References
Blatt, M. R., & Grefen, C. (2014). Arabidopsis Protocols .
Totowa, NJ: Humana Press. pp. 487–507.
Branchini, B. R., Fontaine, D. M, Southworth, T. L., Huta, B. P.,
Racela, A, Patel, K. D., & Gulick, A. M. (2019). Mutagenesis and
Structural Studies Reveal the Basis for the Activity and Stability
Properties That Distinguish the Photinus Luciferasesscintillans and pyralis . Biochemistry ,58 (42), 4293–4303. doi: 10.1021/acs.biochem.9b00719
Branchini, B. R., Southworth, T. L., Fontaine, D. M., Davis, A. L.,
Behney, C. E., & Murtiashaw, M. H. (2014). A Photinus pyralisand Luciola italica Chimeric Firefly Luciferase Produces Enhanced
Bioluminescence. Biochemistry , 53 (40), 6287–6289.doi: 10.1021/bi501202u
Brunkard, J. O., & Zambryski, P. C. (2017). Plasmodesmata enable
multicellularity: new insights into their evolution, biogenesis, and
functions in development and immunity. Current Opinion in Plant
Biology , 35 , 76–83. doi: 10.1016/j.pbi.2016.11.007
Burford, B. P., & Robison, B. H. (2020). Bioluminescent backlighting
illuminates the complex visual signals of a social squid in the deep
sea. Proceedings of the National Academy of Sciences ,117 (15), 8524–8531. doi: 10.1073/pnas.1920875117
Callaway, E. (2013). Glowing plants spark debate. Nature ,498 (7452), 15–16. doi: 10.1038/498015a
Chen, H., Zou, Y., Shang, Y., Lin, H., Wang, Y., Cai, R., Tang, X., &
Zhou, J. (2008).
Firefly
Luciferase Complementation Imaging Assay for Protein-Protein
Interactions in Plants. Plant Physiology , 146 (2),
368–376. doi: 10.1104/pp.107.111740
Chin, D. P., Shiratori, I., Shimizu, A., Kato, K., Mii, M., & Waga, I.
(2018). Generation of brilliant green fluorescent petunia plants by
using a new and potent fluorescent protein transgene. Scientific
Reports , 8 (1). doi: 10.1038/s41598-018-34837-2
Chudakov, D. M., Matz, M. V., Lukyanov, S., & Lukyanov, K. A. (2010).
Fluorescent Proteins and Their Applications in Imaging Living Cells and
Tissues. Physiological Reviews , 90 (3), 1103–1163.doi: 10.1152/physrev.00038.2009
Ckurshumova, W., Caragea, A. E., Goldstein, R. S., & Berleth, T.
(2011). Glow in the Dark: Fluorescent Proteins as Cell and
Tissue-Specific Markers in Plants. Molecular Plant , 4 (5),
794–804. doi: 10.1093/mp/ssr059
Close, D. M., Ripp, S., & Sayler, G. S. (2009).
Reporter
Proteins in Whole-Cell Optical Bioreporter Detection Systems, Biosensor
Integrations, and Biosensing Applications. Sensors , 9 (11),
9147–9174. doi: 10.3390/s91109147
Cui, B., Zhang, L., Song, Y., Wei, J., Li, C., Wang, T., Wang, Y., Zhao,
T., & Shen, X. (2014). Engineering an Enhanced, Thermostable, Monomeric
Bacterial Luciferase Gene As a Reporter in Plant Protoplasts. Ed. Hector
Candela. PLoS ONE , 9 (10), e107885.doi: 10.1371/journal.pone.0107885
Desjardin, D. E., Capelari, M., & Stevani, C. (2007).
