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Abstract
Adult sex ratio and fecundity are key population parameters in sustainable wildlife 
management, but inferring these requires estimates of the density of at least three age/sex 
classes of the population (male and female adults and juveniles). We used an array of 36 
wildlife camera traps during 2–3 weeks in autumn prior to harvest during two consecutive 
years, and recorded white-tailed deer adult males, adult females and fawns from the pictures. 
Simultaneously, we collected fecal DNA (fDNA) from 92 20mx20m plots placed in 23 
clusters of four plots between the camera traps. We identified individuals from fDNA 
samples with microsatellite markers and estimated the total sex ratio and population density 
using Spatial Capture Recapture (SCR). The fDNA-SCR analysis concluded equal sex ratio 
in the first year and female bias in the second year, and no difference in space use between 
sexes (fawns and adults combined). Camera information was analyzed in a Spatial Capture 
(SC) framework assuming an informative prior for animals’ space use, either (1) as estimated
by fDNA-SCR (same for all age/sex classes), (2) as assumed from the literature (space use of 
adult males larger than adult females and fawns), (3) by inferring adult male space use from 
individually-identified males from the camera pictures. These various SC approaches 
produced plausible inferences on fecundity, but also inferred total density to be lower than 
the estimate provided by fDNA-SCR in one of the study years. SC approaches where adult 
male and female were allowed to differ in their space use suggested the population had a 
female-biased adult sex ratio. In conclusion, SC approaches allowed estimating the pre-
harvest population parameters of interest and provided conservative density estimates. 
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Introduction

Sustainable management of game animals requires knowledge of their population densities, 
as well as of key markers of population performance such as adult sex ratio and fecundity 
(Caughley & Sinclair 1994). When a population is harvested, its sex and age ratio is impacted
with the extent depending on the hunting regulations and local practices. In Nordic countries, 
for example, large ungulates are regulated via hunting license practices aimed to harvest 
primarily young animals and adult males, resulting in high proportion of females with high 
reproductive output (Langvatn and Loison 1999, Saether, et al 2004). Obtaining estimates of 
adult sex ratio and fecundity from free-ranging populations is not trivial as it requires 
estimating densities of at least three classes of animals in the population: adult males, adult 
females and juveniles. 

Wildlife cameras provide a cost-efficient approach to obtain information on wildlife (Burton 
2015, Sollman 2018). In particular, their lowering cost makes them increasingly attractive for
larger citizen science projects. These data collection schemes can cover various purposes, e.g.
from phenology and species-specific assessment to biodiversity-level data collection 
(Steenweg et al. 2017). Whereas earlier studies routinely were based on the raw count data of 
pictures or videos that wildlife cameras collect, it has become clear in the last decade or so 
that proper use of information from wildlife cameras require statistical analyses for which 
various approaches are possible (Burton et al. 2015, Dénes, et al. 2015, Sollman 2018). When
individuals are identifiable from camera pictures, a group of cameras may provide spatially 
explicit capture recapture information on individuals in a non-invasive manner. Such data can
be analyzed using Spatial Capture Recapture (SCR) models to provide information on density
and space use (Efford 2004, Efford & Fewster 2013, Royle, et al. 2013a). The SCR approach 
assumes animals have a activity center where their probability to be detected by the camera 
or other “trap” is maximal. This detection probability then declines with increasing distance 
between the activity center and the trap assuming a specific function that depends on the 
space use. Density is then the number of activity centers in what is termed the state-space 
(area covered by the traps and a certain buffer). As the SCR approach is spatially explicit, its 
basic implementation can be extended with geographical information to provide insights in 
general ecology of the species including resource selection (Royle et al. 2013b) and 
landscape connectivity (Sutherland et al. 2015). The SCR approach can furthermore readily 
integrate information obtained using complementary approaches such as GPS or radio 
tracking location data (Royle, et al. 2013). 

When individuals cannot be identified from the pictures, Spatial Capture (SC) is one possible 
alternative (Chandler & Royle 2013) for analyzing the data. The SC method is also referred 
to as "Unmarked SCR" (Johnson 2019) or "Spatial Correlated Count" (Burgar et al. 2018).
SC is essentially an SCR approach and hence assumes the same parameters as SCR, except it 
only requires information on total counts of the animals at each camera trap instead of 
individual-specific counts (Chandler & Royle 2013). Amongst other alternative approaches 
also accounting for imperfect detection (Dénes, et al. 2015), SC stands out by inferring the 
density on the basis of the spatial correlation expected in counts made at locations sufficiently
close to each other for individuals to move between them (Chandler & Royle 2013, Ramsey 
et al. 2015). For example, when a group of cameras are placed such that the distance between 
them is within the home range area of the focal species, the spatial correlations arise because 
same individuals are potentially recorded at multiple cameras. Because inferring density on 
the basis of count data alone is highly demanding, the SC approach requires prior or auxiliary
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information, typically on the space use of the target species (Chandler & Royle 2013, Ramsey
et al. 2015). 

Other approaches to infer density from wildlife camera pictures that do not require individual 
identification include approaches based on animal movement characteristics (Random 
Encounter Model, Rowcliffe, et al. 2008) and analyses based on distance sampling (Howe, et 
al. 2017, Rowcliffe, et al. 2011) and Time-To-Encounter models (Moeller et al. 2018) that of 
course come with assumptions of their own (for an overview, see Sollman 2018). Whereas 
SC analyses require only a count of animals in each picture, the Random Encounter Model 
and distance sampling require additional interpretation of pictures. In particular, they require 
inferring the distance of the animal from the camera and, depending on the camera setting, 
analyzing series of pictures recording the same animal (e.g. to infer movement speed and to 
avoid pseudoreplication). In addition, these approaches are design-based (as opposed to 
ecological-based SCR/SC) and are less flexible incorporating model violations. 

Here we study the potential of wildlife cameras to infer pre-harvest density of white-tailed 
deer in southern Finland using an SC approach. Our objective is to infer both sex and age 
(juvenile vs adult) classes within a “snap-shot” setting of two to three weeks under which the 
population closure assumption (no births, deaths, emigration or immigration) is likely to hold.
By using cameras in late summer, fawns (juveniles) and female and male adult white-tailed 
deer can be readily distinguished. During this time of the year adult males carry antlers, and 
fawns are large enough to move around to be detected by wildlife cameras, and can be 
identified as juveniles as they typically still have a spotted pelage and are also smaller in size 
than adult females. As a consequence, the required interpretation of pictures is restricted to 
counting the animals in these three age and sex classes (adult males, adult females and fawns)
for each picture. This level of picture interpretation requires minimal training of personnel or 
picture analysis software for automated interpretation, and is anticipated to scale up readily. 
Furthermore, by studying the population prior to harvest, its density is at its annual peak 
which likely facilitates obtaining sufficient detections for analysis. 

