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ABSTRACT:  In this work, the advantage of two-dimensional population balance modeling (2D

PBM) for a needle-shaped API is highlighted by comparing the one-dimensional population 

balance model (1D PBM) developed for an antisolvent crystallization with the 2D PBM.  The 

API utilized for this work had extremely slow desupersaturation, and was not able to achieve 

solubility concentration despite a ~50 h seed bed age.  While the 1D PBM is useful in optimizing

the crystallization process to enhance desupersaturation, it is unable to match the particle size 

quantiles well.  2D PBM was necessary to probe the impact of crystallization process parameters 

on particle aspect ratio (AR).  Simulations utilizing the 2D PBM indicated that regardless of 

antisolvent addition rate or seed morphology, the final material would still be high aspect ratio.  

This knowledge saved the investment of much time and efforts in trying to minimize particle AR

with changes in crystallization processing parameters alone.
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INTRODUCTION:

Crystallization is the preferred method for isolating an active pharmaceutical ingredient (API) 

from the reaction stream.1, 2  The crystallization step is very important, because it is responsible 

for controlling the API purity, physical form, particle size distribution (PSD) and particle 

morphology.  Therefore, significant time, labor, and materials are invested to study the many 

process parameters within the crystallization step, such as temperature, agitation rate, seed load, 

antisolvent addition rate and cooling rate, to determine their impact on the isolated API.1    

However, the results from lab scale experiments may not be indicative of the behavior when the 

crystallization is run at larger scales, due differences in parameter scaling.3  Understanding 

fundamental crystallization kinetics can provide a more robust method to design and optimize 

the crystallization process to consistently generate material with similar PSD and morphology.1  

Although direct experimental measurement of the crystallization kinetics is typically too time 

consuming to render feasible,4 modelling of the crystallization process can be utilized to provide 

insight into the kinetics.1, 2, 4

The crystallization process involves formation of nuclei from solution, and the subsequent 

growth of those nuclei throughout various stages of the process.5  Therefore, the crystallization 

process is well-suited for population balance modeling (PBM), which utilizes a set of differential

algebraic equations to describe the temporal evolution of the distribution of a given particle 

property, such as PSD.6  Advances in both analytical equipment and computational methods have

allowed PBM to become more increasingly accessible to the crystallization community.7  

Typically, PBM of the crystallization process has been conducted by utilizing a single dimension

to describe the particle size, representing the particles as spheres.8  While this simplification may 

work well for low aspect ratio particles, a one-dimensional PBM can have difficulty predicting 

crystallization behavior for high aspect ratio particles such as needles.  The latest numerical and 



computational advancements have allowed for the solving of 2D PBMs, which are able to fulfill 

this opportunity.8, 9  

The difficulty of solving the multi-dimensional differential algebraic equations associated with 

two-dimensional PBM had previously precluded broader application of these models.8, 10  Recent 

enhancements in numerical techniques that allow for the existence of analytical solutions has 

brought two-dimensional PBM to a state of practical application.11  Although many APIs 

crystallize in needle or rod-like morphologies, multidimensional PBM of the crystallization 

process is still under-utilized.  This is reflected in the relatively few published multidimensional 

crystallization PBMs,9, 12-22 in comparison with the more prevalently published one-dimensional 

PBMs23-40.  

To highlight the benefits of 2D PBM, we compare a one-dimensional PBM and a two-

dimensional PBM that were developed for an isothermal antisolvent crystallization process of a 

needle-shaped API.  The API exhibited extremely slow desupersaturation from the supernatant 

and did not reach full desupersaturation even after a fifty hour seed age.  The capabilities of both 

models for guiding the lab scale experiments, albeit in different capacities, are presented in this 

work.  

METHODS

Materials: The API used for all experiments was BMS compound A, produced by BMS (New 

Brunswick, NJ).  Reagent grade THF and acetone were purchased from Sigma-Aldrich (St. 

Louis, MO) and used as-is.  HPLC grade acetonitrile was purchased from Sigma-Aldrich and 

used as-is.