BioluminescentMycena species from São Paulo, Brazil. Mycologia , 99(2),
317–331. doi: 10.1080/15572536.2007.11832592
Doerr, A. (2013). Nano-lantern lights the way. Nature Methods ,10 (2), 104–104. doi: 10.1038/nmeth.2356
Ellis, E. A., & Oakley, T. H. (2016). High Rates of Species
Accumulation in Animals with Bioluminescent Courtship Displays.Current Biology , 26 (24), 1916–1921.doi: 10.1016/j.cub.2016.05.043
England, C. G., Ehlerding, E. B., & Cai, W. (2016). NanoLuc: A Small
Luciferase Is Brightening Up the Field of Bioluminescence.Bioconjugate Chem , 27 (5), 1175–1187.doi: 10.1021/acs.bioconjchem.6b00112
Fleiss, A., & Sarkisyan, K.S. (2019). A brief review of bioluminescent
systems (2019). Current Genetics , 65 (4), 877–882.doi: 10.1007/s00294-019-00951-5
Fujii, H., Noda, K., Asami, Y., Kuroda, A., Sakata, M., & Tokida, A.
(2007). Increase in bioluminescence intensity of firefly luciferase
using genetic modification. Analytical Biochemistry ,366 (2), 131–136. doi: 10.1016/j.ab.2007.04.018
Furuhata, Y., Sakai, A., Murakami, T., Nagasaki, A., & Kato, Y. (2020).
Bioluminescent imaging of Arabidopsis thaliana using an enhanced
Nano-lantern luminescence reporter system. PLOS ONE ,15 (1), e0227477. doi: 10.1371/journal.pone.0227477
Glagoleva, A. Y., Shoeva, O. Y., & Khlestkina, E. K. (2020). Melanin
Pigment in Plants: Current Knowledge and Future Perspectives.Frontiers in Plant Science , 11 ,doi: 10.3389/fpls.2020.00770
Gosset, P., Taupier, G., Crégut, O., Brazard, J., Mély, Y., Dorkenoo,
K., Léonard, J., & Didier, P. (2020).
Excited-State
Proton Transfer in Oxyluciferin and Its Analogues. The Journal of
Physical Chemistry Letters , 11 (9), 3653–3659.doi: 10.1021/acs.jpclett.0c00839
Guan, Q., Wu, J., Zhang, Y., Jiang, C., Liu, R., Chai, C., & Zhu, J.
(2013). A DEAD Box RNA Helicase Is Critical for Pre-mRNA Splicing,
Cold-Responsive Gene Regulation, and Cold Tolerance inArabidopsis . The Plant Cell , 25 (1), 342–356.doi: 10.1105/tpc.112.108340
Haddock, S. H. D., Moline, M. A., & Case, J. F. (2010).
Bioluminescence
in the Sea. Annual Review of Marine Science , 2 (1),
443–493. doi: 10.1146/annurev-marine-120308-081028
Hall, M. P., Unch, J., Binkowski, B. F., Valley, M. P., Butler, B. L.,
Wood, M. G., Otto, P., Zimmerman, K., Vidugiris, G., Machleidt, T.,
Robers, M. B., Benink, H. A., Eggers, C. T., Slater, M. R.,
Meisenheimer, P. L., Klaubert, D. H., Fan, F., Encell, L. P., & Wood,
K. V. (2012). Engineered Luciferase Reporter from a Deep Sea Shrimp
Utilizing a Novel Imidazopyrazinone Substrate. ACS Chemical
Biology , 7 (11), 1848–1857. doi: 10.1021/cb3002478
Heidemann, A., Völkner, W., & Mengs, U. (1996). Genotoxicity of
aloeemodin in vitro and in vivo. Mutation Research/Genetic
Toxicology , 367 (3), 123–133.doi: 10.1016/0165-1218(95)00084-4
Hollis, R. P., Lagido, C., Pettitt, J., Porter, A. J. R., Killham, K.,
Paton, G. I., Glover, L. A. (2001). Toxicity of the bacterial luciferase
substrate, n -decyl aldehyde, to Saccharomyces cerevisiaeand Caenorhabditis elegans . FEBS Letters , 506 (2),
140–142. doi: 10.1016/S0014-5793(01)02905-2
Jin, S., & Daniell, H. (2015). The Engineered Chloroplast Genome Just
Got Smarter. Trends in Plant Science , 20 (10), 622–640.doi: 10.1016/j.tplants.2015.07.004
Kaskova, Z. M., Tsarkova, A. S., & Yampolsky, I. V. (2016). 1001
lights: luciferins, luciferases, their mechanisms of action and
applications in chemical analysis, biology and medicine. Chemical
Society Reviews , 45 (21), 6048–6077.doi: 10.1039/C6CS00296J
Kim, S., & Paulmurugan, R. (2021). Bioluminescent Imaging Systems for
Assay Developments. Analytical Sciences , 37 (2), 233–247.doi: 10.2116/analsci.20R003
Khakhar, A., Starker, C. G., Chamness, J. C., Lee, N., Stokke, S., Wang,
C., Swanson, R., Rizvi, F., Imaizumi, T., & Voytas, D.F. (2020).