Inferring density of white-tailed deer fawns and females in an SC setting requires additional 
information, for example on the movement of individuals during the study period (Ramsey et 
al. 2015). In ungulates (and many other mammals) adult males typically have larger home 
ranges than females (white-tailed deer: Lesage, et al. 2000, Dechen Quinn, et al. 2013, 
Honzová 2013). Juvenile white-tailed deer in their first 2 months are still heavily dependent 
on their mothers, and are relatively inactive with very small home ranges during this time, but
become after this period rapidly more semi-independent (Hiller et al. 2009). Even though 
home ranges are well described for many populations and thus literature estimates are 
available, space use can still differ strongly between sites making it unclear what is the 
applicability of the literature estimates. For this reason, application of SC benefits greatly 
from collecting telemetry  information on a subset of individuals during the study using e.g. 
GPS collars (Furnas, et al. 2018). Nevertheless, auxiliary information on space use can be 
expensive to collect, and typically require invasive methods. In this study, we explore three 
non-invasive approaches for providing information of the space use of the white-tailed deer.

First, to provide information on space use as well as an estimate of total density of white-
tailed deer, we collect non-invasive fecal DNA samples for individual identification 
simultaneously with the wildlife camera survey. DNA-based individual identification allows 
SCR to be conducted (Royle, et al. 2013a). When inferring density in late summer, both 
adults and juveniles are present in the population, but because DNA does not allow aging of 
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individuals, the approach is unable to distinguish these age groups. Hence, DNA-based SCR 
presents a kind of weighted average across fawns and adults for each sex in the study 
population. Furthermore, SCR analysis of fecal DNA provides an estimate of population 
density, which is independent from estimates derived from wildlife camera data. Second, we 
use literature-based values of space use of white-tailed deer in Finland. Honzová (2013) 
reported monthly home range areas of male and female white-tailed deer that were fitted with
a GPS collar. Collared white-tailed deer were of different age classes and tracked in several 
sites across Finland, and hence are not specific to our study population. It is, however, the 
only published statistics that we are aware of, that is of most relevance to our study 
population. Third, the white-tailed deer males can be individually identified on the basis of 
their antler characteristics, which allows SCR analysis. Thus, we can from the wildlife 
camera data itself infer space use and density of adult males in the population using SCR and 
combine this in one model with SC analysis on adult females and fawns.

Our study question is whether these SC approaches can provide reasonable inferences of 
density, adult sex ratio and fecundity given what we know about these demographic 
parameters in white-tailed deer. We repeated the study in two years and used fecal DNA-
based individual encounter histories analyzed in a Spatial Capture Recapture (SCR) 
framework for comparison.

Materials and Methods

Study area
The study area (60° 52' 7"N, 22° 49' 13"E (WGS84)) was situated in a landscape typical for 
southern Finland. The landscape is a mixture of fields and forest in approximately equal 
proportion. Forest patches consist mainly of coniferous dominated tree species (spruce Picea 
abies and pine Pinus sylvestris) or then mixed with deciduous trees (birch Betula spp. and 
aspen Populus tremula). 

fDNA Sample collection
fDNA was sampled in 92 sample plots in both study years. Each plot was 20m x 20m in size 
and marked in the field with ribbons. Plots were grouped in cluster following the design 
advocated by Sun et al. (2014). Earlier work on fDNA-based SCR in white-tailed deer in 
Finland (Poutanen et al. 2019) based on clustered sample plots included simulations that 
suggested that for a study period of 2-3 weeks, the spacing between clusters should be less 
than 500m, and we here spaced clusters at about 300m distances. We used 23 clusters of four 
plots. The four plots in a cluster were placed in a square with their center coordinates 60m 
apart. Legal restrictions on placing cameras in planted fields prohibited a strict regularity of 
the grid (Fig. 1). Plots were emptied of all fecal pellets on the first visit. In 2016, sample plots
were visited with weekly interval for 2 occasions after the initial cleaning visit , hence 
covering a period of 14 days. In 2017, sample plots were visited with four-day interval for 5 
occasions after the initial cleaning (hence covering a period of 20 days). At each visit to a 
plot, few fecal pellets were sampled from each pellet group in a resealable plastic bag after 
which all remaining pellets were removed from the plot. Samples were frozen at -20°C until 
further analysis.

DNA extraction and identification of individuals
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We followed the protocol of Poutanen et al. (2019) for DNA extraction and individual 
identification. A minor modification for the microsatellite PCR protocol was that the final 
concentration of primer Rt5 was decreased to half (0.1 μmol/l) and BSA concentration to one 
tenth (0.1 μg/μl) of the original concentration. Briefly, 14 microsatellites were used and at 
least three PCR replicates were performed for each DNA sample. Based on Cervus 3.0.7 
(Kalinowski et al. 2007), the observed probability of identity between siblings (PIDsib) using
seven least informative loci was low (< 0.005), and follows the recommendations (Waits et 
al. 2001). We allowed a maximum of two mismatches in different loci between the genotypes
in order to being matched to same individual. Therefore, if 11 or more loci were amplified, 
we used the sample in identification analysis. The rule for constructing the final consensus 
genotype based on at least three replicate runs was that for each locus the consensus is a 
homozygous locus if the alleles of homozygous loci were amplified three times and the 
consensus is a heterozygous locus if the heterozygous loci amplified two times. At least one 
DNA sample of each identified individual were sexed with X- and Y- chromosome specific 
primer pair ZFX/ZFY. Based on results of Poutanen et al. (2019) we assumed that the 11 to 
14 microsatellite markers used here were sufficient to exclude possible roe deer DNA from 
further analyses.

Camera data collection
A total of 36 trail cameras (Uovision UV595) were placed in the study area, at approximately
300m distances between adjacent cameras in between fecal DNA sample clusters (Fig. 1). 
Cameras were set to take bursts of 3 pictures when triggered with a five second delay to 
being potentially triggered again. Cameras were operational before the period in which fecal 
DNA was sampled but we here use pictures recorded during the same sampling period as 
fDNA was samples (i.e. 14 days in 2016; 20 days in 2017).

All obtained pictures were interpreted by a human (JP (author Jenni Poutanen) 2016, research
assistant 2017) scoring for each picture the number of fawns, adult male and adult female 
white-tailed deer. The pictures of the white-tailed deer where the sex or age could not be 
identified were categorized as white-tailed deer of unknown class, and were discarded from 
further analyses. After this screening, males were identified from all the pictures of males on 
the basis of their antlers (JP in 2016, JP and research assistant in 2017). When there were two
observers (2017), male identity was only assigned if both were in agreement. Lastly, author 
JP again evaluated the male identity assignments of 2017 data paying special attention to 
putative male individuals that were recorded at different cameras. Pictures where the male 
individual could not be reliable identified were classified as “unknown adult male”. 
 