Solubility Measurements:  A stock solution of 1:1 THF:acetone v:v was prepared, and then 

various ratios of the stock solution with water (antisolvent) were prepared.  The API and 

THF:acetone/water solution was added to a glass vial with a magnetic stir bar, such that there 

was excess solids present. The vial was stirred for 24 h at 20  ℃ on a stir plate equipped with 

temperature control.  The supernatant was then filtered, diluted with acetonitrile, and run on 

HPLC (Shimadzu Scientific Instruments, Columbia MD).  An HPLC calibration model was built

with standards of known concentrations measured on the basis of mg of API/mL of solvent.  In 

order to accommodate the mass balance requirement for model building, these values were 

converted from mg of API/mL of solvent to kg of API/kg of solution by assuming that the 

density of the mixture was a ratio of the densities of the individual solvents based on the solvent 

molar percent of the composition.  The converted values were imported into gPROMS 

FormulatedProducts Utilities (gFP) version 1.5 (Process Systems Enterprise (PSE) Ltd., London 

UK) for parameter estimation of the solubility map across varying solvent compositions, treating 

the 1:1 THF:acetone mixture as a single entity, since the ratio of these two solvents was invariant

for the experimental conditions studied in this work.  Although the form of the solids was not 

checked, polymorph screening work (data not shown here) indicated that the input form is the 

most stable form across the solvent and temperature composition investigated, and no form 

change was observed in these solvent compositions across the temperature range considered for 

process design.  

Crystallization Experiments:   Experiments 1-3 were utilized to build the process models (1D 

and 2D), and experiments 4-8 were conducted to verify model predictions.   Experiments 1 and 6

were run in a 250 mL Chemglass reactor (Chemglass, Vineland, NJ) with a half-moon impeller.  

Experiments 2, 3, and 8 were run in a 100 mL EasyMax reactor (Mettlar Toledo) with a pitched 



blade turbine.  Experiments 4, 5, and 7 were run in 100 mL Chemglass reactor with a half-moon 

impeller.  Experiments 1, 2, 4, 6, and 8 utilized the same lot of seed material (“as-is” needles; 

D10 = 20 μm, D50 = 56 μm, D90 = 150 μm), and experiments 3, 5, and 7 utilized a micronized 

seed lot (D10 = 2 μm, D50 = 6 μm, D90 = 15 μm).  All crystallization experiments were 

conducted at 20 °C.  At varying time points during each crystallization experiment, supernatant 

samples were removed from the reactor, filtered and immediately diluted for HPLC 

concentration measurements (see “Desupersaturation Measurements” section below).  

Table 1.  Summary of crystallization experiments and conditions

Experiment Reactor API

(g)

Agitation

Rate (RPM)

Seed type Seed

Load

(wt %)

Solvent: antisolvent

ratio at seeding

1 250 mL

Chemglass

9.44 350 As-is 2 2.32

2 100 mL

EasyMax

5 350 As-is 2 2.7

3 100 mL

EasyMax

5 350 micronized 2 2.7

4 100 mL

Chemglass

4.72 550 As-is 2 2.32

5 100 mL 4.72 350 micronized 10 2.32



Chemglass

6 250 mL

Chemglass

5 350 As-is 2 1.79

7 100 mL

Chemglass

4.72 350 micronized 25 2.32

8 100 mL

EasyMax

7 350 As-is 1 2.32

Experiment 1:  9.44 g of Compound A was charged into the reactor and dissolved in 50 mL THF 

and 50 mL acetone under 350 RPM agitation.  43 mL of water was charged to induce 

supersaturation.  198.4 mg of seeds was charged, and a slurry formed.  The slurry was agitated 

for 21.5 h, after which 80.2 mL of water was added over 6 h.  The slurry was isolated on a 

Buchner funnel, washed with 47.2 mL of 2:3 v:v acetone:water mix, and dried overnight at 70 ℃

in a vacuum oven.

Experiment 2: 5 g of Compound A was dissolved in 25 mL THF and 25 mL acetone under 350 

RPM agitation.  18.5 mL water was added to induce supersaturation, and 100 mg seeds were 

added.  The resulting slurry was aged over ~50 h, after which 40 mL of water was charged over 

6 h.  The slurry was isolated on a Buchner funnel, washed with 47.2 mL of 2:3 v:v acetone:water

mix, and dried overnight at 70  ℃ in a vacuum oven.

Experiment 3:  5 g of Compound A was dissolved in 25 mL THF and 25 mL acetone under 350 

RPM agitation.  18.5 mL water was added to induce supersaturation, and 100 mg seeds were 

added.  The resulting slurry was aged over ~50 h, after which 40 mL of water was charged over 



6 h.  The slurry was isolated on a Buchner funnel, washed with 47.2 mL of 2:3 v:v acetone:water

mix, and dried overnight at 70  ℃ in a vacuum oven. 

