References
An, C., Zhao, L., Wei, Z., & Zhou, X. (2017). Chemoenzymatic synthesis
of 3 ’-phosphoadenosine-5 ’-phosphosulfate coupling with an ATP
regeneration system. Applied Microbiology and Biotechnology,
101 (20), 7535-7544. doi :10.1007/s00253-017-8511-2
Badri, A., Williams, A., Awofiranye, A., Datta, P., Xia, K., He, W., . .
. Koffas, M. A. G. (2021). Complete biosynthesis of a sulfated
chondroitin in Escherichia coli . Nature Communications,
12 (1), 1389-1389. doi :10.1038/s41467-021-21692-5
Badri, A., Williams, A., Xia, K., Linhardt, R. J., & Koffas, MAG.
(2019). Increased 3’-phosphoadenosine-5’-phosphosulfate levels in
engineered Escherichia coli cell lysate facilitate the in vitro
synthesis of chondroitin sulfate A. Biotechnology Journal, 14 (9),
111-119. doi :10.1002/biot.201800436
Bao, F., Yan, H., Sun, H., Yang, P., Liu, G., & Zhou, X. (2015).
Hydrolysis of by-product adenosine diphosphate from
3’-phosphoadenosine-5’-phosphosulfate preparation using Nudix hydrolase
NudJ. Appl Microbiol Biotechnol, 99 (24), 10771-10778.doi :10.1007/s00253-015-6911-8
Berger, I., Guttman, C., Amar, D., Zarivach, R., & Aharoni, A. (2011).
The molecular basis for the broad substrate specificity of human
sulfotransferase 1A1. Plos One, 6 (11), 1-10.doi :10.1371/journal.pone.0026794
Burkart, M. D., Izumi, M., Chapman, E., Lin, C. H., & Wong, C. H.
(2000). Regeneration of PAPS for the enzymatic synthesis of sulfated
oligosaccharides. Journal of Organic Chemistry, 65 (18),
5565-5574. doi :10.1021/jo000266o
Datta, P., Fu, L., He, W., Koffas, M. A. G., Dordick, J. S., &
Linhardt, R. J. (2020). Expression of enzymes for 3 ’-phosphoadenosine-5
’-phosphosulfate (PAPS) biosynthesis and their preparation for PAPS
synthesis and regeneration. Applied Microbiology and
Biotechnology, 104 (16), 7067-7078.doi :10.1007/s00253-020-10709-6
Gay, S. C., Segel, I. H., & Fisher, A. J. (2009). Structure of the
two-domain hexameric APS kinase from Thiobacillus denitrificans :
structural basis for the absence of ATP sulfurylase activity. Acta
Crystallographica Section D-Structural Biological Crystallography,
65 (10), 1021-1031. doi :10.1107/s0907444909026547
Harjes, S., Bayer, P., & Scheidig, A. J. (2005). The crystal structure
of human PAPS synthetase 1 reveals asymmetry in substrate binding.Journal of Molecular Biology, 347 (3), 623-635.doi :10.1016/j.jmb.2005.01.005
Hong, M. K., Ribeiro, A., Kim, J. K., Ngo, H., Kim, J., Lee, C. H., . .
. Ramos, M. J. (2014). Divalent metal ion-based catalytic mechanism of
the Nudix hydrolase Orf153 (YmfB) from Escherichia coli .Acta Crystallographica Section D-Structural Biological
Crystallography, 70 (5), 1297-1310. doi :10.1107/s1399004714002570
Ian J. MacRae, I. H. S., and Andrew J. Fisher. (2000). Crystal structure
of adenosine 5′-phosphosulfate kinase from Penicillium
chrysogenum . Biochemistry, 39 , 1613-1621. dio :
10.1021/bi9924157
Ji, Y., Zhang, S., Qiao, M., Jiao, R., Li, J., Song, P., & Huang, H.
(2020). Synthesis of structurally defined chondroitin sulfate: paving
the way to the structure-activity relationship studies.Carbohydrate Polymers, 248 (15), 1-11.doi :10.1016/j.carbpol.2020.116796
Jian, Liu, Robert, J., & reports, L. J. N. p. (2014). Chemoenzymatic
synthesis of heparan sulfate and heparin. Natural Product Reports,
31 (12), 1676-1685. doi : 10.1002/chin.201504262
Jin, X., Li, Q., Wang, Y., Zhang, W., Xu, R., Li, J., . . . Kang, Z.