Building customizable auto-luminescent luciferase-based reporters in
plants. eLife , 9. doi: 10.7554/eLife.52786
Knight, J. (2003). GloFish casts light on murky policing of transgenic
animals. Nature , 26 . doi: 10.1038/426372b
Kotlobay, A. A., Sarkisyan, K. S., Mokrushina, Y. A., Marcet-Houben, M.,
Serebrovskaya, E. O., Markina, N. M., Somermeyer, L. G., Gorokhovatsky,
A. Y., Vvedensky, A., Purtov, K. V., Petushkov, V. N., Rodionova, N. S.,
Chepurnyh, T. V., Fakhranurova, L. I., Guglya, E. B., Ziganshin, R.,
Tsarkova, A. S., Kaskova, Z. M., Shender, V., Abakumov, M., Abakumova,
T. O., Povolotskaya, I. S., Eroshkin, F. M., Zaraisky, A. G., Mishin, A.
S., Dolgov, S. V., Mitiouchkina, T. Y., Kopantzev, E. P., Waldenmaier,
H. E., Oliveira, A. G., Oba, Y., Barsova, E., Bogdanova, E. A.,
Gabaldón, T., Stevani, C. V., Lukyanov, S., Smirnov, I. V., Gitelson, J.
I., Kondrashov, F. A., & Yampolsky, I. V. (2018).
Genetically
encodable bioluminescent system from fungi. Proceedings of the
National Academy of Sciences , 115 (50), 12728–12732.doi: 10.1073/pnas.1803615115
Krichevsky, A., Meyers, B., Vainstein, A., Maliga, P., & Citovsky, V.
(2010). Autoluminescent Plants. Ed. Vladimir N. Uversky. PLoS
ONE , 5 (11), e15461. doi: 10.1371/journal.pone.0015461
Kwak, S., Giraldo, J. P., Wong, M. H., Koman, V. B., Lew, T. T. S., Ell,
J., Weidman, M. C., Sinclair, R. M., Landry, M. P., Tisdale, W. A., &
Strano, M. S. (2017).
A
Nanobionic Light-Emitting Plant. Nano Letters , 17 (12),
7951–7961. doi: 10.1021/acs.nanolett.7b04369
Kwak, S., Lew, T. T. S., Sweeney, C. J., Koman, V. B., Wong, M. H.,
Bohmert-Tatarev, K., Snell, K. D., Seo, J. S., Chua, N., & Strano, M.
S. (2019). Chloroplast-selective gene delivery and expression in planta
using chitosan-complexed single-walled carbon nanotube carriers.Nature Nanotechnology , 14 , 447–455.doi: 10.1038/s41565-019-0375-4
Marin Viegas, V. S., Ocampo, C. G., & Petruccelli, S. (2017).
Vacuolar
deposition of recombinant proteins in plant vegetative organs as a
strategy to increase yields. Bioengineered , 8 (3),
203–211. doi: 10.1080/21655979.2016.1222994
Masuda, H., Takenaka, Y., Yamaguchi, A., Nishikawa, S., & Mizuno, H.