Encounter data
We considered consecutive pictures taken by a camera within 1 hour as non-independent (i.e. 
the pictures are potentially from the same individual). All pictures where the time interval 
between consecutive pictures was less than 1 hour were therefore grouped into what we here 
term “encounter event”. For each encounter event, the numbers of adult females, adult males 
and fawns was inferred to be the maximum number of females, males and fawns that could 
be counted in one picture taken during each encounter event (not necessarily the same picture
for each class). We considered each 24-hour period as one occasion.

fDNA-SCR model in secr
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We fitted a standard likelihood-based SCR model (e.g. Efford & Fewster 2013) on the 
individuals identified from fDNA using secr (Efford 2018) package implemented in R (R 
Core Team 2018). We used the central location of each fDNA sample plot as its spatial 
coordinate. In secr terminology, fDNA sample plots are “proximity detectors”. The SCR 
model implemented estimates the detection at the activity center (g0), and assumed that the 
decline in detection probability with distance followed a half-normal function specified by 
the space use parameter (Effort 2018). The state-space consisted of the locations of the 
fDNA sample plots buffered by 2000m. The chosen buffer was larger than the buffer 
suggested by the diagnostics of secr(such as suggest.buffer and esa.plot), but 
was used to keep the same state-space in all analyses including the SC analyses (see below). 
We compared various candidate models based on their AICc values. Sex of the individual 
was included as a hybrid mixture in all models (Efford 2018). Candidate models considered 
included various combinations of covariates for the detection probability parameter g0 and 
space-use parameter , where both parameters could be (1) constant, (2) sex-dependent, as 
well as that g0 could be (3) occasion-specific, (4) show a behavioral response (i.e. detection in
a trap changes after an individual has been encountered once in that trap).  
We used secrdesign (Efford 2019) to evaluate bias and precision of estimates of density 
and  given our spatial layout of sampling plots. We used as simulation parameters secr-
derived estimates of g0, density and σ obtained under the top model. Based on these 
parameters, secrdesign simulated 250 data sets to be analysed using secr. Relative bias 
(the error (difference between inferred and simulated value) divided by the simulated value), 
and precision (computed as root mean square error (RMSE)) were computed. We thus 
performed simulation analysis to evaluate the performance of our specific design (i.e., 
location of sample plots, number of sampling occasions). Through simulations we 
investigated how increasing the number of sampling occasions affected relative bias and 
RMSE. In case our sampling was insufficient, increasing the number of sampling occasions 
causes a reduction in relative bias. 

Spatial Capture analysis of camera data 
Camera traps are placed at fixed points in space. The state space considered in the model is 
the boundary box of the camera traps surrounded by a buffer area. Each camera can record 
same individuals multiple times. Pictures of white-tailed deer were classified into 3 groups 
(g): adult males (m), adult females (f) and fawns (c). We used data augmentation (Royle, et 
al. 2013a), assuming there were a maximum of Mm, Mf and Mc for the groups males, females 
and fawns respectively in the state space. We assumed the latent state for individual i 
belonging to group g to be present in the state space was

z ig
❑ Bernoulle (ψ g ), (1)

where ψgdenotes the probability for an individual belonging to group g to be in the state-
space (z ig

❑
=1) or not (z ig

❑
=0). If it is in the state space, individual i belonging to group g can 

be observed at camera trap j. Assuming that the number of observations y of individual i 
belonging to group g at camera trap j is Poisson distributed, we can model this number of 
observations over all Kj occasions that trap j was active as

y igj
❑ Poisson (K j λigj

❑ ), (2)
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where λ igjis the encounter rate of individual i at camera trap j. We assumed the encounter rate 
was Gaussian bivariate distributed around individual i’s activity center si, such that for trap j 
located at xj in space

λ igj
❑
=λ0g

❑ exp(
−‖x j−si‖

2

2σ g
2 )zig❑, (3)

where ‖x j−s i‖ denotes the Euclidean distance between activity center and trap location, λ0g 
is the baseline detection probability for group g, and σ g a group-specific parameter which 
scaled how rapidly detection drops as the trap is placed further from the activity center of 
each group. The activity centers s are latent variables, which are, by definitions, placed in the 
state-space considered. These equations are central to Spatial Capture Recapture (SCR) 
models (Royle, et al. 2013a) and are hence applicable when individual i can be identified.

When individual identification is not possible, the total number of adult males (m), adult 
females (f) and fawns (c) can still be counted, because these groups can be readily 
distinguished on the pictures. Thus, without individual identification the available encounter 
history is trap-specific total of animals belonging to the various groups g encountered. These 
totals are, conceptually, the result of summing up over all latent observations yigj (eq. (1) 
(Chandler & Royle 2013). That is, the total number of observations in trap j for each group g 
over all K occasions that trap j was active is

n jg
❑ Poisson (K j

❑ Λ jg
❑ ), (4)

 
where Λ jg

❑  represents the summed up encounter rate for every camera trap j over all 
individuals i belonging to group g which are observable in the state-space, such that

Λ jg
❑
=λ0g

❑ ∑
i=1

M g

exp(
−‖x j−si‖

2

2σ g
2 ) zig❑. (5)

In terms of data obtained, for each camera trap j, n jc .
❑  and n jf .

❑  and n jm .
❑  are the sums of fawns, 

adult females and adult males, respectively, over all encounter events.

The above formulation assumes homogeneity in encounter probability and encounter rate 
across occasions and cameras, as well as homogenous density across the state-space. All of 
these assumptions can be relaxed by adjustment of the above outlined basic model 
formulation as detailed in Royle et al. (2013a). However, as parameters in the SC model are 
inferred only on the basis of counts, which is demanding, more complicated model 
formulations were not attempted.

Inferences on the number of individuals present in the state-space can be derived from the 
latent states. In particular, the total population size of individuals of group g in the state space
was 

N g=∑
i=1

M g

z ig
❑. (6)
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Adult sex ratio was calculated as the ratio of adult males to the sum of adult males and 

females in the state space, 
Nm

(Nm+N f )
 and fecundity as the ratio of fawns to females in the state

space 
N c

N f
. Density is the number of individuals in the state space divided by the size of the 

state-space, and was expressed as individuals per km2.

SCR on camera data for males combined with SC on camera data for females and fawns

The above model formulation can consider two subsets of a single population; individually 
identifiable animals (marked individuals) and those that cannot be individually identified 
(unmarked individuals). In our case, we consider a model formulation in which males are 
considered as marked (individually identified from pictures by their antlers). For the model 
formulation in which males are considered marked, we calculated for each male individual i 
the total number of encounter events it was recorded in trap j over all K occasions, y imj

❑  (eq.
(2)). However, it was not always possible to identify each male on the basis of the 
characteristics of the antlers due to movement or incomplete view of the antlers, resulting in 
recordings of unidentified males. Ignoring such unidentified males will downward bias the 
encounter rate for males. We therefore incorporated a correction factor cID following (Royle, 
et al. 2013a, p.514) and modified eq. (2) by assuming that the number of encounter events for
individual i belonging to group m (male) in trap j was 

y imj
❑ Poisson (K j λimjc ID), (7)

where λ imj denotes the encounter rate for individual i belonging to group m (male) in trap j (as
given by eq. 3), cID is the probability that a male is identified individually, Kj the number of 
occasions trap j was active. The probability cID was assumed to be related to the total number 
of recorded males nTOT and the number of identified males nID as

nID
(c ID , nTOT )

¿
. (8)

That is, we assumed no spatial or temporal heterogeneity in this probability. More complete 
approaches that also use the spatial information of identified and non-identified individuals 
have been employed (Jiménez et al. 2019). The primary purpose of our procedure is to 
provide unbiased estimates of the encounter rate for males such that it reflects all males (both 
identifiable and non-identifiable).

