
RELIABILITY ANALYSIS OF THE

UNCERTAIN FRACTIONAL-ORDER

DYNAMIC SYSTEM WITH STATE

CONSTRAINT

Ting Jin1∗, Hongxuan Xia2, Shangce Gao3†

1: School of Science, Nanjing Forestry University

Nanjing 210037, Jiangsu, China

2: College of International Education, Nanjing Forestry University

Nanjing 210037, Jiangsu, China

3: Faculty of Engineering, University of Toyama

Toyama-shi, 930-8555 Japan

Email: tingjin@njfu.edu.cn (T. Jin),

gaosc@eng.u-toyama.ac.jp(S. Gao)

Abstract

Uncertain fractional-order differential equations driven by Liu process are of signifi-

cance to depict the heredity and memory features of uncertain dynamical systems. This

paper primarily investigates the reliability analysis of the uncertain fractional-order dy-

namic system with a state constraint. On the basis of the first-hitting time (FHT), a novel

uncertain fractional-order dynamic system considering a state constraint is proposed. Sec-

ondly, in view of the relation between the initial state and the required standard, such

uncertain fractional-order dynamic systems are subdivided into four types. The concept of

reliability of proposed uncertain system with a state constraint is presented innovatively.

Corresponding reliability indexes are ulteriorly formulated via FHT theorems. Lastly, the

uncertain fractional-order dynamic system with a state constraint is applied to different

physical and financial dynamical models. The analytic expression of the reliability index

is derived to demonstrate the reasonableness of our model. Meanwhile, expected time re-

sponse and American barrier option prices are calculated by using the predictor-corrector
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scheme. A sensitivity analysis is also illustrated with respect to various conditions.

Keywords: Reliability analysis; Fractional-order dynamic system; Uncertainty theory;

State constraint; Caputo fractional-order derivative

1 Introduction

Reliability is an important index to measure the quality of products. Analysis of system reliabil-

ity is to determine the function and reliability relationship between the system and components

according to a large number of reliability data, to grasp the system’s failure rule, and to find

corresponding measures for the improvement and optimization of the system.

In the traditional reliability analysis, probability theory is usually used as the main math-

ematical tool to analyze the performance of the product by studying the characteristics of the

system. Rice [1] proposed the first passage time formula, which laid the foundation of the

dynamic reliability theory of the first passage damage. When applying the first passage time

formula to the dynamic reliability, the integration is more complex and difficult to calculate.

Therefore, the first passage time formula is only a conceptual sense of the method that can

hardly be applied to the engineering practice. Subsequently, Siegert [2] proposed a new method

to calculate the first passage probability for structures whose response is a continuous Markov

process. Helstrom and Isley [3] deduced the analytical solution of the first passage time under

the Markov envelope process. However, the above two methods are only applicable to special

limit state functions. Coleman [4] obtained the Poisson approximation for the calculation of

the first passage’s frequency, which bridged the gap between the crossing rate and the dynamic

reliability of the structure. However, the method is only accurate when the event that the struc-

tural response crosses from a safe state to a failure state is a random event, and the crossings

are independent of each other. Numerical simulation is used to solve the first passage problem

by Crandall et al. [5]. Spanos and Kougioumtzoglou [6] applied the first passage method to

deal with a class of lightly damped nonlinear oscillators under broadband random excitations.

Breitung [7], Schall et al. [8], Engelund et al. [9], Rackwitz [10] and Melchers [11] also all used

the passage rate to solve the time-dependent dynamic reliability problem.

Unlike the prevailing view in the field of probability theory, it is argued that even if a large

amount of data exists for study, the frequencies given by purely statistical methods are still not

close to the true distribution function. In contrast, the advice given by experts through em-

pirical and extra-field information is thought to be closer to the true pattern of the world than

frequencies. Based on the above considerations, In 2007, Liu [12] established an uncertainty

theory system that complements probability theory, and initially proposed uncertainty reliabil-

ity analysis in the literature [12], defined reliability indexes, and gave the reliability calculation

formulae for uncertain series, parallel, voting, and bridge systems. Based on the uncertainty
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theory, combined with the uncertainty variables, uncertainty distribution calculation method

given by Liu [13], Peng [14] and others, under the assumption that the life of the system com-

ponents is an uncertain variable, Gao [15] analyzed the k-out-of-n system with uncertain life.

Gao et al. [16] gave the uncertainty-weighted k-out-of-n system. Gao and Yao [17] proposed the

important index of the uncertain reliability system. Liu et al. [18] established some basic math-

ematical models of series, parallel and series-parallel systems based on the uncertain lifetime.

Moveover, Liu [19] defined the first-hitting time in an uncertain system that can also measure

the system reliability. Yao and Zhou [20] studied the reliability in an insurance risk process

via criteria such as ruin index, ruin time, and deficit. On account of the system reliability of

financial products, different kinds of barrier option pricing formulas were derived by Yang et

al. [21], Tian et al. [22], and Gao et al. [23]. In the engineering field, Li et al. [24] introduced

the uncertainty theory to account for such uncertainty due to small samples and build up a

framework of accelerated degradation testing modeling to aid the reliability and lifetime eval-

uations for highly reliable products. Yu et al. [25] proposed an interest-rate model with jumps

in uncertain financial markets. In 2020, Hu et al. [26] introduced a more appropriate choice

for the demand in actual risk assessments [26]. Furthermore, the reliability index of financial

derivatives in the uncertain market was also analyzed and calculated by Jin and Yang [27].

For ages, the classical integral theory has been a powerful tool for describing physical sys-

tems and processes. However, as mankind’s understanding of nature has improved, many

physical systems and processes display characteristics that cannot be explained by classical in-

tegral theory. In fact, due to special material properties or external conditions, many physical

systems and processes tend to be represented dynamically in fractional-order. In recent years,

fractional-order chaotic systems have attracted widespread interest and intensive research. In

Chua’s circuit [28], Chen system [29, 30], and Lu system [31], numerical simulations have shown

that when the order of the system is fractional, the system still behaves chaotically or super

chaotically and better reflects the physical phenomena presented by the system due to its ge-

netic and memory properties. Inspired by the important theoretical significance and practical

application of fractional-order control, in order to introduce randomness into fractional-order

control theory and extend the fractional-order control method to randomly excited systems,

scholars have turned their attention to fractional-order chaotic systems [32], and most of the

relevant studies are based on probability theory for random systems. However, in cases where

it is difficult for statistical methods to approach the true distribution function, professional

advice from experienced experts on the degree of belief in the system is a more commonly used

measure of reliability. Thus, we believe that uncertain theory is a more reasonable descrip-

tion of the belief degree of systems under the influence of human uncertainty and is a more

appropriate theory for fractional-order control. Zhu [33] firstly defined two types of uncertain

fractional-order differential equations (UFDEs), namely Riemann-Liouville and Caputo types.