(2006). A novel yellowish-green fluorescent protein from the marine
copepod, Chiridius poppei, and its use as a reporter protein in HeLa
cells. Gene , 372 , 18–25.doi: 10.1016/j.gene.2005.11.031
Meighen, E. A. (1991). Molecular biology of bacterial bioluminescence.Microbiological Reviews , 55 (1), 123–142.doi: 10.1128/MMBR.55.1.123-142.1991
Mitiouchkina, T., Mishin, A. S., Somermeyer, L. G., Markina, N. M.,
Chepurnyh, T. V., Guglya, E. B., Karataeva, T. A., Palkina, K. A.,
Shakhova, E. S., Fakhranurova, L. I., Chekova, S. V., Tsarkova, A. S.,
Golubev, Y. V., Negrebetsky, V. V., Dolgushin, S. A., Shalaev, P. V.,
Shlykov, D., Melnik, O. A., Shipunova, V. O., Deyev, S. M., Bubyrev, A.
I., Pushin, A. S., Choob, V. V., Dolgov, S. V., Kondrashov, F. A.,
Yampolsky, I. V., & Sarkisyan, K. S. (2020). Plants with genetically
encoded autoluminescence. Nature Biotechnology .doi: 10.1038/s41587-020-0500-9
Modestova, Y., & Ugarova, N. N. (2016). Color-shifting mutations in the
C-domain of L. mingrelica firefly luciferase provide new information
about the domain alternation mechanism. Biochimica et Biophysica
Acta (BBA) - Proteins and Proteomics , 1864 (12), 1818–1826.doi: 10.1016/j.bbapap.2016.09.007
Oba, Y., Suzuki, Y., Martins, G. N. R., Carvalho, R. P., Pereira, T. A.,
Waldenmaier, H. E., Kanie, S., Naito, M., Oliveira, A. G., Dörr, F. A.,
Pinto, E., Yampolsky, I. V., & Stevani, C. V. (2017). Identification of
hispidin as a bioluminescent active compound and its recycling
biosynthesis in the luminous fungal fruiting body. Photochemical
& Photobiological Sciences , 16 (9), 1435–1440.doi: 10.1039/C7PP00216E
Ow, D. W., DE Wet, J. R., Helinski, D. R., Howell, S. H., Wood, K. V.,
& Deluca, M. (1986). Transient and stable expression of the firefly
luciferase gene in plant cells and transgenic plants. Science ,234 (4778), 856–859. doi: 10.1126/science.234.4778.856
Pirrung, M. C., Carlson, A. D., De Howitt, N., & Liao, J. (2019).
Synthesis and bioluminescence of thioluciferin. Bioorganic &
Medicinal Chemistry Letters , 29 (19).doi: 10.1016/j.bmcl.2019.07.050
Purtov, K. V., Petushkov, V. N., Baranov, M. S., Mineev, K. S.,
Rodionova, N. S., Kaskova, Z. M., Tsarkova, A. S., Petunin, A. I.,
Bondar, V. S., Rodicheva, E. K., Medvedeva, S. E., Oba, Y., Oba, Y.,
Arseniev, A. S., Lukyanov, S., Gitelson, J. I., & Yampolsky, I. V.
(2015). The Chemical Basis of Fungal Bioluminescence. Angewandte
Chemie International Edition , 54 (28), 8124–8128.doi: 10.1002/anie.201501779
Reeve, B., Sanderson, T., Ellis, T., & Freemont, P. (2014).Bioluminescence: Fundamentals and Applications in Biotechnology -
Volume 2 . Berlin, Heidelberg: Springer Berlin Heidelberg. pp. 3–30.