Implementation of the SC and SC/SCR models
All SC models were implemented in JAGS (Plummer 2003). Priors on s are uniformly 
distributed throughout the state-space. We used beta(1,1) priors on all ψ, and uniformly 
distributed priors on λ (0,5). Priors for cID was beta(1,1). The SC model requires informative 
priors (Chandler & Royle 2013) and we consider here three versions with the following 
acronym and description: 

1. SC-fDNA) The prior for the movement parameter sigma (σ ) of adult males, adult females 
and fawns is the sigma inferred in our analysis of fDNA-based SCR specific to the year 
studied. Thus, the prior for sigma in the SC model for 2016 is the sigma estimated by SCR on
the basis of the 2016 fDNA data, and likewise for 2017.
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2.  SC-lit)  The prior  for  the  sigma of  adult  males,  adult  females  and fawns is  the sigma
inferred  from literature.  Movement  data  obtained  from GPS-collared  white-tailed  deer  in
Finland showed that the 95% usage of the home-range area during August and September
was approximately 156ha and 733ha per month for females and males respectively (Honzová
2013). Using an approximation based on the chi-square distribution and assuming the area
used is bivariately normal (Royle, et al. 2013a, p. 136),

 σ=√
A0.95

χ 2
2
(Pr=0.95)π

=√
A0.95
5.99 π

 , (9)

where A0.95 is the area with 95% probability to be used around the activity center, χ2
2 (Pr=0.95 )

is the chi-square value for 2 degrees of freedom at 95% probability. From this approximation,
it follows that a naïve estimate of the parameter in the bivariate normal detection function 
was 287m and 624m for females (assumed identical for fawns) and males respectively. This 
movement parameter is for the time period of one month (30 days) but we here implement 
these values for each of the study years despite the fact that they are shorter time periods.

3. SC-SCR) The prior for adult male sigma was uninformative (uniform in the range of 0m to
2000m) as the posteriors for male sigma were inferred using males identified from camera 
pictures in SCR analysis as explained above. For adult females and fawns we assumed an 
informative prior set at fDNA-SCR inferred sigma which was considered the most relevant 
parameter as it was specific to the study area and year. 

We provide the script of all the three models listed above in the supplement.

Given the Gaussian distribution of sigma assumed in the source method (home range or 
fDNA-SCR), we assumed a normal distribution for the informative prior of sigma around its 
point value (as detailed above) with a variance chosen such that the distribution adhered to 
the source. That is, for sigma based on fDNA, the variance matched the confidence interval 
assuming the entire confidence interval was approximately four times the square root of the 
variance (i.e. four times the standard error under assumption of a Gaussian distribution). For 
the literature estimate, the variance matched the uncertainty in the estimate presented (males: 
5000; females: 1000). Adapting and burn-in was 1000 and 4000 iterations respectively with 
subsequent 1000 or 1500 posterior samples drawn of each of 3 chains after thinning 20. The 
length of the posterior samples was adjusted to make sure the Monte-Carlo error was below 
5% of the standard deviation of each parameter. Resulting posterior chains exhibited low 
autocorrelation and good mixing (R-hat below 1.1 for all parameters). 

Data accessibility
Data belonging to this article is available from Zenodo data repository 10.xxxx/zenodo.xxxx. 
(to be completed upon publication)
 

Results

SCR analysis of fDNA data
In 2016, we carried out 2 sampling occasions with a week interval and obtained individual 
encounters of 12 identified males (10 encountered once (not recaptured) and 2 three times) 
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and 26 females (9 encountered once (not recaptured), 5 twice, 9 three times, 1 four times and 
2 five times). Model comparison showed that the most parsimonious model for 2016 had sex-
specific detection probability where the detection probability for females was about five-fold 
that of males, but there was no clear evidence for sex-specific space use ( parameter) and 
the sex ratio was equal (Table 1). 
 
In 2017, in the same fDNA plots sampled over 5 occasions with four day interval, 41 females
were identified (22 encountered once, 6 twice, 8 three times, 4 four times, 1 seven times) and 
25 males (15 encountered once, 5 twice, 5 three times). The most parsimonious model for 
2017 fDNA data included occasion-specific detection probability, with support for occasion- 
specific detection, but again no clear support for sex-specific  (Table 1). Sex ratio in 2017 
showed evidence of female bias. As expected for fDNA-based encounters, a behavioral 
response was not supported (Table 1). Overall, the top models’ parameters for both years 
agreed reasonably well given that their confidence limits were overlapping. 

We conducted simulations to evaluate the bias and precision of our fDNA based sampling 
design. Simulations were based on the year-specific density and  of the top model (Table 2) 
and we assumed a constant detection probability g0 conservatively set at 0.03 for both study 
years (Table 2). Simulations suggested for 2016 that our design provided an unbiased 
estimate of  but that density was overestimated (Fig. 2a,c). In particular, increasing the 
number of occasions from 2 to 5 would reduce relative bias in density from +8.8% to 0% (Fig
2a). In 2017, however, the relative bias in density for the used number of sampling occasions 
(5) was only +3.4% and was largely unaffected by increasing the number of sampling 
occasions (Fig 2b) and that  was estimated without bias. 

Wildlife camera data 
Camera traps collected a high number of pictures in both years; many of these pictures were 
putative duplicated records, and the number of encounter events (presumably independent 
recordings) was at most 1.5 encounter event per day per camera (Table 2). Relatively few 
encounter events contained an adult male compared to adult female or fawn (Table 2). Adult 
males could be individually identified each year on the basis of antler characteristics, 
although their numbers were restricted, especially in 2016 (Table 2). Fawns were detected 
more often than females, and the ratio of the number of pictures of fawns over the number of 
pictures of females (which can be considered as a naïve estimate of reproduction) exceeded 1 
in 2016 but not in 2017 (Table 2).

SC analysis
Because the SCR analysis based on fDNA did not find support for differing between sexes 
(Table 1), we implemented SC analysis with informative prior for , being identical for each 
class (males, females and fawns), at a year-specific value (SC-fDNA; Table 3). In addition, 
we implemented SC with priors for , where the estimate was specific for males and females 
(fawns’ identical to females’), informed by published estimates (SC-lit; Table 4). Lastly, we 
implemented SC with priors for for fawns and adult females (identical) informed at the 
year-specific values estimated by fDNA-SCR, combined with SCR for adult males on the 
basis of pictures (SC-SCR; Table 5). The latter SCR analysis indicated that adult males could 
be identified in about two-thirds of the encounter events (cID in Table 5), and that adult male 
encounter rate  was low, especially in 2017 (Table 5). The adult male  as estimated by 
camera-based SCR agreed well with the literature value (Table 5).   
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The various SC approaches estimated, in general, a lower total density compared to fDNA-
SCR (Fig. 3). In 2016, the confidence intervals generally overlapped. In 2017, however, fecal
DNA provided a higher estimate of density than the SC-based estimates from wildlife camera
pictures, except for the SC analysis that assumed male and female were identical to the 
estimated for fDNA (model “SC”) for which the confidence intervals overlapped with the 
density inferred by fDNA-SCR (Fig. 3). Because the various SC approaches all assumed that 
 for adult females and fawns were identical, the derived inference of fecundity was 
qualitatively the same across models (Table 3 – 5). The adult sex ratio was equal in the SC 
model where the  for adult males and females was assumed to be equal with the differences 
in the number of pictures taken of males and females attributed to a much lower encounter 
rate for adult males compared to adult females and fawns (Table 3; Fig. 4). Strikingly, the SC
approaches where adult male  was allowed to differ from adult female (based either on 
literature values for or SCR analysis of individually-identified male pictures) both inferred 
that the adult population was female-biased as indicated by the 95% Credible Intervals CRI 
of adult sex ratio not including 0.5; Table 4-5; Fig. 4). 