3



Afterwards, Lu and Zhu [34] studied European option price models and derived corresponding

formulas. Considering numerical methods, Lu and Zhu [35] introduced the α-path and ob-

taind UFDEs’ numerical solutions in 2019. Considering performance analysis for the uncertain

fractional-order system, Jin et al. [36] investigated the extreme value of the solutions to UFDEs

for Caputo type and its application to the American options pricing problem. Meanwhile, Jin

and Zhu [37] also presented first-hitting time theorems for UFDE, which had an application for

the fractional risk index in 2020. Also, Lu et al.[38] and lu et al. [39] studied the the stability

of uncertain fractional difference equations-order dynamic system.

In conclusion, reliability analysis is pivotal in practical engineering, while uncertain fractional-

order differential equations provide a more realistic depiction of dynamic systems. In this pa-

per, based on the previous work, we further study the performance analysis of the uncertain

fractional-order dynamical system. By combing the two, we develop an uncertain fractional-

order reliability index model based on a commonly used method of reliability analysis, first-

hitting time, and finally applied it to both a fractional circuit system and an American option

pricing problem. To our knowledge, this is the first reliability index model with such a widely

used.

This paper will be composed by five sections. In Section 2, we recall a few important def-

initions as well as theorems on the uncertain theory. An uncertain fractional-order dynamical

system with state constraint is given in Section 3, and a set of reliability indexes for the uncertain

model is also developed. Specific applications of the model to both an uncertain fraction-order

circuit system and the American barrier option pricing model are given in Section 4. A brief

conclusion is summarized in the last section.

2 Preliminary

All the required concepts as well as conclusions on uncertain theory are revisited here. For

more information, please refer to [40, 41, 42].

Unless otherwise stated in the following sections, we will always assume that a real positive

number p satisfies 0 ≤ n − 1 < p ≤ n, and Ct is a Liu process. In addition, F and G are two

continuous functions on [0, T ]× R.

2.1 Uncertain fractional-order differential equation

In 2015, two styles of UFDEs are proposed by Zhu [33], while Ford and Simpson [43] and Di-

ethelm et al. [44] indicated the fractional-order derivative in Caputo sense has more advantages

than Riemann-Liouville sense for modeling the real dynamic process. Therefore, we only focus
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on the Caputo type UFDEs that takes the following form,

 cDpXt = F (t,Xt) +G(t,Xt)
dCt

dt

X
(l)
t

∣∣
t=0

= xt, l = 0, 1, . . . , n− 1.
(1)

where cDp is the standard Caputo type fractional derivative, which is expressed as

cDpf(t) =
1

Γ(n− p)

∫ t

0

(t− s)n−p−1f (n)(s)ds. (2)

According to Equation (2), Lu and Zhu [34] derived the solution of Equation (1), which is

an integral equation

Xt =

n−1∑
k=0

xkt
k

Γ(k + 1)
+

1

Γ(p)

∫ t

0

(t− s)p−1F (s,Xs)ds

+
1

Γ(p)

∫ t

0

G(s,Xs)(t− s)p−1dCs, (3)

where Γ(·) is the Gamma function, Γ(p) =
∫∞
0

tp−1 exp(−t)dt, and n is the smallest integer

greater than or equal to p.

Specifically, let F (t,Xt) = AXt + B(t), G(t,Xt) = σ(t), Equation (1) can be transformed

into  cDpXt = AXt +B(t) + σ(t)dCt

dt

X
(k)
t |t=0= xt, k = 0, 1, . . . , n− 1.

(4)

Zhu and Lu [34] also deduced the expression of the solution of Equation (4) by Mittag-Leffler

function

Xt =
n−1∑
k=0

xkt
kEp,(k+1)(At

p) +

∫ t

0

(t− s)p−1Ep,q(A(t− s)p)B(s)ds

+

∫ t

0

(t− s)p−1Ep, q(A(t− s)p)σ(s)dCs, (5)

where Ep,q(z) =
∑∞

k=0
zk

Γ(kp+q) .

Subsequently, Lu and Zhu [35] attempted to introduce the concept of α-path to build the

relationship between UFDEs and FDEs to obtain the numerical solution of Equation (1). The

FDEs corresponding to UDEs are

 cDpXα
t = F (t,Xα

t )+ | G(t,Xα
t ) | Φ−1(α)

X
(k)
t |t=0= xt, k = 0, 1, . . . , n− 1,

(6)

where 0 < α < 1,Φ−1(α) =
√
3

π ln α
1−α . Then, based on the fact that Xt and Xα

t are solutions
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and α-path of Equation (1), the equivalent relationship between the two is

 M{Xt ≤ Xα
t , ∀t ∈ [0, T ]} = α

M{Xt > Xα
t , ∀t ∈ [0, T ]} = 1− α.

(7)

Lu [35] proposed the IUD of Xt as follows,

Ψ−1
t (α) = Xα

t , (8)

Particularly, when UFDEs are formed as follows,

 cDpXt = (a− bXt) + σ dCt

dt

X
(l)
t

∣∣
t=0

= xt, l = 0, 1, . . . , n− 1.
(9)

the solution to corresponding fractional differential equations (FDEs) is given by Jin and Zhu

[45],

Xα
t =

n−1∑
k=0

xk · tkEp,k+1(−btp) + (a+ σΦ−1(α))tpEp,p+1(−btp). (10)

2.2 First-hitting time

Pre-set a value z, the first-hitting time τz when Xt hits z is defined as a novel uncertainty

variable. Liu [19] firstly gave the first-hitting time

τz = inf{t ≥ 0
∣∣ Xt = z}. (11)

The ruin time τ when the total capital Xt hits zero, actually first-hitting time was propose

by Yao and Zhou [46] in 2016, of which the following uncertainty distribution for an uncertain

insurance model goes

Υ(t) = max
l≥1

sup
x≤t

Φ
(x
l

)
∧
(
1−Ψ

(
a+ bx

l

))

where Xt = a + bt − Rt represents insurance risk process, Rt denotes renewal reward process

with iid uncertain interatrial times ξ1, ξ2, · · · and iid uncertain claim accounts η1, η2, · · · . Mean-

while, uncertain vectors (ξ1, ξ2, · · · ) as well as (η1, η2, · · · ) are independent of each other, and

corresponding uncertainty distributions are Φ as well as Ψ.

In 2020, the first-hitting time was introduced to the UFDE’s solution (1) by the tool of the

extreme value theorem [45] as well as α-path by Jin and Zhu [37]. When J(x) is monotonically

increasing, then the first-hitting time τz that J(Xt) hits z takes the uncertainty distribution as
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follows,

U(s) =


1− inf

{
α ∈ (0, 1)

∣∣ sup
0≤t≤s

J(Xα
t ) ≥ z

}
, if z > J(x0)

sup

{
α ∈ (0, 1)

∣∣ inf
0≤t≤s

J(Xα
t ) ≤ z

}
, if z < J(x0).