Experiment 4:  4.72 g of Compound A was dissolved in 25 mL THF and 25 mL acetone under 

550 RPM agitation.  21.5 mL of water was charged to generate supersaturation, and 94.4 mg 

seeds was added.  The resulting slurry was aged for 24 h, after which 40 mL of water was 

charged over 6 h.  The slurry was isolated on a Buchner funnel, washed with 47.2 mL of 2:3 v:v 

acetone:water mix, and dried overnight at 70  ℃ in a vacuum oven.

Experiment 5: 4.72 g of Compound A was dissolved in 25 mL THF and 25 mL acetone under 

350 RPM agitation.  21.5 mL of water was charged to generate supersaturation, and 472 mg 

seeds was added.  The resulting slurry was aged for 24 h, after which 40 mL of water was 

charged over 6 h.  The slurry was isolated on a Buchner funnel, washed with 47.2 mL of 2:3 v:v 

acetone:water mix, and dried overnight at 70  ℃ in a vacuum oven.

Experiment 6:  5 g of Compound A was dissolved in 22.4 mL THF and 22.4 mL acetone under 

350 RPM agitation.  25 mL water was added to induce supersaturation, and 100 mg seeds were 

added.  The resulting slurry was aged over ~24 h, after which 40 mL of water was charged over 

6 h.  The slurry was isolated on a Buchner funnel, washed with 47.2 mL of 2:3 v:v acetone:water

mix, and dried overnight at 70  ℃ in a vacuum oven.

Experiment 7: 4.72 g of Compound A was dissolved in 25 mL THF and 25 mL acetone under 

350 RPM agitation.  21.5 mL of water was charged to generate supersaturation, and 1.1775 g 

seeds was added.  The resulting slurry was aged for 3 h, after which 40 mL of water was charged

over 6 h.  The slurry was isolated on a Buchner funnel, washed with 47.2 mL of 2:3 v:v 

acetone:water mix, and dried overnight at 70  ℃ in a vacuum oven.

Experiment 8:  7 g of Compound A was dissolved in 37.5 mL THF and 37.5 mL acetone under 



350 RPM agitation.  32 mL of water was charge to generate supersaturation, and 7 mg of seeds 

were added.  45 mL of water was charged over ~13 h.  The slurry was isolated on a Buchner 

funnel, washed with 70 mL of 2:3 v:v acetone:water mix, and dried overnight at 70  ℃ in a 

vacuum oven.

Desupersaturation Measurements:  Samples of supernatant were removed from the reactor at 

various time points during the seed age and antisolvent addition portions of the crystallization.  

Samples were filtered immediately with a 0.2 μm Whatman PTFE syringe filter, and diluted with

4:1 acetonitrile:water v:v for HPLC measurements.  Concentration was determined via 

calibration of the HPLC (Shimadzu Scientific Instruments, Columbia MD) with samples of 

known concentration.

Particle Size Distribution (PSD) & Morphology Measurements:   Optical microscopy (Axio

Imager, Carl Zeiss Microscopy LLC, Thornwood, NY) was utilized to image the morphology of

the  particles  in  slurry.   A  Malvern  Mastersizer  3000  (Malvern  Panalytical,  Malvern  UK)

equipped with the Scirocco 2000 accessory was used to measure the PSD of API samples for the

one dimensional PBM.  A dispersant pressure of 0.5 bar was used, the obscuration reading was

in the range of 5 - 10 %, and three scans were conducted for each sample.  The average value of

the three separate sample measurements was used as the PSD input into the one dimensional

PBM.  For the PSD input into the two dimensional PBM, Malvern Morphologi G4 (Malvern

Panalytical,  Malvern  UK)  was  utilized  to  measure  the  PSD  of  the  major  and  minor  axis

separately.   The  samples  were  dispersed  by  gentle  shaking  in  octane.  The  suspension  was

pipetted  onto  a  microscope  slide  and  dried.   The  batches  were  analyzed  using  a  20x

magnification lens (1.8 – 100 micron resolution range).  