Discussion

In this study, we use an array of wildlife cameras taking pictures during a short time period 
(2–3 weeks) in late summer just prior to harvest. Our main finding is that wildlife cameras 
indeed collect a sufficient amount of information to allow calculating the population 
parameters of interest, but that they may provide different inferences than the fecal DNA-
based analyses. Firstly, based on fecal DNA the space use of males and females is not 
significantly different. This result is surprising as sex differences in movement of male and 
female adult white-tailed deer is well established (Lesage, et al. 2000, Dechen Quinn, et al. 
2013, Honzová 2013). Because DNA cannot be used to distinguish age groups, sexes in 
analyses based on fecal DNA refer to both fawns and adults. The space use inferred here by 
SCR analysis of fecal DNA agrees well with that found in an earlier study conducted in a 
different area using fecal DNA in late summer (190m; Poutanen et al. 2019). The  (for 
both sexes) inferred by using fecal DNA (305m in 2016 and 217m in 2017) agrees well with 
what is expected on the basis of published home range area of GPS-collar located white-
tailed deer adult females in Finland (287m; Honzova, et al. 2013; see material and methods 
for calculation of ). However, our SCR analysis of pictures of individually-identified adult 
males concludes that adult males have a  that is about 3-fold the  inferred by SCR of fecal 
DNA, a finding much in line with literature values. However, we cannot infer  of adult 
females using wildlife cameras as adult females cannot be individually identified. Taken 
together, nevertheless, it could be that fecal DNA-based SCR does not capture the 
heterogeneity in  between adult males and adult females in cases as ours where a substantial
part of the male population consists of juveniles that have a  more comparable to adult 
females than adult males.

Secondly, the total density inferred by fecal DNA is in general higher than the density 
inferred by SC analysis of wildlife camera data, and in one of the two study years (2017) 
significantly higher than two of the three SC models. While our a posteriori simulations 
show that the fDNA-based estimate of density in 2016 risks being an overestimate, bias for 
2017 is largely absent. Finding that SC analyses provide lower estimates of density than 
fDNA-based SCR is surprising as simulations show that, all else being equal, SC analyses 
tend to overestimate density and underestimate space use (Royle, et al. 2013a) and are 
generally imprecise (Augustine et al. 2019). At the same time, the SC model has clear 
potential for inferring density of wildlife species based on a variety of relatively simple 
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methods (Ramsey et al. 2015). Importantly, density and space use are inversely related 
(Efford et al. 2016) and with lack of information on how individuals move, an SC model’s 
conservative inference of space use typically leads to large density. We indeed find that our 
SC models typically infer  to be below the informative prior for , and thus are unlikely to 
infer density conservatively. We find that assuming literature values of , which is typically 
the only option (Chandler & Royle 2013a) provides particularly low estimates for total 
density, and is hence from that perspective most conservative. However, as a corollary, 
literature-based prior for  also infer the most female biased adult sex ratios and are hence 
not conservative from that perspective. A further, partially related, issue is that our DNA 
sampling design may be suboptimal to detect individuals moving larger distances. Based on 
provided by fDNA-SCR, which is same for adult males, adult females and fawns (305m in 
2016 and 217m in 2017), our fecal DNA clusters are at distances of what Sun et al. (2014) 
suggested for an optimal sampling design (inter-cluster spacing maximally two times ). 
Nevertheless, the wildlife cameras were placed at the same distances as DNA clusters but 
they still allow SCR analysis of adult males ( based on cameras 547m in 2016 and 989m in 
2017). One explanation for higher densities based on fecal DNA is therefore that DNA 
sampling captures primarily shorter movement such as of adult females with fawns, and 
probably adult males when moving at shorter distances. DNA captures are based on feces left
on the ground and cameras take pictures when they detect moving individuals. Somehow 
related to this aspect, these two approaches may detect different movement behaviors of adult
males. Hence, an important improvement in future studies would be to have spacing of fDNA
and camera traps both at short and longer distances in order to better capture the 
heterogeneity in  across age/sex classes.

An exciting aspect of the theory underlying Spatial Capture Recapture models is that certain 
(derived) parameters are assumed to be identical across model formulations. In particular, the
parameter describing space use as well as the number and location of the activity centers of
individuals are assumed to be the same (Royle, et al. 2013a, Kéry & Royle 2020). There are, 
however, not many studies directly comparing inferences obtained using different SCR 
methodologies (but see e.g. Burgar et al. 2018). One advantage of having SCR parameters in 
common is that data of different sources (e.g. fecal DNA and wildlife cameras, or fecal DNA 
and radiotracking data) can be combined (e.g. Gopalaswamy et al. 2012), although non-
independence of detections across methods needs to be carefully considered (Clare et al. 
2017). Combination of Spatial Capture Recapture data from DNA and from cameras typically
provide more precise estimates (Sollmann et al. 2013a; Sollmann et al. 2013b; Burgar et al. 
2018). Other studies have focused on developing “hybrid” approaches with models explicitly 
combining count and SCR data, because count data is easier and cheaper to obtain as it does 
not require individual identification. For example, DNA-based Spatial Capture Recapture has
been combined with N-binomial mixture modeling of data from single cameras for estimation
of ungulate density over landscape and relatively long time scales (2–3 months; Furnas, et al. 
2018). Chandler & Clark (2014) showed that SC data collected in some years combined with 
SCR data collected in other years is a cost-effective approach to improve temporal 
monitoring. Jiménez et al. (2020) developed an approach to integrate information on 
identified individuals with information on non-identified ones and showed this integration to 
be particularly important in low-density populations. A challenge in combining the fDNA 
and wildlife camera data we collected in this paper is that these two methods do not identify 
the same age classes. Future work, for example using partial identity models (Augustine, et 
al. 2018), could lead to potential fruitful types of hybrid SCR models leading to improved 
inference of density, sex ratio and fecundity. 
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Population parameters inferred by wildlife cameras
Wildlife camera data suggests that adult sex ratios in the white-tailed deer population may be 
female biased; a female bias is evident in both study years in the SC models that allow space 
use to differ between adult males and adult females. It is clear already from the raw data that 
more adult white-tailed deer females and fawns are counted compared to adult males, and this
sex bias persists despite the model accommodating that adult white-tailed deer males have a 
much lower encounter rate than females and fawns. In fact, also the fDNA data shows 
evidence of a female biased sex ratio in 2017, which reflects adult sex ratio as fawns are 
produced at equal sex ratio. One explanation is that our study area happens to contain more 
adult females than adult males, while the white-tailed deer population at a larger geographic 
scale has an equal sex ratio. Our study area could, for example, be particularly attractive to 
females and their offspring during late summer when we conducted this study. This could be 
due to some resources the area provide, e.g. cover (Kie & Bowyer 1999). On the other hand, 
a female-biased adult sex ratio in the overall population can be partly due to the fact that 
hunting regulations specify that an adult female with offspring cannot be harvested, whereas 
males lack such a “life insurance” possibly leading to a higher risk for an adult male of being 
harvested compared to an adult female. For example, Kekkonen et al. (2016) showed that 
harvested adult females are older than adult white-tailed deer males, which is consistent with 
a higher mortality rate for white-tailed deer males in Finland. Further research into the adult 
sex ratio of white-tailed deer in Finland is needed to improve our understanding of this 
important demographic parameter in this heavily harvested population.  