(12)

When J(x) is monotonically decreasing, the first-hitting time τz when J(Xt) hits z subjects to

the following distribution,

U(s) =


sup

{
α ∈ (0, 1)

∣∣ sup
0≤t≤s

J(Xα
t ) ≥ z

}
, if z > J(x0)

1− inf

{
α ∈ (0, 1)

∣∣ inf
0≤t≤s

J(Xα
t ) ≤ z

}
, if z < J(x0).

(13)

3 Reliability of uncertain fractional-order dynamic sys-

tem with state constraint

Uncertain fractional-order dynamical model (1) we studied has certain flaws in solving the

problem of a system crash, so further improvement is needed. Taking the risky assets such as

options as an example, no matter how the price of the underlying asset changes, the model (1)

ignores the change of the nature of the option on the expiration date, and excludes the belief

degree that the holder loses the ability to exercise due to the influence of some conditions.

Therefore, it is urgent and meaningful for us to measure the reliability of uncertain fractional-

order dynamical systems, and a novel uncertain fractional-order dynamical system considering

state constraints is introduced in this section.

3.1 Reliability for uncertain fractional-order dynamical system for

sup(inf)Xt ≥ L

In practice, there is always a tendency to assume that the system in which the model is located

is sufficiently reliable only if an indicator is above a certain value. For example, the temperature

must be higher than the melting point of the water tap in order for the water to flow, the selling

price must be higher than the cost to be profitable, the voltage must be higher than the starting

voltage circuits in order for them to function properly, and so on. This involves the time at

which the indicator first penetrates a given value. Based on this consideration, we define the

following novel uncertain fractional-order dynamic system for sup(inf)Xt ≥ L.



cDpXt = F (t,Xt) +G(t,Xt)
dCt

dt

X(k)(0) = xk, k = 0, 1, . . . , n− 1

sup(inf)
0≤t≤T

Xt ≥ L

(14)
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where L is a pre-given level, T is the maturity time, and Xt illustrates the specified performance

of a system. Since the uncertain fractional-order dynamical model (14) we defined has specific

conditions about uncertain variable Xt, the operation ability of our uncertain fractional-order

systems is need to be discussed. Hence, the reliability index (Rel), which can measure such

operation ability, will be discussed for model (14). According to the uncertain fraction-order

dynamical system (14) for sup(inf)
0≤t≤T

Xt ≥ L, we define reliability index of it here.

Theorem 3.1 (Reliability index) Reliability index for the the uncertain fraction-order dy-

namical system (14) for sup(inf)
0≤t≤T

Xt ≥ L is

Rel = M

{
sup

0≤t≤T
Xt ≥ L

}
= 1− β, X0 < L (15)

where β = inf

{
α
∣∣ sup
0≤t≤T

Xα
t ≥ L

}
. Comparably,

Rel = M

{
inf

0≤t≤T
Xt ≥ L

}
= 1− β, X0 > L (16)

where β = sup

{
α
∣∣ inf
0≤t≤T

Xα
t ≤ L

}
.

Proof: When X0 < L, according to Equation (11), it is obvious that there is an equivalence

relation between

{
sup

0≤t≤T
Xt ≥ L

}
and {τ < T}, which can derive

Rel = M

{
sup

0≤t≤T
Xt ≥ L

}
= M {τ < T} . (17)

Then, set

β = inf

{
α
∣∣ sup
0≤t≤T

Xα
t ≥ L

}
.

By Equation (12) for first-hitting time theorems [37], it can be concluded

M {τ < T} = U(T ) = 1− β.

Besides, U(T ) indicates DF (distribution function) for uncertain variable τ .

When X0 > L, according to Equation (11), it is obvious that there is an equivalence relation

between

{
inf

0≤t≤T
Xt ≥ L

}
and {τ ≥ T}, which can derive

Rel = M

{
inf

0≤t≤T
Xt ≥ L

}
= M {τ ≥ T} . (18)

Then, set

β = sup

{
α
∣∣ inf
0≤t≤T

Xα
t ≤ L

}
.
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By Equation (12) for first-hitting time theorems [37], it can be concluded

M {τ ≥ T} = 1− U(T ) = 1− β.

Besides, U(T ) indicates DF for uncertain variable τ . The proof is completed.

3.2 Reliability for uncertain fractional-order dynamical model for sup(inf)Xt ≤

L

In other cases, the system where the model resides is specified as reliable enough only when

the indicator is below a certain value. For example, the stress on materials should be less than

the permissible stress, the circuit voltage should be less than the rated voltage, and the speed

of vehicles should be less than the road speed limit, etc. This requires us to consider another

kind of uncertain fractional-order dynamical model considering state constraints.



cDpXt = F (t,Xt) +G(t,Xt)
dCt

dt

X(k)(0) = xk, k = 0, 1, . . . , n− 1

sup(inf)
0≤t≤T

Xt ≤ L

(19)

where L is a pre-given level, T is the maturity time. Obviously, such two kinds of the uncertain

fractional-order dynamical system with state constraint we defined above reflect different con-

ditions that the uncertain variable need to satisfy for the actual demand, are thus has guiding

significance for practical applications.

Analogously, according to the uncertain fraction-order dynamical system (19) for sup(inf)
0≤t≤T

Xt ≤

L, we define the reliability index of it here.

Theorem 3.2 (Reliability index) Reliability index for the uncertain fraction-order dynam-

ical system (19) for sup(inf)
0≤t≤T

Xt ≤ L is

Rel = M

{
sup

0≤t≤T
Xt < L

}
= β, X0 < L (20)

where β = inf

{
α
∣∣ sup
0≤t≤T

Xα
t ≥ L

}
.

Comparably,

Rel = M

{
inf

0≤t≤T
Xt ≤ L

}
= β, X0 > L (21)

where β = sup

{
α
∣∣ inf
0≤t≤T

Xα
t ≤ L

}
.

Proof: When X0 < L, according to Equation (11), it is obvious that there is an equivalence
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relation between

{
sup

0≤t≤T
Xt < L

}
and {τ ≥ T}, which can derive

Rel = M

{
sup

0≤t≤T
Xt < L

}
= M {τ ≥ T} . (22)

Then, set

β = inf

{
α
∣∣ sup
0≤t≤T

Xα
t ≥ L

}
.

By Equation (12) for first-hitting time theorems [37], it can be concluded

M {τ ≥ T} = 1− U(T ) = β.

Besides, U(T ) indicates DF for uncertain variable τ .