(2020). Optimizing the sulfation-modification system for scale
preparation of chondroitin sulfate A. Carbohydrate Polymers,
246 (18), 116570. doi :10.1016/j.carbpol.2020.116570
Kang, Z., Zhou, Z., Wang, Y., Huang, H., Du, G., & Chen, J. (2018).
Bio-based strategies for producing glycosaminoglycans and their
oligosaccharides. Trends in Biotechnology, 36 (8), 806-818.doi :10.1016/j.tibtech.2018.03.010
Kaysser, L., Eitel, K., Tanino, T., Siebenberg, S., Matsuda, A.,
Ichikawa, S., & Gust, B. (2010). A new arylsulfate sulfotransferase
involved in liponucleoside antibiotic biosynthesis inStreptomycetes . Journal of Biological Chemistry, 285 (17),
12684-12694. doi :10.1074/jbc.M109.094490
Lansdon, E. B., Segel, I. H., & Fisher, A. J. (2002). Ligand-induced
structural changes in adenosine 5’-phosphosulfate kinase fromPenicillium chrysogenum . Biochemistry, 41 (46),
13672-13680. doi :10.1021/bi026556b
Li, A., Qu, G., Sun, Z., & Reetz, M. T. J. A. C. (2019). Statistical
analysis of the benefits of focused saturation mutagenesis in directed
evolution based on reduced amino acid alphabets. Acs Catalysis .
2019, 9 (9), 7769−7778. doi :10.1021/acscatal.9b02548
Malojcic, G., Owen, R. L., & Glockshuber, R. (2014). Structural and
mechanistic insights into the PAPS-independent sulfotransfer catalyzed
by bacterial aryl sulfotransferase and the role of the DsbL/Dsbl system
in its folding. Biochemistry, 53 (11), 1870-1877.doi :10.1021/bi401725j
Malojcic, G., Owen, R. L., Grimshaw, J. P. A., Brozzo, M. S.,
Dreher-Teo, H., & Glockshuber, R. (2008). A structural and biochemical
basis for PAPS-independent sulfuryl transfer by aryl sulfotransferase
from uropathogenic Escherichia coli . Proceedings of the
National Academy of Sciences of the United States of America, 105 (49),
19217-19222. doi :10.1073/pnas.0806997105
Michael D. Burkart, M. I., Eli Chapman, Chun-Hung Lin, & Chi-Huey Wong.
(2000). Regeneration of PAPS for the enzymatic synthesis of sulfated.The Journal of Organic Chemistry, 65 (18): 5565-5574. dio :
10.1021/jo000266o
Mueller, J. W., & Shafqat, N. (2013). Adenosine-5′-phosphosulfate-a
multifaceted modulator of bifunctional
3′-phospho-adenosine-5′-phosphosulfate synthases and related enzymes.The FEBS Journal, 280 (13), 3050-3057.doi :10.1111/febs.12252
Poyraz, O., Brunner, K., Lohkamp, B., Axelsson, H., Hammarstrom, L. G.,
Schnell, R., & Schneider, G. (2015). Crystal structures of the kinase
domain of the sulfate-activating complex in Mycobacterium
tuberculosis . Plos One, 10 (3),1-19.doi :10.1371/journal.pone.0121494
Ravilious, G. E., Westfall, C. S., & Jez, J. M. (2013). Redox-linked
gating of nucleotide binding by the N-terminal domain of adenosine
5’-phosphosulfate kinase. Journal of Biological Chemistry,
288 (9), 6107-6115. doi :10.1074/jbc.M112.439414
Schmidt, A. (1977). Assimilatory sulfate reduction via
3′-phosphoadenosine-5′-phosphosulfate (PAPS) and
adenosine-5′-phosphosulfate (APS) in blue-green algae. FEMS
Microbiology Letters, 1 (3), 137-140.doi :10.1111/j.1574-6968.1977.tb00599.x
Sekulic, N., Dietrich, K., Paarmann, I., Ort, S., Konrad, M., & Lavie,
A. (2007). Elucidation of the active conformation of the APS-kinase
domain of human PAPS synthetase 1. Journal of Molecular Biology,
367 (2), 488-500. doi :10.1016/j.jmb.2007.01.025
Sekulic, N., Konrad, M., & Lavie, A. (2007). Structural mechanism for
substrate inhibition of the adenosine 5′-phosphosulfate kinase domain of
human 3’-phosphoadenosine 5’-phosphosulfate synthetase 1 and its
ramifications for enzyme regulation. Journal of Biological
Chemistry, 282 (30), 22112-22121. doi :10.1074/jbc.M701713200
Song, W., Xu, X., Gao, C., Zhang, Y., Wu, J., Liu, J., . . . Liu, L.