A wildlife camera study prior to harvest in late summer allows inference of fecundity as adult
females and fawns are readily distinguished. It is, at least in the middle of summer, possible 
to use individual-specific pattern of the spotted pelage of fawns to construct individual-based 
SCR models (Chandler et al. 2018). Our analysis of camera data using the SC approach is 
limited by the assumption that detection and space use of adult females and fawns are 
identical. This assumption is necessary as we have no information to differentiate between 
these age classes. Hence, the inferred fecundity is simply the ratio of fawn pictures over adult
female pictures (where the SC approach of course provides a measure of uncertainty). At the 
same time, the model assumes that activity centers of fawns are independent of their mothers 
and of each other. While fawns in late summer are presumably semi-independent of their 
mother, it is likely that the activity centers of a mother and her fawns are close. This kind of 
non-independence likely causes no bias for inferring density (Russell et al. 2012, Bischof et 
al. 2020), but a generally applicable way to accommodate dependencies of home ranges of 
parents and their offspring has not been developed (Bischof et al. 2020). White-tailed deer 
commonly have two fawns, and also triplets are observed. Although fecundity of one-year 
old white-tailed deer females is low (Ryman et al. 1981), females aged 2–6 produce 1.3–1.5 
offspring per female. After these ages, a decline in reproductive output commences. 
Fecundity values of 1.3 – 1.7 (point estimates for 2016) are from that perspective on the high 
side, whereas a fecundity of around 1 (point estimates for 2017) appears more reasonable. On
the other hand, the harvesting rate of white-tailed deer is substantial, and it is likely that a 
large fraction of the population consists of young females (cf Kekkonen, et al. 2016) with 
high reproductive potential. 

Conclusion
The number of wildlife cameras in use rapidly increases, doubling in number every 
approximately 3 years (Burton et al. 2015). This development creates a powerful incentive to 
wildlife managers and researchers to – through citizen science type of effort – obtain 
potentially valuable information on population parameters of wildlife. However, to convert 
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pictures into population biological information, a number of analysis steps are required, both 
in terms of interpreting pictures and in terms of analysing these interpretations. We here 
focused on Spatial Capture (SC) analysis using a single (relatively large) array of wildlife 
cameras deployed during a short period of time (2-3 weeks) in late summer. SC requires 
minimal picture interpretation (count per picture) and we show it can infer density, adult sex 
ratio and fecundity in the pre-harvest population of the white-tailed deer. Although SC in 
general is considered to risk overestimation of density, we find that this approach provides an
estimate of total density that is conservative when compared to density estimated using fecal 
DNA in a Spatial Capture Recapture context. The main disadvantage of the SC approach is 
that it often requires prior or additional information on at least one SCR parameters. We here 
show that a literature-based informative prior of space use () provide comparable although 
potentially most conservative (in terms of total density) estimates in relation to year-specific 
inferred from fDNA and/or SCR of wildlife camera data (for adult males). A Spatial 
Capture scheme of wildlife camera data therefore has potential to be a source of population 
biological information of relevance to wildlife management.
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Table 1. Comparison of Spatial Capture Recapture (SCR) models ordered according to their 
AICc value, with parameter estimates of the most parsimonious model for white-tailed deer 
identified from fDNA in 2016 and 2017. Analyses carried out in secr. Presented for each 
model are the number of parameters (npar), the log likelihood (logLik), small-sample AICc, 
the difference between each model and the AICc of the top model and the support (AICcwt). 
For the top model, the estimate (est), lower and upper confidence interval (lci and uci 
respectively) are given for density (D) in individuals km-2, baseline detection probability g0, 
(in meters) and the probability an individual is a male (sex ratio). Model variants concern 
different covariates placed on these parameters, either constant (.), sex-specific (sex), 
occasion-specific (t), or behavioral response (b). The top model estimates for g0 in 2016 are 
separate for female and male, and in 2017 separate for the 5 sampling occasions.

2016

model npar logLik AICc dAICc AICcwt top model

g0(sex)(.) 5 -294.82 601.5 0.0 0.4 par est lci uci

g0(t+sex)(.) 6 -293.83 602.4 0.8 0.3 D (km-2) 11.8 6.8 20.4

g0(sex)(sex) 6 -294.69 604.1 2.6 0.1 g0 (female) 0.117 0.075 0.176

g0(.)(sex) 5 -296.58 605.0 3.5 0.1 g0 (male) 0.024 0.008 0.066

g0(t+sex)(sex) 7 -293.70 605.1 3.6 0.1 m 305 245 381

g0(.)(.) 4 -300.69 610.6 9.1 0.0 sex ratio 0.523 0.285 0.752

g0(t)(.) 5 -299.69 611.3 9.7 0.0

g0(b)(.) 5 -300.67 613.2 11.7 0.0

2017

model npar logLik AICc dAICc AICcwt top model

g0(t)(.) 8 -532.80 1084.2 0.0 0.5 par est lci uci

g0(t+sex)(.) 9 -531.92 1085.0 0.9 0.3 D (km-2) 23.3 17.4 31.2

g0(t+sex)(sex) 10 -530.93 1085.9 1.7 0.2 g0 (1) 0.028 0.016 0.048

g0(.)(sex) 5 -540.14 1091.3 7.1 0.0 g0 (2) 0.038 0.023 0.062

g0(.)(.) 4 -542.03 1092.7 8.5 0.0 g0 (3) 0.020 0.010 0.037

g0(sex)(.) 5 -541.12 1093.2 9.1 0.0 g0 (4) 0.061 0.039 0.093

g0(sex)(sex) 6 -530.14 1093.7 9.5 0.0 g0 (5) 0.052 0.033 0.082

g0(b)(.) 5 -541.55 1094.1 9.9 0.0 m 217 184 256

sex ratio 0.379 0.271 0.501
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Table 2. Description of the pictures collected in 2016 and 2017. In both years cameras were 
operational in approximately three weeks (36 cameras for 16 days in 2016, 35 cameras for 22
days in 2017) and >10 000 pictures were taken. Adult males were individually identified on 
the basis of their antlers. 

2016 2017

number of cameras 36 35

number of 24 hour occasions 16 22

pictures with white-tailed deer 5224 6636

encounter events (1 hour grouping) 436 1162

encounter event / camera / day 0.76 1.5

   

male individuals identified 7 17

all males/occasion/camera 0.066 0.184

females/occasion/camera 0.34 0.47

fawns/occasion/camera 0.53 0.47

fawns/female 1.55 1.00
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Table 3. Parameter estimates of the Spatial Capture analysis (SC) where an informative prior 
for  was based on the year-specific values inferred by fDNA-SCR (see Table 1). The mean 
of the prior Gaussian distribution for  for 2016 and 2017 was 305m and 217m, respectively 
with a prior variance of 500 and 400, respectively. Encounter rates were assumed identical 
for females and fawns, but different for adult males. Adult sex ratio and fecundity are in 
italics as they are derived parameters calculated as the ratio of the number of adult males to 
adult females (i.e. 1 is equal sex ratio), and the number of fawns to adult females in the state 
space, respectively. Summary of 4500 and 3000 posteriors for 2016 and 2017 respectively. 