When X0 > L, according to Equation (11), it is obvious that there is an equivalence relation

between

{
inf

0≤t≤T
Xt ≤ L

}
and {τ < T}, which can derive that

Rel = M

{
inf

0≤t≤T
Xt ≤ L

}
= β. (23)

Then, set

β = sup

{
α
∣∣ inf
0≤t≤T

Xα
t ≤ L

}
.

By Equation (12) for first-hitting time theorems [37], it can be concluded that

M {τ < T} = U(T ) = β.

Besides, U(T ) indicates DF for uncertain variable τ . The proof is completed.

4 Application

Since fractional-order calculus, thanks to its non-locality features to reflect genetic and mem-

ory properties, can more accurately describe the essential properties and dynamic behavior

of dynamic processes. We will apply proposed uncertain fractional-order dynamical systems

with state constraint into the physical and finance field. Two novel models based on uncertain

fractional-order differential equations will be introduced in this section. The reliability index

and some specific formulas of the model will be given accordingly.
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4.1 Reliability analysis for fractional-order physical dynamical system

with state contraint

As mentioned before, the regular use of a circuit considering the full response requires a voltage

that is higher than the start voltage and lower than the rated voltage. At the same time, the

circuit system also has two opposite trends: for the first one, the circuit goes to failure during

discharge or use, and for the second, the circuit recovers during charging or maintenance. This

makes it important to apply the above model to the fractional-order circuit system. The follow-

ing contents give the application of the reliability analysis in fractional Resistor-Capacitance

(RC) circuits.

4.1.1 Upward repairable fractional-order circuit system

First, considering the influence of uncertainties such as consistency differences in the manu-

facture of capacitors and resistive components, circuit connection stability, operator operation

time errors, as well as external electromagnetic environment interference, we developed a state

equation based on fractional-order RC circuits.

 cDpXt = − Xt

RC + w
RC + b

RC
dCt

dt

X(k)(0) = xk, k = 0, 1, . . . , n− 1.
(24)

When X0 < L, the circuit system is in non-operational condition, and it is necessary to

charge the capacitor to make the capacitor voltage greater than the supply voltage, that is

sup
0≤t≤T

Xt ≥ L, so that the fractional-order circuit can be used for its intended purpose. Hence,

introducing the state equation (24) into our uncertain fractional-order dynamical system (14),

which can be obtained as below

cDpXt = − Xt

RC + w
RC + b

RC
dCt

dt

X(k)(0) = xk, k = 0, 1, . . . , n− 1

sup
0≤t≤T

Xt ≥ L

(25)

for which, according to Equation (10), the α-path of the solution can be derived as follows,

Xα
t =

n−1∑
k=0

xk · tkEp,(k+1)

(
− tp

RC

)
+

(
ω

RC
+

b

RC
Φ−1(α)

)
tpEp,p+1

(
− tp

RC

)
.

Meanwhile, since the fractional-order RC circuit is disturbed by uncertain factors. It is inno-

vative to describe the physical process by the expected time response, where the circuit output

voltage is represented by its expected value. The reliability index and expected time response

are thus given in the following theorem.
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Theorem 4.1 The reliability index that the fractional-order RC system (25) can operate has

been

Rel = 1−inf

{
α
∣∣ sup
0≤t≤T

n−1∑
k=0

xk · tkEp,(k+1)

(
− tp

RC

)
+

(
ω

RC
+

b

RC
Φ−1(α)

)
tpEp,p+1

(
− tp

RC

)
≥ L

}
,

and the expected time response goes

∫ 1

1−Rel

n−1∑
k=0

xk · tkEp,(k+1)

(
− tp

RC

)
+

(
ω

RC
+

b

RC
Φ−1(α)

)
tpEp,p+1

(
− tp

RC

)
dα.

Proof: First, according to Theorem 3.1, when X0 < L,

β = inf

{
α
∣∣ sup
0≤t≤T

Xα
t ≥ L

}

= inf

{
α
∣∣ sup
0≤t≤T

n−1∑
k=0

xk · tkEp,(k+1)

(
− tp

RC

)
+

(
ω

RC
+

b

RC
Φ−1(α)

)
tpEp,p+1

(
− tp

RC

)
≥ L

}
.

Thus, we can obtain that

Rel = M

{
sup

0≤t≤T
Xt ≥ L

}
= 1− β

= 1− inf

{
α
∣∣ sup
0≤t≤T

n−1∑
k=0

xk · tkEp,(k+1)

(
− tp

RC

)
+

(
ω

RC
+

b

RC
Φ−1(α)

)
tpEp,p+1

(
− tp

RC

)
≥ L

}
.

Then, define an indicator function

IL

(
sup

0≤t≤T
Xt

)
=


1, if sup

0≤t≤T
Xt ≥ L

0, if sup
0≤t≤T

Xt < L,

and set

Λ+
1 =

{
IL

(
sup

0≤t≤T
Xt

)
·Xt ≤ IL

(
sup

0≤t≤T
Xα

t

)
·Xα

t

}
,

Λ−
1 =

{
IL

(
sup

0≤t≤T
Xt

)
·Xt > IL

(
sup

0≤t≤T
Xα

t

)
·Xα

t

}
.

It is obviously that

Λ+
1 ⊃

{
sup

0≤t≤T
Xt ≤ sup

0≤t≤T
Xα

t , Xt ≤ Xα
t

}
⊃ {Xt ≤ Xα

t , ∀t} . (26)

and

Λ−
1 ⊃

{
sup

0≤t≤T
Xt > sup

0≤t≤T
Xα

t , XT > Xα
T

}
⊃ {Xt > Xα

t , ∀t} . (27)
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Following from Equation (7) and

M
{
Λ+
1

}
+M

{
Λ−
1

}
= 1, (28)

we derive that

M
{
Λ+
1

}
= α.

That means, the uncertain variable IL

(
sup

0≤t≤T
Xt

)
·Xt has an IUD

IL

(
sup

0≤t≤T
Xα

t

)
·Xα

t . (29)

Finally, since

E(ξ) =

∫ 1

0

Γ−1(α)dα

we can obtain that

E(Xt) = E

[
IL

(
sup

0≤t≤T
Xt

)
·Xt

]
=

∫ 1

0

IL

(
sup

0≤t≤T
Xα

t

)
·Xα

t dα

=

∫ 1

1−Rel

Xα
t dα

=

∫ 1

1−Rel

n−1∑
k=0

xk · tkEp,(k+1)

(
− tp

RC

)
+

(
ω

RC
+

b

RC
Φ−1(α)

)
tpEp,p+1

(
− tp

RC

)
dα.

The proof is complete.

Jin et al. [36] pointed out that predictor-corrector scheme [47] has been a useful as well as

effective scheme to solve FDEs. Hence, by using it, we can calculate the reliability index and

expected time response for the uncertain fractional-order RC circuit model (25).