PBM Construction:  Solubility of Compound A was modelled with a hybrid 

polynomial/exponential equation.  gPROMS Formulated Products Version 1.5 (gFP; PSE, 

London UK) was utilized for both 1D and 2D PBM.  Errors associated with concentration and 

PSD measurements were described by a linear variance model as detailed in previous work.30

1D Model Construction:  The 1D PBM was constructed utilizing the same workflow detailed in 

a previous work.30  The three lab scale experiments were recreated in silico, through inputting the

reactor configuration (reactor volume, impeller diameter, pumping number, and power number), 

the exact material charges, crystallization process steps (cooling rate, antisolvent addition rate), 

and experimental data (concentration of API in solution at various time points during the 

process, seed D10, D50, and D90, and final D10, D50, and D90) into gFP.  Classical two-step 

growth5 and Evans secondary nucleation41 were selected to describe the crystallization 

mechanisms.  gFP was utilized to estimate values for four parameters associated with the 

classical two-step growth equations (effective diffusivity correction factor, activation energy, 

growth rate constant, and supersaturation order) and three parameters associated with the Evans 

secondary nucleation rate equation (rate constant for crystal-impeller collisions, size above 

which crystals undergo attrition, and order with respect to supersaturation) to provide the best fit 

to the lab data.30  The parameter values that provided the best fit were then utilized to predict 

desupersaturation when the process was run under different conditions via the GSA utility (see 

below).

2D Model Construction: Model construction followed a workflow similar to Ma et al.19, and 

utilized a higher finite volume method to solve the population balance equation.  The particle 

size quantiles (D10, D50, and D90) were inputted separately for the major and minor axis.  

Various crystallization mechanisms were investigated, and the associated parameters were 



optimized to provide the best fit to the lab data.  The mechanisms and associated parameter 

values that provided the best fit were then utilized to predict product aspect ratio when the 

process was run under different conditions via the GSA utility (see below).

Global Sensitivity Analysis (GSA): “Virtual DoEs” were conducted using the Global System

Analysis  capability  within  gFP,  which  predicts  the  effect  of  varying  user-selected  process

parameters on properties of interest.  For this work, the impact of agitation rate, seed load, seed

PSD, seed point, or seed aspect ratio (AR) on desupersaturation and AR were predicted.

RESULTS AND DISCUSSION

The crystallization process generated needle-like crystals with length ranging from ~60-150 μm, 

and width of ~10-15 μm, as shown in Figure 1.  

Figure 1.  Optical microscope image of as-crystallized Compound A in slurry, at end of 

crystallization process.

These needle-like crystals exhibited poor powder properties, such as poor flowability and 

sticking. Additionally, the desupersaturation rate of the API from solution after addition of seeds 

was extremely slow (Figure 2) and the solubility concentration was not achieved even after ~50h 



of aging.  It is undesirable to proceed with the crystallization without complete 

desupersaturation, as entering the antisolvent addition step with a very high level of 

supersaturation results in poor control over the crystallization and increases the probability of 

large batch-to-batch PSD variance.42  Thus, there was great interest in investigating process 

conditions that would enhance the degree of desupersaturation following seeding as well as 

reduce the particle aspect ratio (AR: ratio of particle length to width).
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F

igure 2.  Concentration of Compound A in solution during crystallization process (Experiment 

2), following seeding.  After ~50 h of aging, the concentration is still far above the solubility, 

indicating incomplete desupersaturation.

The easier-to-construct 1D PBM was created initially, and used to guide further experimentation.

However, before the 1D PBM could be made, a solubility model needed to be generated.  The 

solubility data for Compound A was imported into gFP Utilities and was fit with a hybrid 

polynomial/exponential model.  The measured solubility and corresponding modeled solubility 



are shown in Figure 3.  A one dimensional PBM was constructed utilizing the classical two step 

growth equations5 and Evan’s secondary nucleation equations41.  Figure 4 shows the modeled 

API solution concentration (open circles) compared with the measured values (filled circles) and 

the solubility (dashed line) for experiments 1-3 (a-c, respectively).  
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Figure 3.  Measured solubility of Compound A (filled circles) and modeled solubility (empty 

circles).  Due to the close overlap, the empty circles are not fully visible for most data points. 
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Figure 4.  Modeled API concentration (open circles) from 1D PBM compared to measured API 

concentration (closed circles) and solubility (dashed line) during the crystallization for 

crystallization experiments 1-3 (a-c, respectively).  

The very small change observed in the desupersaturation data is due to the very slow 

desupersaturation of the API post-seeding.  Desupersaturation to the solubility limit was only 

achieved during antisolvent addition, which is when the decrease in API concentration in 

solution is observed.  The age time prior to antisolvent addition was varied between experiments,

hence the plateau for the experiment in Figure 4(a) for experiment 1 is shorter than for that of 

Figure 4(c) for experiment 3.  Desupersaturation data during the antisolvent addition phase were 

not collected for the crystallization in Figure 4(b), hence only the seed age portion is shown.  