  2016 2017

 
estimate lower

uppe
r

estimate lower upper

m) 303 300 313 167 147 187

(male)
0.055

0.009
2 0.16 0.21 0.10 0.37

(fem and 
fawn) 0.61 0.44 0.79 0.54 0.39 0.73

D(male km-2) 2.4 0.28 7.4 4.5 2.3 7.0

D(female km-2) 1.8 0.9 3.0 5.2 3.2 7.1

D(fawn km-2) 2.8 1.5 4.3 4.9 3.0 7.0

D(total km-2) 7.3 4.0 12.5 14.7 10.1 18.9

Adult sex ratio 
(m/m+f) 0.57 0.24 0.85 0.47 0.30 0.67

Fecundity 1.55 0.62 2.96 0.96 0.48 1.59
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Table 4. Parameter estimates of the Spatial Capture analysis where informative priors for the 
space use () for females and fawns vs. adult males based on the literature (SC-lit). The prior 
mean of was 624m for males and 287m for females and fawns with variance of 5000 and 
1000 respectively. Sex ratio and fecundity are in italics as they are derived parameters 
calculated as the ratio of the number of adult males to adult females (i.e. 1 is equal sex ratio), 
and the number of fawns to adult females in the state space, respectively. Summary of 4500 
and 3000 posteriors for 2016 and 2017 respectively.

  2016 2017

 
estimate lower

uppe
r

estimate
lowe

r
uppe

r

(male) 607 466 743 593 459 734

(fem/fawn) 154 114 219 170 146 196

(male)
0.046

0.003
1 0.27 0.13

0.01
9 0.35

(fem and 
fawn) 0.59 0.42 0.78 0.53 0.38 0.72

D(male km-2)
0.84 0.093 4.2 0.60

0.06
3 2.1

D(female km-2) 5.1 2.5 7.9 5.2 2.9 7.7

D(fawn km-2) 7.1 3.9 8.4 4.9 2.8 7.6

D(total km-2) 13.4 7.0 18.0 11.0 6.9 15.1

Adult sex ratio
(m/m+f)

0.15 0.01 0.48 0.10 0.01 0.31

Fecundity 1.3 0.74 2.3 0.97 0.44 1.60
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Table 5. Parameter estimates of the Spatial Capture Recapture analysis of antlered 
individually-identified males combined with Spatial Capture of females and fawns (SC-
SCR). For females and fawns, the mean of the prior Gaussian distribution for  for 2016 and 
2017 was 305m and 217m, respectively with a prior variance of 500 and 400, respectively. 
The parameter cID infers the probability a picture taken of an adult male could be individually 
identified. Space use and encounter rates were assumed identical for adult females and fawns.
An informative prior for  for adult females and fawns was used where the point value was 
set at the year-specific sigma inferred by fDNA-SCR (Table 1). Sex ratio and fecundity are in
italics as they are derived parameters calculated as the ratio of the number of adult males to 
adult females (i.e. 1 is equal sex ratio), and the number of fawns to adult females in the state 
space, respectively. Summary of 3000 posteriors for both years.

  2016 2017

 
estimate

lowe
r

upper estimate lower upper

cID 0.60 0.46 0.75 0.71 0.62 0.79

(male) 547 387 748 989 643 1521

(fem/fawn) 237 201 268 195 179 213

(male) 0.11 0.04 0.24 0.021 0.012 0.030

(fem/fawn) 0.64 0.46 0.82 0.47 0.32 0.64

D(male km-2) 0.6 0.3 1.1 2.0 1.8 2.6

D(female km-2) 2.5 1.1 4.1 5.4 3.0 8.1

D(fawn km-2) 3.8 2.0 6.2 5.4 3.2 8.6

D(total km-2) 7.0 4.5 10.4 13.0 9.0 17.4

Adult sex ratio 
(m/m+f) 0.20 0.10 0.40 0.27 0.18 0.40

Fecundity 1.57 0.64 2.97 1.02 0.49 1.67
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Figure captions

Figure 1. Simple plot of the spatial layout of the cameras (triangles, n=36) and fDNA sample
plots (dots, n=92) in 2016. Locations were approximately the same in 2017, but one camera 
failed to operate.

Figure 2. Relative bias (dots and lines) and Root Mean Square Error (RMSE, line) plotted for
250 a posteriori simulations of the fDNA-SCR design for 2016 (a,c) and 2017 (b,d). Relative 
bias and RMSE are plotted for both density (a,b) and sigma (c,d). Simulation assume that 
year-specific density and sigma were as estimated by the top model (Table 2). Detection was 
conservatively assumed to be 0.03 in all simulations. In the design used there were 2 
occasions in 2016 and 5 occasions in 2017.

Figure 3. Estimates of total density (individuals / km2) in the study area plotted for both 
study years separately. The SCR analysis of fecal DNA (fDNASCR) is reported in Table 1, 
SC analysis of wildlife camera data (SC) in Table 3, SC analysis based on literature estimate 
of sigma for adult females and fawns vs. adult males (SC-lit) is reported in Table 4 and the 
SC analysis of wildlife camera data of adult females and fawns combined with SCR analysis 
of individually-identified pictures of adult males (SC-SCR) is reported in Table 5. Dots 
denote the point estimate and lines the 95% Credible Interval.

Figure 4. The derived estimates of sex ratio of adults expressed as density of adult males 
divided by the total density of both adult females and males in the study area for both study 
years separately. An equal adult sex ratio is hence 0.5 and values below 0.5 denote a female 
bias. The various SC models are reported in Tables 3 – 5. 
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Figure 1 / Brommer et al.
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Figure 2/ Brommer et al
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Supplement

#¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤
# model SC with latent observations marginalised out
# loop over K present for unmarked (bigLambda approach)
#¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤

sc.all<-"model{

# xlim - limits of state space in x direction
# ylim - limits of SS in y direction
# J - number of traps
# X - double vector with x and y coordinate in SS of all J traps
# K - number of occasions
# Mum  - max n of males in state space
# Muf - maximal number of females in the state space
# Muc - maximal number of calves in the state space
# nUmK - number of males per trap j over all occasions K
# nUfK - number of females per trap j over all occasions K
# nUcK - number of calve sper trap j over all occasions K
# A – area of the state space (in km^2), computed as the outer limits defined by xlim and ylim
with a buffer of 2km and provided as data

#priors
psium~dbeta(1,1) # inclusion of unmarked male
psiuf~dbeta(1,1) # inclusion of unmarked female
psiuc~dbeta(1,1) # inclusion of unmarked calf
lam.m~dunif(0,5) #baseline detection marked male
lam.u~dunif(0,5) #baseline detection unmarked female/calf

#informative prior unmarked based on fecal DNA SECR analysis (year specific: here for 2017)
sigma~dnorm(217,0.0025)

#unmarked males
for (i in 1:Mum) {
zum[i]~dbern(psium) #latent individual in SS?
sum[i,1]~dunif(xlim[1], xlim[2])
sum[i,2]~dunif(ylim[1], ylim[2])
for (j in 1:J) {
distum[i,j]<-sqrt((sum[i,1]-X[j,1])^2+(sum[i,2]-X[j,2])^2)
lambdaum[i,j]<-lam.m*exp(-distum[i,j]^2/(2*sigma^2))*zum[i]
} #for (j ...
} #for (i...