Example 4.1 Assume an uncertain fractional-order RC circuit model (25) has current voltage

x0 = 0, x1 = 1, resistance R = 5, and capacitance C = 1. Furthermore, the log-diffusion

σ = 0.5 and p = 1.6. Consider the upper bound of maturity time is T = 5 and the pre-given

level L = 4.

Table 1 indicates that when pre-given level L is lower (expiration time T is longer), then Rel

is bigger. The above phenomenon conforms to the fact: For a lower pre-given level L (longer

expiration time T ). The pre-given level has more possibilities to be hit, Rel is thus higher.

Meanwhile, Figure 1 shows that the expected time response is increasing with respect to time

t.
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Figure 1: The expected time response Xt with uncertain factors (upward repairable)

Downward repairable fractional-order circuit system

Analogously, when X0 > L, the circuit system is also in non-operational condition, and it is

necessary to discharge the capacitor to make the capacitor voltage smaller than the pre-given

voltage, that is inf
0≤t≤T

Xt ≤ L, so that the fractional-order circuit can be used for its intended

purpose. Hence, introducing the state equation (24) into our fractional-order dynamical system

(19), we obtain that 

cDpXt = − Xt

RC + w
RC + b

RC
dCt

dt

X(k)(0) = xk, k = 0, 1, . . . , n− 1

inf
0≤t≤T

Xt ≤ L.

(30)

Table 1: Sensitivity analysis of the reliability index (upward repairable)

T 1.3 1.6 1.9 2.2 2.5 2.8 3.1 3.4 3.7 4.0 4.3

Rel 0.00 0.0294 0.1715 0.4598 0.7444 0.8978 0.9534 0.9733 0.9819 0.9873 0.9900

L 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

Rel 0.9900 0.9844 0.9468 0.8148 0.5648 0.2824 0.0912 0.0164 0.0016 0.0000 0.0000

Theorem 4.2 The reliability index that the first-hitting time model (30) can operate has been

Rel = sup

{
α
∣∣ inf
0≤t≤T

n−1∑
k=0

xk · tkEp,(k+1)

(
− tp

RC

)
+

(
ω

RC
+

b

RC
Φ−1(α)

)
tpEp,p+1

(
− tp

RC

)
≤ L

}
,

and the expected time response goes

∫ Rel

0

n−1∑
k=0

xk · tkEp,(k+1)

(
− tp

RC

)
+

(
ω

RC
+

b

RC
Φ−1(α)

)
tpEp,p+1

(
− tp

RC

)
dα.

14



Proof: First, according to Theorem 3.2, when X0 > L,

β = sup

{
α
∣∣ inf
0≤t≤T

Xα
t ≤ L

}
= sup

{
α
∣∣ inf
0≤t≤T

n−1∑
k=0

xk · tkEp,(k+1)

(
− tp

RC

)
+

(
ω

RC
+

b

RC
Φ−1(α)

)
tpEp,p+1

(
− tp

RC

)
≤ L

}
,

thus we can obtain

Rel = M

{
inf

0≤t≤T
Xt ≤ L

}
= β

= sup

{
α
∣∣ inf
0≤t≤T

n−1∑
k=0

xk · tkEp,(k+1)

(
− tp

RC

)
+

(
ω

RC
+

b

RC
Φ−1(α)

)
tpEp,p+1

(
− tp

RC

)
≤ L

}
.

Then, define another indicator function

IL

(
inf

0≤t≤T
Xt

)
=


1, if inf

0≤t≤T
Xt ≤ L

0, if sup
0≤t≤T

Xt > L,

and set

Λ+
2 =

{
IL

(
inf

0≤t≤T
Xt

)
·Xt ≤ IL

(
inf

0≤t≤T
Xα

t

)
·Xα

t

}
,

Λ−
2 =

{
IL

(
inf

0≤t≤T
Xt

)
·Xt > IL

(
inf

0≤t≤T
Xα

t

)
·Xα

t

}
.

It is obviously that

Λ+
2 ⊃

{
inf

0≤t≤T
Xt ≤ inf

0≤t≤T
Xα

t , Xt ≤ Xα
t

}
⊃ {Xt ≤ Xα

t , ∀t} . (31)

and

Λ−
2 ⊃

{
inf

0≤t≤T
Xt > inf

0≤t≤T
Xα

t , XT > Xα
T

}
⊃ {Xt > Xα

t , ∀t} . (32)

Following from Equation (7) and

M
{
Λ+
2

}
+M

{
Λ−
2

}
= 1, (33)

we derive that

M
{
Λ+
2

}
= α.
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That means, the uncertain variable IL

(
inf

0≤t≤T
Xt

)
·Xt has an IUD

IL

(
inf

0≤t≤T
Xα

t

)
·Xα

t . (34)

Finally, since

E(ξ) =

∫ 1

0

Γ−1(α)dα,

we can obtain that

E(Xt) = E

[
IL

(
inf

0≤t≤T
Xt

)
·Xt

]
=

∫ 1

0

IL

(
inf

0≤t≤T
Xα

t

)
·Xα

t dα

=

∫ Rel

0

Xα
t dα

=

∫ Rel

0

n−1∑
k=0

xk · tkEp,(k+1)

(
− tp

RC

)
+

(
ω

RC
+

b

RC
Φ−1(α)

)
tpEp,p+1

(
− tp

RC

)
dα

The proof is completed.

Example 4.2 Assume an uncertain fractional-order RC circuit model (30) has current voltage

x0 = 5, x1 = −1, resistance R = 4, and capacitance C = 2. Furthermore, the log-diffusion

σ = 0.5 and p = 1.6. Consider the upper bound of maturity time is T = 2 and the pre-given

level L = 2.

Analogously, by using predictor-corrector numerical method [47], we calculate Rel and expected

time response for the uncertain fractional-order RC circuit model (30). Table 2 indicates that

when barrier level L (expiration time T ) is higher, Rel is bigger. The above phenomenon

conforms to the fact: For a bigger pre-given level L (longer expiration time T ). The pre-given

level has more possibilities to be hit, Rel is thus higher. Meanwhile, Figure 2 shows that the

expected time response is changing with respect to time t.

Table 2: Sensitivity analysis of the reliability index (downward repairable)

T 1.90 1.96 2.02 2.08 2.14 2.20 2.26 2.32 2.38 2.44 2.50

Rel 0.0100 0.0540 0.1584 0.3488 0.5820 0.7720 0.8844 0.9412 0.9684 0.9808 0.9900

L 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80

Rel 0.0100 0.0540 0.1584 0.3488 0.5820 0.7720 0.8844 0.9412 0.9684 0.9808 0.9900

Remark 4.1 The resulting E(Xt) is the weight mean of Xt and is a more accurate indicator

in practical applications of characterizing the voltage of a circuit system under the influence of

uncertainty.
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Figure 2: The expected time response Xt with uncertain factors (downward repairable)

Remark 4.2 We find that fractional derivative p affects reliability index and expected time

response formulas for the fractional-order circuit systems (25) and (30).