(2020). Open gate of Corynebacterium glutamicum threonine
deaminase for efficient synthesis of bulky alpha-keto acids. Acs
Catalysis, 10 (17), 9994-10004. doi :10.1021/acscatal.0c01672
Sun, Z., Lonsdale, R., Ilie, A., Li, G., & Reetz, M. T. J. A. C.
(2016). Catalytic asymmetric reduction of difficult-to-reduce ketones:
triple code saturation mutagenesis of an alcohol dehydrogenase.Acs Catalysis, 6 (3), 1598-1605. doi :
10.1021/acscatal.5b02752
Wang D. Z, Chen G. G, Lu L. J, Jiang Z. J, Rao Y. C, Sun M. H. (2016).
In vitro functional study of rice adenosine 5’-phosphosulfate kinase.Rice Science, 23 (3), 152-159. doi:10.1016/j.rsci.2016.04.002
Wang, T., Liu, L., & Voglmeir, J. (2020). Chemoenzymatic synthesis of
ultralow and low-molecular weight heparins. Biochimica Et
Biophysica Acta-Proteins and Proteomics, 1868 (2), 1-11.doi :10.1016/j.bbapap.2019.140301
Xiong, J., Bhaskar, U., Li, G., Fu, L., Li, L., Zhang, F., . . .
Linhardt, R. J. (2013). Immobilized enzymes to convert N-sulfo, N-acetyl
heparosan to a critical intermediate in the production of bioengineered
heparin. Journal of Biotechnology, 167 (3), 241-247.doi :10.1016/j.jbiotec.2013.06.018
Xu , J., Cen, Y., Singh, W., Fan, J., & Wu, Q. (2019). Stereodivergent
protein engineering of a lipase to access all possible stereoisomers of
chiral esters with two stereocenters. Journal of the American
Chemical Society, 141 (19), 7934-7945. doi :10.1021/jacs.9b02709
Xu, J., Peng, Y., Wang, Z., Hu, Y., Fan, J., Zheng, H., Wu, Q. (2019).
Exploiting cofactor versatility to convert a FAD‐dependent
baeyer-villiger monooxygenase into a ketoreductase. Angewandte
Chemie International Edition, 58 (41), 14499-14503.doi :10.1002/anie.201907606
Xu, W., Dunn, C. A., O, Handley, S. F., Smith, D. L., & Bessman, M. J.
(2006). Three new nudix hydrolases from Escherichia coli .Journal of Biological Chemistry, 281 (32), 22794-22798.doi :10.1074/jbc.M603407200
Yang, B., Wang, H., Song, W., Chen, X., Liu, J., Luo, Q., & Liu, L.
(2017). Engineering of the conformational dynamics of lipase to increase
enantioselectivity. Acs Catalysis, 7 (11), 7593-7599.doi :10.1021/acscatal.7b02404
Yuan, Y., Song, W., Liu, J., Chen, X., Luo, Q., & Liu, L. (2019).
Production of α‐ketoisocaproate and α‐keto‐β‐methylvalerate by
engineered L‐amino acid deaminase. ChemCatChem, 11 (10),
2464-2472. doi :10.1002/cctc.201900259
Zhang, X., Lin, L., Huang, H., & Linhardt, R. J. (2020). Chemoenzymatic
synthesis of glycosaminoglycans. Accounts of Chemical Research,
53 (2), 335-346. doi :10.1021/acs.accounts.9b00420
Zhou, X., Chandarajoti, K., Pham, T. Q., Liu, R., & Liu, J. (2011).
Expression of heparan sulfate
sulfotransferases in Kluyveromyces lactis and preparation of
3’-phosphoadenosine-5’-phosphosulfate. Glycobiology, 21 (6),
771-780. doi :10.1093/glycob/cwr001
Zhou, Z., Li, Q., Xu, R., Wang, B., Du, G., & Kang, Z. (2019).
Secretory expression of the rat aryl sulfotransferases IV with improved
catalytic efficiency by molecular engineering. Biotech, 9 (6),
111-117. doi :10.1007/s13205-019-1781-x