us )|

/| 7+ONUea)(‘T 0)[* I( +5P Us.a)(,0)| dz
:klim T
e (T 30 e+ PR
a B *
/apﬁPUg)adx
—_ Q ’

1(ar Us o, B7Ue o) |7

Now

I(t~ ((wg, ) (Uk, U))

= 5 (t (@, o) || (v ) + 5 (¢ (@, o)) 2 (e, o) 1)

() e (@) [ e
—W/Q(hlukl + howy! )dﬂ?_( ; I;)* = /Q‘“k(fﬂao)! ok (,0)| da

— —00 as k — oo.
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this contradicts that I is bounded below on N.
Let )
c? —||(ug, vo)l||P|?
P G N1
[(@?Ue.a, 87 Uca)llp

+ 1,
then

1 1
(P Usya B Ue,a) I
1 _ 1 _
> a0, 00)? + e = o, w) 71+ po [ (@8 V™ VUL + 55 90 VUL
Q
1 1 p
> Cp > ¢ << (u0+Rai’Us,a7v0+RﬁfU€,a) ))
(uo+Ra? Ue,asuo+REP U )| ) )

1 1
that is (uo + RoarUs a,v0 + RofB7 U) € Wo.

In this part, we assume
np—1
n > p7q < L'
n—1

Proposition 4.2. There exists €3 > 0 such that Ve € (0,e3) there holds

1 1 1 1 n—p 2
I (uo + tRar U 4, v0 + tRB;UM) < I(ug,v0) + ~(5) 7 825, ¥t € [0,1]

Proof. (ugp,vp) is a solution of (1.1), we derive
I (ug + tRarUs g, v + tRﬁiUs,a)

= I(ug,v0) + 5(tR)PB1 + $(tR)1By — X (tR)P" A,

A pta—1 pta—1 n—p n—p

B * n—p B * n—p n—p
~ 2" Br(tRY ug(a)De 7 — 2o B (tR)” " wg(a) De —1—0(5 z )

p

up_ln
with / 0 = dz and

<|x - a|%) ?

/ [hl(uo + tRoz%Uw)l_’“ + ha(vg + tRﬁ%Ug,a)l—’“} dx — / (haugy™" + hovg~")dx
Q Q

p—1 nep

=(1- T)(tRo)/ (hiug" + havg ") Yo 7 ——dre P .
Q

(Jo —a|7 1)

Define
q:(s) = %SpBl + %Sq32 - Z%Sp*Al

pta—1 B n_p a B n—p
—da v BrsP lyg(a)De 7 — dar BrsP "lug(a)De

when € = 0, g attains its maximum in [0, co] at Ry
1

]- A *
qo(s) = =By + —s1By — —s" Aj.
p q p
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1
Let sop = </\BT§1>p “? and s. > 0 is the unique, such that qs, = gg}(%q(s), clearly,

Se — 80 as € — 0. write s. = sg + I with [. — 0, since ¢'(s.) = 0 it follows that

(80 + la)p—"_l_p*Bl + (So =+ lé‘)q—'_l_p*BZ — )\(80 + lE)Al —+ Sgiler*Bl — )\SOAl

p*—1 atp—1 B n—p pr-1 2 ptB—1 n—p
=A=a v frug(a)De 7 — A =ar B0 wo(a)De v
n—p
sole=o0 (5 P ), consequently,
p p

* n—p - —-
) ) 355 2 0 () - (86)7 5 (87

S

n—

= %(X)TPSE,B +o (5%) .

Therefore, for all ¢ € [0, 1], we have

1 1 n—p n n—
I (uo + tRar Ug g, v0 + tRﬁEUE,a) < I(ug,v0) + 7 (3) 7 SZg+o (s pp) ;

then exists 0 < e3(< e2) such that Ve € (0,e3)

_ n

I (o + tRa? U0, v0 + LRBPUL o ) < I(uo,v0) + 1(3) 87, Ve € [0,1],
]

Now,we locate (Up, Vo). Since from Theorem 1.1 and Proposition 4.1 we have (ug, vg) €
1 1
N; C Wi and (uo + Roar U 4,0 +R055Ug7a) € Ws, there must exists t. € (0,1) such

1 1
that (uo + RoarUg 4, v0 + ROBEUE,Q) € N, , and from Proposition 4.2 we derive that

. n—p 2
}\r/lf]<[(u0,v0)+%(%) v Sy s (4.3)
A

Moreover, since (U, V), (Uo, Vo) € Ny, we clearly have

0 = (U Vo + 0, Vo) = [ (103~ + hafi =)o = A [ UV da
(4.4)
I Tl + 1TVl ~ A [ 57 o+ o).
Q

The desire result (U,, V,,) — (Up, Vo) strong in X. Now follows with an argument by contra-
diction. In fact, suppose that there exists a subsequence {(Upg, Var)} with ||(UNnk,ﬁ)H >

C3 > 0 and from (4.4) that /mam'gdx > C. Then (4.4) yields
Q

*

pF

/ﬁﬁﬁm%%%mﬂ”, (4.5)
Q
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combining (4.3) and (4.5) we get
n—p -
I(ug,v0) + +(5) 7 S2 4

> I (Unks Viake) (since (U, V,) — inf I)
Ny

= (U0, Vo) + (2 = ) 1@ V)l + (2 = ) 1 VIl + 0(1)

p*

: 1 1 T 1 \|IP 1 1 T 1 \|e
>int 1+ (= ) 1 Va)llp+ (3 = ) 1T Va)llg +0(1)

= Iun,v0) + (3 = ) 100, Va)llp + (3 = ) 1T Vil + o()

1_
p q

11\ 5% o
Z I(UO,’UO) + n (X) P Sozz,ﬁ + 0(1)7

this is a contradiction. The gap structure of N ensures that (Up, V) € Ny, therefore,
(up,vo) and (Up, V) denote two different solutions for the problem (1.1).
This completes the proof of Theorem 1.2. O
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