Remark 4.3 We extend the reliability analysis of the uncertain second-order circuit system

(Jin et al. [48]) to the case of fractional-order circuit with a wider application range.

4.2 Reliability analysis for fractional-order financial dynamical sys-

tem with state constraint

Barrier options, which are financial derivatives with high popularity in the financial market,

stems from the demand for traders to delineate risks, alleviate market speculation, avoid bid-

up stock prices, and so on. In 2020, Yao and Qin [49] took the structure of the solutions of

uncertain differential equations as a basis, constructed an uncertain stock model to describe

barrier options. However, since the validity of the option is in connection with whether the price

of the underlying asset reaches the pre-set barrier (ceiling or floor) during the renewal period,

the system will only be activated or extinguished when the barrier mechanism acts. Thus, it

is meaningful for us to apply the uncertain fractional-order dynamical system and reliability

index in the area of barrier options.

4.2.1 Reliability Analysis of American Barrier Call Option

Typically, discuss several class American call options whose execution is subjected to the barrier

mechanism sup(inf)
0≤t≤T

Xt ≥ L. In uncertain financial markets, investors give priority to purchasing

such options in anticipation of the uncertain events {sup(inf)
0≤t≤T

Xt ≥ L} happen. The above
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uncertain fraction-order dynamical system (14) can be further transformed into



dYt = rYtdt

cDpXt = aXt + bXt
dCt

dt

X(k)(0) = xk, k = 0, 1, . . . , n− 1

sup(inf)
0≤t≤T

Xt ≥ L.

(35)

Where Yt is used to represent the bond price, and Xt is set as an uncertain process to describe

the dynamic change of the underlying asset price, Ct denotes the Liu process, r, a, and b

demonstrate the interest rate, diffusion, and drift, respectively.

To verify the applicability and feasibility of the uncertain fraction-order model (35) in the

financial field, the following content selects American up-and-in call options and American

down-and-out call options as the main analysis objects, respectively derives corresponding re-

liability indicators and supplements the corresponding pricing formula.

up-and-in call option

Analyze the reliability of American up-and-in call options. According to the barrier mechanism,

only when the price of the underlying asset exceeds the predetermined ceiling, the option can

realize the transition from invalid to valid state, and then has the possibility of being executable,

which means that the operation of the uncertain fractional-order dynamical system (35) is

required to meet the conditions that { sup
0≤t≤T

Xt ≥ L}. Then, the corresponding reliability index

of American up-and-in call option can be deduced as follows.

Theorem 4.3 Consider an uncertain fraction-order dynamical system (35), which has a strike

price K and a barrier price L. Set X0 < L, then the reliability index for American up-and-in

call option is

Rel = 1− inf

{
α
∣∣ sup
0≤t≤T

(
n−1∑
k=0

xk · tkEp,k+1

(
atp + bΦ−1(α)tp

))
≥ L

}
. (36)

and the price for the American up-and-in call option goes

f c
ui =

∫ 1

1−Rel

sup exp
0≤t≤T

(−rt)

((
n−1∑
k=0

xk · tkEp,k+1

(
atp + bΦ−1(α)tp

))
−K

)+

dα. (37)

Proof: Jin and Zhu [36] derived the α-path for solution (35) as below,

Xα
t =

n−1∑
k=0

xk · tkEp,k+1

(
atp + bΦ−1(α)tp

)
. (38)
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According to Theorem 3.1, when X0 < L, let

β = inf

{
α
∣∣ sup
0≤t≤T

Xα
t ≥ L

}

= inf

{
α
∣∣ sup
0≤t≤T

(
n−1∑
k=0

xk · tkEp,k+1

(
atp + bΦ−1(α)tp

))
≥ L

}

thus we can obtain

Rel = M

{
sup

0≤t≤T
Xt ≥ L

}
= 1− β

= 1− inf

{
α
∣∣ sup
0≤t≤T

(
n−1∑
k=0

xk · tkEp,k+1

(
atp + bΦ−1(α)tp

))
≥ L

}
.

Then, like the proof of Theorem in Gao et al. [23]. the price for the American up-and-in call

option in the uncertain fraction-order dynamical system (35) is that

f c
ui =

∫ 1

Rel

sup exp
0≤t≤T

(−rt)

((
n−1∑
k=0

xk · tkEp,k+1

(
atp + bΦ−1(α)tp

))
−K

)+

dα.

The proof is complete.

Parameter estimation is an important issue in the wide applications of uncertain differential

equations. By setting the empirical moments of the functions of the parameters and the observed

data equal to the moments of the standard normal uncertainty distribution, Yao and Liu [50]

obtained a system of equations of the parameters whose solutions are essentially the estimates

of the parameters. Hence, all the parameters which will appear in the following models are

estimated according to the real market data of the Great Wall of China stock between January

2, 2018 and June 30, 2020 and the proposed parameter estimation method.

Example 4.3 Suppose an investor signs an American up-and-in call option, which stipulates

that the maturity date is T = 10, the barrier level is B = 10, and the strike price is K = 8.

Then, the fixed parameters of the uncertain fraction-order dynamical system (35) are estimated

such that the initial price X0 = 8.1100, the instantaneous growth rate X1 = 0.19, a = 0.0029,

b = 0.0084, and the constant interest rate r = 0.2966. Beside, Caputo fractional-order derivative

p = 1.5.

By using predictor-corrector numerical method [47], we calculate Rel and American up-and-in

call option formulas for uncertain fraction-order dynamical system (35). Table 3 indicates that

when barrier level B is lower or maturity date T is longer, Rel is bigger. The above phenomenon

conforms to the fact: For a lower pre-given level B ( longer expiration time T ). The pre-given

level has more possibilities to be hit, Rel is thus higher. Meanwhile, the first half of the table

shows that the price increases with respect to T . The second half of the table indicates that the
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price decreases with respect to K. The above phenomenon conforms to the fact: for a smaller

K, the option has more possibilities to be carried out, then prices are bigger.