Reuter, D. N., Stewart, C. N., & Lenaghan, S. C. (2020). Lighting the
Way: Advances in Engineering Autoluminescent Plants. Trends in
Plant Science , 25 (12), 1176–1179.doi: 10.1016/j.tplants.2020.08.004
Saito, K., Chang, Y., Horikawa, K., Hatsugai, N., Higuchi, Y., Hashida,
M., Yoshida, Y., Matsuda, T., Arai, Y., & Nagai, T. (2012). Luminescent
proteins for high-speed single-cell and whole-body imaging. Nature
Communications , 3 (1). doi: 10.1038/ncomms2248
Sanchez, E., Artuso, E., Lombardi, C., Visentin, I., Lace, B., Saeed,
W., Lolli, M. L., Kobauri, P., Ali, Z., Spyrakis, F., Cubas, P.,
Cardinale, F., & Prandi, C. (2018). Structure–activity relationships
of strigolactones via a novel, quantitative in planta bioassay.Journal of Experimental Botany , 69 (9), 2333–2343.doi: 10.1093/jxb/ery092
Sasaki, K., Kato, K., Mishima, H., Furuichi, M., Waga, I., Takane, K.,
Yamaguchi, H., & Ohtsubo, N. (2014). Generation of fluorescent flowers
exhibiting strong fluorescence by combination of fluorescent protein
from marine plankton and recent genetic tools in Torenia
fournieri Lind. Plant Biotechnology , 31 (4), 309–318.doi: 10.5511/plantbiotechnology.14.0907a
Stewart, C. N. (2006). Go with the glow: fluorescent proteins to light
transgenic organisms. Trends in Biotechnology , 24 (4),
155–162. doi: 10.1016/j.tibtech.2006.02.002
Stewart, C. N., Abudayyeh, R. K., & Stewart, S. G. (2018). Houseplants
as home health monitors. Science , 361 (6399), 229–230.doi: 10.1126/science.aau2560
Strack, R. (2019). Building up bioluminescence. Nature Methods ,16 (1), 20–20. doi: 10.1038/s41592-018-0274-x
Topalov, G., & Kishi, Y. (2001). Chlorophyll Catabolism Leading to the
Skeleton of Dinoflagellate and Krill Luciferins: Hypothesis and Model
Studies. Angewandte Chemie International Edition , 40 (20),
3892–3894.doi: 10.1002/1521-3773(20011015)40:20<3892::AID-ANIE3892>3.0.CO;2-H
Valiadi, M., & Iglesias-Rodriguez, D. (2013). Understanding
Bioluminescence in Dinoflagellates—How Far Have We Come?Microorganisms , 1 (1), 3–25.doi: 10.3390/microorganisms1010003
Verdes, A., & Gruber, D. F. (2017). Glowing Worms: Biological,
Chemical, and Functional Diversity of Bioluminescent Annelids.Integrative and Comparative Biology , 57 (1), 18–32.doi: 10.1093/icb/icx017
Wainwright, P. C., & Longo, S. J. (2017). Functional Innovations and
the Conquest of the Oceans by Acanthomorph Fishes. Current
Biology , 27 (11), 550–557. doi: 10.1016/j.cub.2017.03.044
Wang, F., Zhang, N., Guo, Y., Gong, B., & Li, J. (2020). Split Nano
luciferase complementation for probing protein‐protein interactions in
plant cells. Journal of Integrative Plant Biology , 62 (8),
1065–1079. doi: 10.1111/jipb.12891
Watkins, O. C., Sharpe, M. L., Perry, N. B., & Krause, K. L. (2018).
New Zealand glowworm (Arachnocampa luminosa) bioluminescence is produced
by a firefly-like luciferase but an entirely new luciferin.Scientific Reports , 8 (1).doi: 10.1038/s41598-018-21298-w
Hu, W., & Cheng, C. (1995). Expression of Aequorea green
fluorescent protein in plant cells. FEBS Letters , 369 ,
331–334. doi: 10.1016/0014-5793(95)00776-6
Yao, Z., Zhang, B. S., Steinhardt, R. C., Mills, J. H., & Prescher, J.
A. (2020). Multicomponent Bioluminescence Imaging with a π-Extended
Luciferin. Journal of the American Chemical Society ,142 (33), 14080–14089. doi: 10.1021/jacs.0c01064
Yu, Y., Yu, P., Chang, W., Yu, K., & Lin, C. (2020). Plastid
Transformation: How Does it Work? Can it Be Applied to Crops? What Can
it Offer? International Journal of Molecular Sciences ,21 (14), 48–54. doi: 10.3390/ijms21144854
Yuan, M., Ma, X., Jiang, T., Gao, Y., Cui, Y., Zhang, C., Yang, X.,
Huang, Y., Du, L., Yampolsky, I., & Li, M. (2017). Prolonged
bioluminescence imaging in living cells and mice using novel
pro-substrates for Renilla luciferase. Organic &
Biomolecular Chemistry , 15 (48), 10238–10244.doi: 10.1039/C7OB01656E
Table. 1 . Summary of the reported glowing plants.