8. REFERENCES
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., …
& Ghemawat, S. (2016). Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. arXiv preprint arXiv:1603.04467.
Acevedo, M. A., & VILLANUEVA‐RIVERA, L. J. (2006). From the field:
Using automated digital recording systems as effective tools for the
monitoring of birds and amphibians. Wildlife Society
Bulletin , 34 (1), 211-214.
Anjos, L. D. (2006). Bird Species Sensitivity in a Fragmented Landscape
of the Atlantic Forest in Southern Brazil 1. Biotropica: The Journal of
Biology and Conservation, 38(2), 229-234.
Bertelli, S., & Tubaro, P. L. 2002. Body mass and habitat correlates of
song structure in a primitive group of birds. biological Journal
of the Linnean Society , 77 (4), 423-430.
Brandes, T. S. (2008). Automated sound recording and analysis techniques
for bird surveys and conservation. Bird Conservation International,
18(S1), S163-S173.
Cabot, J., D. A. Christie, F. Jutglar, P. F. D. Boesman, and C.J. Sharpe
(2020). Black-capped Tinamou (Crypturellus atrocapillus ), version
1.0. In Birds of the World (J. del Hoyo, A. Elliott, J. Sargatal, D. A.
Christie, and E. de Juana, Editors). Cornell Lab of Ornithology, Ithaca,
NY, USA. https://doi.org/10.2173/bow.blctin1.01
Dias, L. C. S., Bernardo, C. S. S., & Srbek-Araujo, A. C. (2016). Daily
and seasonal activity patterns of the Solitary Tinamou (Tinamus
solitarius ) in the Atlantic Forest of southeastern Brazil. The Wilson
Journal of Ornithology, 128(4), 885-894.
Ding, J., Chen, B., Liu, H., & Huang, M. (2016). Convolutional neural
network with data augmentation for SAR target recognition. IEEE
Geoscience and remote sensing letters, 13(3), 364-368.
eBird (2017). eBird: An online database of bird distribution and
abundance [web application]. eBird, Cornell Lab of Ornithology,
Ithaca, New York. Available: http://www.ebird.org. (Accessed: March 3,
2020).
Fink, D., T. Auer, A. Johnston, M. Strimas-Mackey, O. Robinson, S.
Ligocki, B. Petersen, C. Wood, I. Davies, B. Sullivan, M. Iliff, S.
Kelling. 2020. eBird Status and Trends, Data Version: 2018; Released:
2020. Cornell Lab of Ornithology, Ithaca, New York.
https://doi.org/10.2173/ebirdst.2018
Guerta, R., & Cintra, R. (2014). Effects of habitat structure on the
spatial distribution of two species of Tinamous (Aves: Tinamidae) in a
Amazon terra-firme forest. Ornitol Neotrop, 25(1), 73-86.
Kahl, S., Wilhelm-Stein, T., Hussein, H., Klinck, H., Kowerko, D.,
Ritter, M., & Eibl, M. (2017, September). Large-Scale Bird Sound
Classification using Convolutional Neural Networks. In CLEF (Working
Notes).
Kahl, S., Stöter, F. R., Goëau, H., Glotin, H., Planque, R., Vellinga,
W. P., & Joly, A. (2019, September). Overview of birdclef 2019:
Large-scale bird recognition in soundscapes.
Katz, J., Hafner, S. D., & Donovan, T. (2016). Assessment of error
rates in acoustic monitoring with the R package monitoR. Bioacoustics,
25(2), 177-196.
Knight, E., Hannah, K., Foley, G., Scott, C., Brigham, R., & Bayne, E.
(2017). Recommendations for acoustic recognizer performance assessment
with application to five common automated signal recognition programs.
Avian Conservation and Ecology, 12(2).
Kotsiantis, S. B., Zaharakis, I., & Pintelas, P. (2007). Supervised
machine learning: A review of classification techniques. Emerging
artificial intelligence applications in computer engineering, 160, 3-24.
Landau, H. J. (1967). Sampling, data transmission, and the Nyquist rate.
Proceedings of the IEEE, 55(10), 1701-1706.
Larsen, T. H., Lopera, A., & Forsyth, A. (2006). Extreme trophic and
habitat specialization by Peruvian dung beetles (Coleoptera:
Scarabaeidae: Scarabaeinae). The Coleopterists Bulletin, 60(4), 315-324.
Mere Roncal, C., Middendorf, E., Forsyth, A., Cáceres, A., Blake, J. G.,
Almeyda Zambrano, A. M., & Broadbent, E. N. (2019). Assemblage
structure and dynamics of terrestrial birds in the southwest Amazon: a
camera‐trap case study. Journal of Field Ornithology, 90(3), 203-214.
Newey, S., Davidson, P., Nazir, S., Fairhurst, G., Verdicchio, F.,
Irvine, R. J., & van der Wal, R. (2015). Limitations of recreational
camera traps for wildlife management and conservation research: A
practitioner’s perspective. Ambio , 44 (4), 624-635.
Nogueira, F. (2014). Bayesian Optimization: Open source constrained
global optimization tool for Python.
O’Connell, A. F., Nichols, J. D., & Karanth, K. U. (Eds.). (2010).
Camera traps in animal ecology: methods and analyses. Springer Science
& Business Media.
Pérez‐Granados, C., Schuchmann, K. L., & Marques, M. I. (2020). Vocal
behavior of the Undulated Tinamou (Crypturellus undulatus ) over
an annual cycle in the Brazilian Pantanal: New ecological information.
Biotropica, 52(1), 165-171.
R Core Team (2019). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria. URL
https://www.R-project.org/.
Reich, B. J., Pacifici, K., & Stallings, J. W. (2018). Integrating
auxiliary data in optimal spatial design for species distribution
modelling. Methods in Ecology and Evolution, 9(6), 1626-1637.
Royle, J. A., & Nichols, J. D. (2003). Estimating abundance from
repeated presence–absence data or point counts. Ecology, 84(3),
777-790.
Sokolova, M., & Lapalme, G. (2009). A systematic analysis of
performance measures for classification tasks. Information processing &
management, 45(4), 427-437.
Sullivan, B.L., C.L. Wood, M.J. Iliff, R.E. Bonney, D. Fink, and S.
Kelling. 2009. eBird: a citizen-based bird observation network in the
biological sciences. Biological Conservation 142: 2282-2292.
Sullivan, B. L., Aycrigg, J. L., Barry, J. H., Bonney, R. E., Bruns, N.,
Cooper, C. B., … & Fink, D. (2014). The eBird enterprise: an
integrated approach to development and application of citizen science.
Biological Conservation, 169, 31-40.
Thornton, D. H., Branch, L. C., & Sunquist, M. E. (2012). Response of
large galliforms and tinamous (Cracidae, Phasianidae, Tinamidae) to
habitat loss and fragmentation in northern Guatemala. Oryx, 46(4),
567-576.