Table 3: Sensitivity analysis of Rel (up-and-in call option)

T 2.00 3.75 5.50 7.25 9.00 10.75 12.50 14.25 16.00 17.75 19.50

Rel 0.0000 0.0120 0.1780 0.4336 0.5944 0.6776 0.7224 0.7488 0.7640 0.7740 0.7800

B 8.0 10.2 12.4 14.6 16.8 19.0 21.2 23.4 25.6 27.8 30.0

Rel 0.9900 0.5040 0.3824 0.2820 0.2088 0.1540 0.1140 0.0840 0.0624 0.0500 0.0400

Table 4: Sensitivity analysis of the option price f c
ui

T 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

f c
ui 0.8177 1.4391 2.0769 2.7310 3.3034 3.8103 4.2191 4.5789 4.8733 5.1186 5.3148

K 6.5 6.7 6.9 7.1 7.3 7.5 7.7 7.9 8.1 8.3 8.5

f c
ui 77.7893 68.1260 58.4628 48.7995 39.1362 29.4730 19.8097 10.3447 3.5000 0.4214 0.0191

down-and-out call option

Analyze the reliability of American down-and-out call options. According to the barrier mech-

anism, the option takes effect on the premise that the price of the underlying asset remains

above the floor. In this case, the operation of the uncertain fractional-order dynamical system

(35) is required to meet the conditions that { inf
0≤t≤T

Xt > L}. Then, the corresponding reliability

index of American down-and-out call option can be deduced as follows.

Theorem 4.4 Consider an uncertain fraction-order dynamical system (35), which has a strike

price K and a barrier price L. Set X0 > L, then the reliability index for American down-and-out

call option is

Rel = 1− sup

{
α
∣∣ inf
0≤t≤T

(
n−1∑
k=0

xk · tkEp,k+1

(
atp + bΦ−1(α)tp

))
≤ L

}
. (39)

and the price for the American down-and-out call option goes

f c
do =

∫ 1

1−Rel

sup
0≤t≤T

exp (−rt)

((
n−1∑
k=0

xk · tkEp,k+1

(
atp + bΦ−1(α)tp

))
−K

)+

dα. (40)

Proof: According to Theorem 3.2, when X0 > L, let

β = sup

{
α
∣∣ inf
0≤t≤T

Xα
t ≤ L

}
= sup

{
α
∣∣ inf
0≤t≤T

(
n−1∑
k=0

xk · tkEp,k+1

(
atp + bΦ−1(α)tp

))
≤ L

}
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thus we can obtain

Rel = M

{
inf

0≤t≤T
Xt > L

}
= 1− β

= 1− sup

{
α
∣∣ inf
0≤t≤T

(
n−1∑
k=0

xk · tkEp,k+1

(
atp + bΦ−1(α)tp

))
≤ L

}
.

Then, like the proof of Theorem in Gao et al. [23]. The price for the American down-an-out

call option in the uncertain fraction-order dynamical system (35) has been

f c
do =

∫ 1

1−Rel

sup
0≤t≤T

exp (−rt)

((
n−1∑
k=0

xk · tkEp,k+1

(
atp + bΦ−1(α)tp

))
−K

)+

dα.

The proof is complete.

Example 4.4 Suppose an investor signs an American down-an-out call option, which stipulates

that the maturity date is T = 10, the barrier level is B = 3, and the strike price is K = 8.

Then, the fixed parameters of the uncertain fraction-order dynamical system (35) are estimated

such that the initial price X0 = 6.05, the instantaneous growth rate X1 = −0.60, a = 0.0016,

b = 0.0350, and the constant interest rate r = 0.5492. Beside, Caputo fractional-order derivative

p = 1.5.

By using predictor-corrector numerical method [47], we calculate Rel and American down-

an-out call option formulas of uncertain fraction-order dynamical system (35). Table 5 indicates

that when pre-given levelB (expiration time T ) is smaller, Rel is bigger. The above phenomenon

conforms to the fact: For a lower pre-given level B (expiration time T ). The pre-given level

has more possibilities to be hit, Rel is thus higher.

Table 5: Sensitivity analysis of Rel (down-and-out call option)

T 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

Rel 0.5400 0.4656 0.4020 0.3532 0.3156 0.2868 0.2656 0.2504 0.2384 0.2283 0.2200

B 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.0

Rel 0.9600 0.9244 0.8636 0.7768 0.6664 0.5412 0.4204 0.3116 0.2240 0.1604 0.1100

Table 6: Sensitivity analysis of the option price f c
do

T 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

f c
do 1.5590 1.3442 1.1606 1.0197 0.9112 0.8280 0.7668 0.7229 0.6883 0.6590 0.6352

K 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2 5.6 6.0

f c
do 126.2824 113.8101 101.3377 88.8654 76.3931 63.9207 51.4484 38.9760 26.5037 14.0314 1.5590
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4.2.2 Reliability Analysis of American barrier put option

Similarly, discuss several class American put options whose execution is subjected to the barrier

mechanism sup(inf)
0≤t≤T

Xt ≤ L. In uncertain financial markets, investors give priority to purchasing

such options in anticipation of the uncertain events {sup(inf)
0≤t≤T

Xt ≤ L} happen. The above

uncertain fraction-order dynamical system (19) is further transformed into



dYt = rYtdt

cDpXt = aXt + bXt
dCt

dt

X(k)(0) = xk, l = 0, 1, . . . , n− 1

sup(inf)
0≤t≤T

Xt ≤ L

(41)

where Yt is used to represent the bond price and Xt is set as an uncertain process to describe

dynamic change for price. Ct denotes the Liu process, r, a and b demonstrates the interest rate,

diffusion and drift, respectively.

To verify the applicability and feasibility of the uncertain fraction-order dynamical model

(41) in the financial field, the following content selects American down-and-in put options and

American up-and-out put options as the main analysis objects, respectively derives correspond-

ing reliability indicators and supplements the corresponding pricing formula.

down-and-in put option

Analyze the reliability of American down-and-in put options. The barrier of the down-and-in

put option is the floor of the underlying asset price fluctuation, which can be triggered to change

the option from invalid to valid. In this case, the operation of the uncertain fractional-order

dynamical system (35) is required to meet the conditions that { inf
0≤t≤T

Xt > L}. Then, the

corresponding reliability index of American down-and-in put option can be deduced as follows.

Theorem 4.5 Consider an uncertain fraction-order dynamical system (41), which has a strike

price K and a barrier price L. Set X0 > L, then the reliability index for American down-and-in

put option is

Rel = sup

{
α
∣∣ inf
0≤t≤T

(
n−1∑
k=0

xk · tkEp,k+1

(
atp + bΦ−1(α)tp

))
≤ L

}
. (42)

and the price for the American down-an-in put option goes

fp
di =

∫ Rel

0

sup
0≤t≤T

exp (−rt)

(
K −

(
n−1∑
k=0

xk · tkEp,k+1

(
atp + bΦ−1(α)tp

)))+

dα. (43)
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Proof: Similar to Theorem 4.4, the reliability index can be obtained as follows,

Rel = M

{
inf

0≤t≤T
Xt ≤ L

}
= β

= sup

{
α
∣∣ inf
0≤t≤T

(
n−1∑
k=0

xk · tkEp,k+1

(
atp + bΦ−1(α)tp

))
≤ L

}
.

