8. REFERENCES
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., … & Ghemawat, S. (2016). Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467.
Acevedo, M. A., & VILLANUEVA‐RIVERA, L. J. (2006). From the field: Using automated digital recording systems as effective tools for the monitoring of birds and amphibians. Wildlife Society Bulletin34 (1), 211-214.
Anjos, L. D. (2006). Bird Species Sensitivity in a Fragmented Landscape of the Atlantic Forest in Southern Brazil 1. Biotropica: The Journal of Biology and Conservation, 38(2), 229-234.
Bertelli, S., & Tubaro, P. L. 2002. Body mass and habitat correlates of song structure in a primitive group of birds. biological Journal of the Linnean Society77 (4), 423-430.
Brandes, T. S. (2008). Automated sound recording and analysis techniques for bird surveys and conservation. Bird Conservation International, 18(S1), S163-S173.
Cabot, J., D. A. Christie, F. Jutglar, P. F. D. Boesman, and C.J. Sharpe (2020). Black-capped Tinamou (Crypturellus atrocapillus ), version 1.0. In Birds of the World (J. del Hoyo, A. Elliott, J. Sargatal, D. A. Christie, and E. de Juana, Editors). Cornell Lab of Ornithology, Ithaca, NY, USA. https://doi.org/10.2173/bow.blctin1.01
Dias, L. C. S., Bernardo, C. S. S., & Srbek-Araujo, A. C. (2016). Daily and seasonal activity patterns of the Solitary Tinamou (Tinamus solitarius ) in the Atlantic Forest of southeastern Brazil. The Wilson Journal of Ornithology, 128(4), 885-894.
Ding, J., Chen, B., Liu, H., & Huang, M. (2016). Convolutional neural network with data augmentation for SAR target recognition. IEEE Geoscience and remote sensing letters, 13(3), 364-368.
eBird (2017). eBird: An online database of bird distribution and abundance [web application]. eBird, Cornell Lab of Ornithology, Ithaca, New York. Available: http://www.ebird.org. (Accessed: March 3, 2020).
Fink, D., T. Auer, A. Johnston, M. Strimas-Mackey, O. Robinson, S. Ligocki, B. Petersen, C. Wood, I. Davies, B. Sullivan, M. Iliff, S. Kelling. 2020. eBird Status and Trends, Data Version: 2018; Released: 2020. Cornell Lab of Ornithology, Ithaca, New York. https://doi.org/10.2173/ebirdst.2018
Guerta, R., & Cintra, R. (2014). Effects of habitat structure on the spatial distribution of two species of Tinamous (Aves: Tinamidae) in a Amazon terra-firme forest. Ornitol Neotrop, 25(1), 73-86.
Kahl, S., Wilhelm-Stein, T., Hussein, H., Klinck, H., Kowerko, D., Ritter, M., & Eibl, M. (2017, September). Large-Scale Bird Sound Classification using Convolutional Neural Networks. In CLEF (Working Notes).
Kahl, S., Stöter, F. R., Goëau, H., Glotin, H., Planque, R., Vellinga, W. P., & Joly, A. (2019, September). Overview of birdclef 2019: Large-scale bird recognition in soundscapes.
Katz, J., Hafner, S. D., & Donovan, T. (2016). Assessment of error rates in acoustic monitoring with the R package monitoR. Bioacoustics, 25(2), 177-196.
Knight, E., Hannah, K., Foley, G., Scott, C., Brigham, R., & Bayne, E. (2017). Recommendations for acoustic recognizer performance assessment with application to five common automated signal recognition programs. Avian Conservation and Ecology, 12(2).
Kotsiantis, S. B., Zaharakis, I., & Pintelas, P. (2007). Supervised machine learning: A review of classification techniques. Emerging artificial intelligence applications in computer engineering, 160, 3-24.
Landau, H. J. (1967). Sampling, data transmission, and the Nyquist rate. Proceedings of the IEEE, 55(10), 1701-1706.
Larsen, T. H., Lopera, A., & Forsyth, A. (2006). Extreme trophic and habitat specialization by Peruvian dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae). The Coleopterists Bulletin, 60(4), 315-324.
Mere Roncal, C., Middendorf, E., Forsyth, A., Cáceres, A., Blake, J. G., Almeyda Zambrano, A. M., & Broadbent, E. N. (2019). Assemblage structure and dynamics of terrestrial birds in the southwest Amazon: a camera‐trap case study. Journal of Field Ornithology, 90(3), 203-214.
Newey, S., Davidson, P., Nazir, S., Fairhurst, G., Verdicchio, F., Irvine, R. J., & van der Wal, R. (2015). Limitations of recreational camera traps for wildlife management and conservation research: A practitioner’s perspective. Ambio44 (4), 624-635.
Nogueira, F. (2014). Bayesian Optimization: Open source constrained global optimization tool for Python.
O’Connell, A. F., Nichols, J. D., & Karanth, K. U. (Eds.). (2010). Camera traps in animal ecology: methods and analyses. Springer Science & Business Media.
Pérez‐Granados, C., Schuchmann, K. L., & Marques, M. I. (2020). Vocal behavior of the Undulated Tinamou (Crypturellus undulatus ) over an annual cycle in the Brazilian Pantanal: New ecological information. Biotropica, 52(1), 165-171.
R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
Reich, B. J., Pacifici, K., & Stallings, J. W. (2018). Integrating auxiliary data in optimal spatial design for species distribution modelling. Methods in Ecology and Evolution, 9(6), 1626-1637.
Royle, J. A., & Nichols, J. D. (2003). Estimating abundance from repeated presence–absence data or point counts. Ecology, 84(3), 777-790.
Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information processing & management, 45(4), 427-437.
Sullivan, B.L., C.L. Wood, M.J. Iliff, R.E. Bonney, D. Fink, and S. Kelling. 2009. eBird: a citizen-based bird observation network in the biological sciences. Biological Conservation 142: 2282-2292.
Sullivan, B. L., Aycrigg, J. L., Barry, J. H., Bonney, R. E., Bruns, N., Cooper, C. B., … & Fink, D. (2014). The eBird enterprise: an integrated approach to development and application of citizen science. Biological Conservation, 169, 31-40.
Thornton, D. H., Branch, L. C., & Sunquist, M. E. (2012). Response of large galliforms and tinamous (Cracidae, Phasianidae, Tinamidae) to habitat loss and fragmentation in northern Guatemala. Oryx, 46(4), 567-576.