The 1D PBM was then utilized to run virtual DOEs evaluating the effect of various 

crystallization process parameters on the API desupersaturation rate. The first process parameter 

investigated virtually was the impeller speed.  If the slow desupersaturation rate was due to 

diffusion-limited growth, then enhancing the mixing should help to increase the rates of diffusion

and, in turn, enhance the growth (and, correspondingly, the desupersaturation observed).42   The 

impeller speed (modeled in a 250 mL Chemglass reactor) was found to have no impact on the 

desupersaturation (Figure 5).  To verify the model predictions, a crystallization experiment at 

550 RPM was conducted (Experiment 4), and found to provide no improvement to 

desupersaturation rate, as predicted by the model.
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Figure 5.  1D PBM predicts no change in API concentration after 24 h of aging at different 

RPM; concentration is still much above the solubility concentration (indicated with line). 

The impact of seed PSD and seed load on the desupersaturation rate was then investigated.  

Providing increased available surface area for growth via increasing seed load and/or decreasing 

seed PSD may enhance growth rate and desupersaturation.43, 44  However, predictions from the 

1D model indicated that increasing seed load to 10 wt % (Figure 6, black squares) provided only 

a minor enhancement to the API desupersaturation after 20 h of aging the slurry.  Micronized 

seeds with small PSD (D90 = 15 μm; Figure 6, white squares) provided a small enhancement to 

desupersaturation as compared to standard seeds (D90 = 150 μm, black squares).  Despite the 

small enhancement to the desupersaturation, the predicted concentration after 20 h was still 

significantly higher than the solubility (dashed line).  An experiment with 10 wt % of jet milled 

seeds was conducted in the lab (experiment 5), and the API concentration in the supernatant 

(0.057 g/g) after ~20 h was within error of the model prediction. 
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Figure 6.  1D PBM predictions of API concentration in supernatant during 20 h of age time 

following seeding for different seed loads and sizes (open shapes) compared to solubility (dashed

line).  Experimentally measured data point is indicated with filled circle.

The effect of supersaturation at the seed point on the desupersaturation rate was then 

investigated.  Since supersaturation is the driving force for crystallization,5 increasing the 

supersaturation should enhance the rate of crystallization (and desupersaturation).  By altering 

the amount solvent and antisolvent relative to the API, the amount of supersaturation at the seed 

point can be varied.  At the same API concentration, compositions with greater amounts of 

antisolvent will have lower API solubility and be more supersaturated.  The supersaturation at 

seed point was found to greatly impact the API desupersaturation rate, as shown in Figure 7.  

The smallest degree of supersaturation occurs in the solution composition with the greatest 

solvent to antisolvent ratio.  The greatest amount of supersaturation occurs in the composition 

with the lowest solvent to antisolvent ratio.  .
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Figure 7.  Predicted API desupersaturation rates from different seed point solution compositions 

and associated solubility.  Volumes (“Vol”) refers to processing volumes, which is a 

measurement of solution volume relative to API weight, and carries the unit of mL solution/g 

API. 

The original seed point composition (10 Volumes solvent and 4.7 volumes water) exhibited slow

desupersaturation.  However, the 1D PBM model indicated that increasing the seed point 

supersaturation would greatly enhance the desupersaturation rate. Thus, a crystallization was 

conducted with the seed point at a higher supersaturation. This change allowed the process to 

rapidly desupersaturate and reach the solubility concentration after four h of aging as shown in 

Figure 8. 
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Figure 8.  Measured API solution concentration (black circles) for Experiment 6 compared with 

predicted concentration (open circles) and solubility (dashed line).

While the 1D PBM was able to represent the API desupersaturation behavior, the model did not 

do well in matching the particle size quantiles.  Figure 9 shows a parity plot comparing the 

simulated size quantiles to the measured quantiles.  The poor fit is likely due to the isotropic 

growth assumption that is not valid for the high aspect ratio found in compound A’s needle 

morphology.  In order to improve the model fit to the PSD data, time was invested in 

constructing a 2D model.
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Figure 9.  Parity plot of simulated size versus measured size quantiles (experiments 1-3) from 

one dimensional PBM; a perfect fit would lie on the parity line (dashed line).