Then, like the proof of Theorem in Gao et al. [23]. The price for the American down-an-in put

option in the uncertain fraction-order model (35) has been

fp
di =

∫ Rel

0

sup
0≤t≤T

exp (−rt)

(
K −

(
n−1∑
k=0

xk · tkEp,k+1

(
atp + bΦ−1(α)tp

)))+

dα.

The proof is complete.

Example 4.5 Suppose an investor signs an American down-an-in put option, which stipulates

that the maturity date is T = 5, the barrier level is B = 3, and the strike price is K = 8.

Then, the fixed parameters of the uncertain fraction-order dynamical system (41) are estimated

such that the initial price X0 = 7.55, the instantaneous growth rate X1 = −0.71, a = 0.0027,

b = 0.0322, and the constant interest rate r = 0.3623. Beside, Caputo fractional-order derivative

p = 1.5.

By using predictor-corrector numerical method [47], we calculate Rel and American down-

an-in put option formulas for the uncertain fraction-order dynamical system (41). Table 7

indicates that when barrier level B is higher or maturity date T is longer, Rel is bigger. The

above phenomenon conforms to the fact: For a higher pre-given level B (longer expiration time

T ). The pre-given level has more possibilities to be hit, Rel is thus higher.

Table 7: Sensitivity analysis of Rel (down-and-in put option)

T 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

Rel 0.2100 0.3005 0.3856 0.4612 0.5244 0.5756 0.6160 0.6484 0.6752 0.6957 0.7100

B 1.0 1.6 2.2 2.8 3.4 4.0 4.6 5.2 5.8 6.4 7.0

Rel 0.0100 0.0385 0.0912 0.1800 0.3056 0.4560 0.6056 0.7332 0.8272 0.8928 0.9472

Table 8: Sensitivity analysis of the option price fp
di

T 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

fp
di 6.5779 9.4137 12.0783 14.4463 16.4259 18.0297 19.2952 20.3100 21.1495 21.7927 22.2395

K 8.0 8.4 8.8 9.2 9.6 10.0 10.4 10.8 11.2 11.6 12.0

fp
di 6.5779 12.4249 18.2719 24.1189 29.9660 35.8130 41.6600 47.5070 53.3540 59.2011 65.0481
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up-and-out put option

Analyze the reliability of American up-and-out put options. Similar to down-and-out call

option, only when the price of the underlying asset never exceeds the ceiling, the up-and-out

put option can remain effective. In other words, the operation of the uncertain fractional-order

dynamical system (35) is required to meet the conditions that { sup
0≤t≤T

Xt < L}. Then, the

corresponding reliability index of American up-and-out put option can be deduced as follows.

Theorem 4.6 Consider an uncertain fraction-order dynamical system (41), which has a strike

price K and a barrier price L. Set X0 < L, then the reliability index for American up-and-out

put option is

Rel = inf

{
α
∣∣ sup
0≤t≤T

(
n−1∑
k=0

xk · tkEp,k+1

(
atp + bΦ−1(α)tp

))
≥ L

}
. (44)

and the price for the American up-and-out put option goes

fp
uo =

∫ Rel

0

sup
0≤t≤T

exp (−rt)

(
K −

(
n−1∑
k=0

xk · tkEp,k+1

(
atp + bΦ−1(α)tp

)))+

dα. (45)

Proof: Similar to Theorem 4.3, the reliability index can be obtained as follows,

Rel = M

{
sup

0≤t≤T
Xt < L

}
= β

= inf

{
α
∣∣ sup
0≤t≤T

(
n−1∑
k=0

xk · tkEp,k+1

(
atp + bΦ−1(α)tp

))
≥ L

}
.

Then, like the proof of Theorem in Gao et al. [23]. The price for the American up-and-out put

option in uncertain fraction-order model (41) has been

fp
uo =

∫ Rel

0

sup
0≤t≤T

exp (−rt)

(
K −

(
n−1∑
k=0

xk · tkEp,k+1

(
atp + bΦ−1(α)tp

)))+

dα.

The proof is complete.

Example 4.6 Suppose an investor signs an American up-and-out put option, which stipulates

that the maturity date is T = 5, the barrier level is B = 10, and the strike price is K = 8.

Then, the fixed parameters of the uncertain fraction-order dynamical system (41) are estimated

such that the initial price X0 = 7.85, the instantaneous growth rate X1 = 0.35, a = 0.0038,

b = 0.0124, and the constant interest rate r = 0.3980. Beside, Caputo fractional-order derivative

p = 1.5.

By using predictor-corrector numerical method [47], we calculate Rel and American up-and-

out put option formulas for uncertain fraction-order dynamical system (41). Table 9 indicates
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that when barrier level B is higher or maturity date T is smaller, Rel is bigger. The above

phenomenon conforms to the fact: For a higher pre-given level B ( smaller expiration time T ).

The pre-given level has more possibilities to be hit, Rel is thus higher.

Table 9: Sensitivity analysis of Rel (up-and-out put option)

T 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

Rel 0.5700 0.4665 0.3894 0.3319 0.2921 0.2626 0.2386 0.2203 0.2080 0.1980 0.1900

B 8.0 8.4 8.8 9.2 9.6 10.0 10.4 10.8 11.2 11.6 12.0

Rel 0.0100 0.0504 0.1072 0.2132 0.3744 0.5644 0.7344 0.8552 0.9260 0.9648 0.9900

Table 10: Sensitivity analysis of the option price fp
uo

T 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0

fp
uo 5.7427 4.6995 3.9236 3.3441 2.9427 2.6453 2.4043 2.2197 2.0956

K 8.0 8.4 8.8 9.2 9.6 10.0 10.4 10.8 11.2

fp
uo 5.7427 21.0566 36.3705 51.6844 66.9983 82.3122 97.6261 112.9400 128.2539

Remark 4.4 It is obvious that the conclusions for the case p = 1 in Theorems 4.3, 4.4, 4.5

and 4.6 are the same as those in Gao et al. [23] in 2019, and we extend American barrier

option prices to the case of UFDEs.

Remark 4.5 We derive American barrier option prices via first-hitting time theorems, which

improves the proof for UDEs’ model.

5 Conclusion

Considering there are obstacles for the UFDE model, this paper refined the UFDE model we

studied before and introduced a novel uncertain fractional-order model with state constraint.

The reliability index theorem of the proposed model was derived by the FHT theorem for two

cases that sup(inf)Xt > L as well as sup(inf)Xt < L, respectively. As the application of the

uncertain fractional-order dynamical system with state constraint, the fractional-order circuit

model and American barrier option model were proposed. The analytic expressions of the

reliability index for such two models were obtained by using the proposed theorem. Expected

time response and American barrier option prices were also calculated by the predictor-corrector

method. Furthermore, we discussed the fluctuation of the reliability index concerning different

parameters. In the future, we will analyze the survivability of our fractional-order dynamical

system and find corresponding kernel.
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