References
1. Chiari HJD-DMW. Ueber Veränderungen des Kleinhirns infolge von Hydrocephalie des Grosshirns1. Dtsch Med Wochenschr 1891; 17: 1172-1175
2. Milhorat TH, Chou MW,  Trinidad EM et al. Chiari I malformation redefined: clinical and radiographic findings for 364 symptomatic patients. Neurosurgery 1999 May;44(5):1005-17.
3. Siri Sahib S Khalsa , Alan Siu  et al. Comparison of posterior fossa volumes and clinical outcomes after decompression of Chiari malformation Type I. Journal of Neurosurgery Pediatrics 2017; 19: 511-517.
4. Bagci AM, Lee SH, Nagornaya N et al. Automated posterior cranial fossa volumetry by MRI: applications to Chiari malformation type I.” American Journal of Neuroradiology 2013 34: 1758-1763.
5. Dagtekin A, Avci E, Kara E, et al. Posterior cranial fossa morphometry in symptomatic adult Chiari I malformation patients: comparative clinical and anatomical study. Clin Neurol Neurosurg 2011;113: 399-403.
6. Nishikawa M, Sakamoto H, Hakuba A et al. Pathogenesis of Chiari malformation: a morphometric study of the posterior cranial fossa. J Neurosurg  1997; 86: 40-47.
7. Noudel R, Jovenin N, Eap C et al. Incidence of basioccipital hypoplasia in Chiari malformation Type I: comparative morphometric study of the posterior cranial fossa. J Neurosurg 2009; 111: 1046-1052.
8. Jiang T, Gradus JL, Rosellini AJ. Supervised Machine Learning: A Brief Primer. Behavior Therapy. 2020; 51: 675-87.
9. Zheng H, Yuan J, Chen LJE. Short-term load forecasting using EMD-LSTM neural networks with a Xgboost algorithm for feature importance evaluation. Energies  2017; 10: 1168.
10. Chen T, Guestrin C, editors. Xgboost: A scalable tree boosting system. Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining; August 2016. 785–794
11. Xu Q, Xiong Y, Dai H, Kumari KM, Xu Q, Ou H-Y, et al. PDC-SGB: Prediction of effective drug combinations using a stochastic gradient boosting algorithm. J Theor Biol  2017; 21;417:1-7.
12. Friedman JH. Stochastic gradient boosting. Computational Statistics & Data Analysis 2002; 38: 367-78.
13. Mosavi A, Hosseini FS, Choubin B, Goodarzi M, Dineva AA, Sardooi ERJWRM. Ensemble Boosting and Bagging Based Machine Learning Models for Groundwater Potential Prediction. Water Resources Management 2021; 35: 23–37
14. Sutton CD. Classification and regression trees, bagging, and boosting. Handbook of Statistics 2005;24: 303-29.
15. Breiman L. Random forests.Machine Learning. 2001; 45: 5-32.
16. Urbizu A, Martin BA, Moncho D et al. Machine learning applied to neuroimaging for diagnosis of adult classic Chiari malformation: role of the basion as a key morphometric indicator. J Neurosurg. 2018; 129: 779-791.
17 Colak C, Colak MC, Orman MN. The comparison of logistic regression model selection methods for the prediction of coronary artery disease. Anadolu Kardiyol Derg. 2007; 7: 6-11.
18. S. Aydin, H. Hanimoglu, T. Tanriverdi et al. Chiari type I malformations in adult: a morphometric analysis of the posterior cranial fossa Surg Neurol 2005; 64:237-241
19. F. Karagöz, N. Izgi, S. Kapicioglu Senser. Morphometric measurements of the cranium in patients with Chiari type I malformation and comparison with the normal population Acta Neurochir (Wien) 2002; 144: 165-171
20. Halvorson KG, Kellogg RT, Keachie KN et al. Morphometric Analysis of Predictors of Cervical Syrinx Formation in the Setting of Chiari I Malformation. Pediatr Neurosurg 2016; 51:137–141
21. Aydin S, Hanimoglu H, Tanriverdi T, et al. Chiari type I malformations in adults: a morphometric analysis of the posterior cranial fossa. Surg Neurol 2005; 64: 237‐ 241.
22. Karagoz F, Izgi N, Kapijcijoglu Sencer S. Morphometric measurements of the cranium in patients with Chiari type I malformation and comparison with the normal population. Acta Neurochir (Wien) 2002; 144: 165‐ 171.
23. Trigylidas T, Baronia B, Vassilyadi M, et al. Posterior fossa dimension and volume estimates in pediatric patients with Chiari I malformations. Childs Nerv Syst 2008; 24: 329‐ 336.
24. Saud S, Jamil B, Upadhyay Y, Irshad KJSET. Performance improvement of empirical models for estimation of global solar radiation in India: A k-fold cross-validation approach. Sustainable Energy Technologies and Assessments 2020; 40: 100768.
25. Krishan K, Kanchan T: Evaluation of spheno-occipital synchondrosis: A review of literature and considerations from forensic anthropologic point of view. J Forensic Dent Sci 2013; 5:72–76,
26. Pang D, Thompson DN: Embryology and bony malformations of the craniovertebral junction. Childs Nerv Syst 2011; 27: 523–564
27. Cesmebasi A, Loukas M, Hogan E et al. The Chiari malformations: a review with emphasis on anatomical traits. Clin Anat 2015; 28: 184–194,
28. Chotai S, Medhkour A. Surgical outcomes after posterior fossa decompression with and without duraplasty in Chiari malformation-I. Clin Neurol Neurosurg 2014; 125:182–188
29. Isik N, Elmaci I, Kaksi M et al. A new entity: Chiari Zero malformation and its surgical method. Turk Neurosurg 2011; 21: 264–268
30. Förander P, Sjåvik K, Solheim O et al. The case for duraplasty in adults undergoing posterior fossa decompression for Chiari I malformation: a systematic review and meta-analysis of observational studies. Clin Neurol Neurosurg 2014; 125: 58–64
31. Tubbs RS, Oakes WJ. The Chiari Malformations. J Neurosurg. 2007; 106: 329-330.
32. Zhao JL, Li MH, Wang CL, Meng W: A systematic review of Chiari I malformation: techniques and outcomes. World Neurosurg 2016; 88: 7–14
Table 1. Basic clinical characteristics of the CM-I group