While the same solubility model and seed PSD model prepared for the 1D model were utilized to

construct the 2D model, separate major and minor axis size quantiles (obtained from Morphologi

G3) were required for the 2D model.  In the initial attempts at 2D model construction, the minor 

axis (needle diameter) growth rate was set as relative to the major axis (needle length) growth 

rate, with classical two-step growth utilized to describe growth rate kinetics.  This approach did 

not provide a good match to the size data. Therefore, the major and minor axis growth rates were

set as independent.  The best fit to the measured API concentration and size quantile data was 

obtained utilizing a power law to describe growth, and Evan’s secondary nucleation due to 

attrition41.  Parameter estimation for the 2D model took on the order of days, whereas the 1D 

model only required a couple of hours.  The fit of the 2D PBM to the API concentration data was

very similar to that of the 1D PBM, and is thus not shown.  The fit of the 2D PBM to the 



measured major axis size quantiles is much improved over the 1D fit to the size data, as shown in

Figure 10.
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Figure 10.  Comparison of simulated size from 2D PBM to measured major axis size quantiles 

for experiments 1-3. 

After achieving a good fit to the particle size data, the 2D PBM was utilized to run virtual DOEs 

predicting the impact of various process parameters on the final particle aspect ratio.  The impact

of seed load with micronized seeds (D90 = 15 μm) on AR was investigated, as providing a lot of 

available surface area for growth may result in the particles growing more uniformly and reduce 

AR.  As shown in Figure 11, extremely high seed loading was required to have any significant 

change to the aspect ratio of the final product.  While such high seed loads are infeasible for 

production scale, a lab experiment with 25 wt % seed loading was conducted and verified the 

model predictions.  
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Figure 11.  Prediction of aspect ratio versus seed load for micronized seeds, and experimentally 

measured points (black circles; Experiments 3 & 7).

Another common seed-based strategy to encourage growth of more equant shaped (low aspect 

ratio) particles is to utilize equant seeds.  It is sometimes possible to generate a small amount of 

low aspect ratio particles for seed material via a methodology that is not amenable to scale-up 

(e.g. from a high throughput plate-based screening, or via a carefully controlled temperature 

cycle process).  The rationale behind this approach is that the equant seeds serve as a template 

for more uniform growth.  Therefore, the 2D PBM was utilized to predict the impact of seed 

aspect ratio on the aspect ratio of the final material across a range of seed loadings (Figure 12).
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Figure 12.  Prediction of the effect of seed aspect ratio and loading on the AR of the resulting 

material.

As seen in Figure 12, the 2D PBM predicts that even with perfectly symmetrical morphology 

seeds (cubes/spheres, AR 1), a high seed loading (> 10 wt %) is needed to generate lower AR 

final material.  On the basis of the model predictions, another morphology for use as seeds was 

not pursued. 

Lastly, in some cases slowing the rate of antisolvent addition can provide a more equant 

morphology by allowing the slow growth direction (minor axis) an opportunity to grow.45-47  The 

2D PBM was utilized to predict the product AR throughout the crystallization for three different 

antisolvent addition rates (following a 6 h post-seeding slurry age period).  As seen in Figure 13, 

the AR rapidly increases very early in the antisolvent addition, even with extremely slow (24 h) 

addition.  These simulations indicated that slowing the antisolvent addition rate would not 



generate particles with significantly lower aspect ratio.  An experiment with a 13 h antisolvent 

addition (experiment 8) generated particles with average aspect ratio 10.5 (compared to average 

AR ~11.5 for 6 h antisolvent addition; experiments 1-3) confirming this behaviour.
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Figure 13.  Simulations of the product aspect ratio throughout the crystallization process for 

three different antisolvent addition rates. 

CONCLUSIONS

A 1D and a 2D PBM were constructed to model a crystallization process that both exhibited slow

desupersaturation following seeding and generated particles with needle-like morphology.  

While the 1D model was faster to construct computationally and required less input data, the 

model had limited utility because of its poor matching of particle size data.  The 1D model was 

able to match the in-process API concentration data and thus was useful for running virtual 

DOEs to predict the impact of different crystallization process parameters on the 

desupersaturation rate.  These predictions ultimately were able to resolve the slow 



desupersaturation challenge by focusing the lab work on the most influential process parameter –

supersaturation at seeding.  However, the more data and computationally intensive 2D PBM was 

needed to model the particle size data. The 2D model had a good fit to the major axis quantiles 

(particle length) and was utilized to predict impact of crystallization process parameters on the 

particle AR.  The predictions indicated that the final particles would have high AR even with 

equant (sphere or cube shaped) seeds or an extremely slow (24 h) antisolvent addition rate, 

rendering it unlikely to achieve reduction of the particle aspect ratio through optimization of the 

crystallization process alone.
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