#unmarked females
for (i in 1:Muf) {
zuf[i]~dbern(psiuf) #latent individual in SS?
suf[i,1]~dunif(xlim[1], xlim[2])
suf[i,2]~dunif(ylim[1], ylim[2])
for (j in 1:J) {
distuf[i,j]<-sqrt((suf[i,1]-X[j,1])^2+(suf[i,2]-X[j,2])^2)
lambdauf[i,j]<-lam.u*exp(-distuf[i,j]^2/(2*sigma^2))*zuf[i]
} #for (j ...
} #for (i...

#unmarked calves
for (i in 1:Muc) {
zuc[i]~dbern(psiuc) #latent individual in SS?
suc[i,1]~dunif(xlim[1], xlim[2])
suc[i,2]~dunif(ylim[1], ylim[2])
for (j in 1:J) {
distuc[i,j]<-sqrt((suc[i,1]-X[j,1])^2+(suc[i,2]-X[j,2])^2)
lambdauc[i,j]<-lam.u*exp(-distuc[i,j]^2/(2*sigma^2))*zuc[i]
} #for (j ...
} #for (i...

for (j in 1:J) {
bigLamUm[j]<-sum(lambdaum[,j])
bigLamUf[j]<-sum(lambdauf[,j])
bigLamUc[j]<-sum(lambdauc[,j])
#number of times latent individual i (if in SS) is detected in trap j during K occasions
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nUmK[j]~dpois(K*bigLamUm[j]) 
nUfK[j]~dpois(K*bigLamUf[j]) 
nUcK[j]~dpois(K*bigLamUc[j]) 
} # for j

#derived parameters
Num<- sum(zum[])
Nuf<- sum(zuf[])
Nuc<- sum(zuc[])
Ntot<-Num+Nuf+Nuc
Dum<-Num/A
Duf<-Nuf/A
Duc<-Nuc/A
D<-Ntot/A
SR<-Num/(Nuf+Num) #sex ratio
F<-Nuc/Nuf #fertility

}" # model end

#¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤
# model SC.lit with prior for sigma based on literature
#¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤

sc.lit<-"model{

# xlim - limits of state space in x direction
# ylim - limits of SS in y direction
# J - number of traps
# X - double vector with x and y coordinate in SS of all J traps
# K - number of occasions
# Mum  - max n of males in state space
# Muf - maximal number of females in the state space
# nUfK - number of unmarked females per trap j over all occasions K
# nUcK - number of unmarked calvesper trap j over all occasions K
# nUmK - number of males per trap j over all occasions K
# A – area of the state space (in km^2), computed as the outer limits defined by xlim and ylim
with a buffer of 2km and provided as data

#priors
psium~dbeta(1,1) # inclusion of unmarked male
psiuf~dbeta(1,1) # inclusion of unmarked female
psiuc~dbeta(1,1) # inclusion of unmarked calf
lam.m~dunif(0,5) #baseline detection marked male
lam.u~dunif(0,5) #baseline detection unmarked female/calf

#informative prior unmarked based on literature
# sigma prior: 287m and 624m for females and males respectively
# variance based on 95% CI
sigma.um~dnorm(624,0.002)
sigma~dnorm(287,0.001)

#unmarked males
for (i in 1:Mum) {
zum[i]~dbern(psium) #latent individual in SS?
sum[i,1]~dunif(xlim[1], xlim[2])
sum[i,2]~dunif(ylim[1], ylim[2])
for (j in 1:J) {
distum[i,j]<-sqrt((sum[i,1]-X[j,1])^2+(sum[i,2]-X[j,2])^2)
lambdaum[i,j]<-lam.m*exp(-distum[i,j]^2/(2*sigma.um^2))*zum[i]
} #for (j ...
} #for (i...

#unmarked females
for (i in 1:Muf) {
zuf[i]~dbern(psiuf) #latent individual in SS?
suf[i,1]~dunif(xlim[1], xlim[2])
suf[i,2]~dunif(ylim[1], ylim[2])
for (j in 1:J) {
distuf[i,j]<-sqrt((suf[i,1]-X[j,1])^2+(suf[i,2]-X[j,2])^2)
lambdauf[i,j]<-lam.u*exp(-distuf[i,j]^2/(2*sigma^2))*zuf[i]
} #for (j ...
} #for (i...

#unmarked calves
for (i in 1:Muc) {

31



zuc[i]~dbern(psiuc) #latent individual in SS?
suc[i,1]~dunif(xlim[1], xlim[2])
suc[i,2]~dunif(ylim[1], ylim[2])
for (j in 1:J) {
distuc[i,j]<-sqrt((suc[i,1]-X[j,1])^2+(suc[i,2]-X[j,2])^2)
lambdauc[i,j]<-lam.u*exp(-distuc[i,j]^2/(2*sigma^2))*zuc[i]
} #for (j ...
} #for (i...

for (j in 1:J) {
bigLamUm[j]<-sum(lambdaum[,j])
bigLamUf[j]<-sum(lambdauf[,j])
bigLamUc[j]<-sum(lambdauc[,j])
#number of times latent individual i (if in SS) is detected in trap j during K occasions
nUmK[j]~dpois(K*bigLamUm[j]) 
nUfK[j]~dpois(K*bigLamUf[j]) 
nUcK[j]~dpois(K*bigLamUc[j]) 
} # for j

#derived parameters
Num<- sum(zum[])
Nuf<- sum(zuf[])
Nuc<- sum(zuc[])
Ntot<-Num+Nuf+Nuc
Dum<-Num/A
Duf<-Nuf/A
Duc<-Nuc/A
D<-Ntot/A
SR<-Num/(Nuf+Num) #sex ratio
F<-Nuc/Nuf #fertility

}" # model end

#¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤
# Model SC-SCR
# model of SCR on individually identified males and 
# SC on females/calves with latent observations marginalised out
# male identification probability c.id 
#¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤

sc.scr<-"model{

# maxM  - max marked males in state space
# xlim - limits of state space in x direction
# ylim - limits of SS in y direction
# J - number of traps
# X - double vector with x and y coordinate in SS of all J traps
# ymm - number of timed each marked male i (in rows) was caught in trap j (in column)
# K - number of occasions
# Muf - maximal number of females in the state space
# nUfK - number of unmarked females per trap j over all occasions K
# nUcK - number of unmarked calves per trap j over all occasions K
# n.id – number of events in which males were identified
# n.tot – total number of events in which there were males (identified plus non.identified)
# A – area of the state space (in km^2), computed as the outer limits defined by xlim and ylim
with a buffer of 2km and provided as data

#priors
psimm~dbeta(1,1) # inclusion of marked male
psiuf~dbeta(1,1) # inclusion of unmarked female
psiuc~dbeta(1,1) # inclusion of unmarked calf
lam.mm~dunif(0,5) #baseline detection marked male
lam.u~dunif(0,5) #baseline detection unmarked female/calf
sigma.mm~dunif(0,2000) #sigma for marked male
c.id~dbeta(1,1) #correction for probability to id a male individually

#informative prior unmarked based on fecal DNA SECR analysis (year specific: here for 2017)
sigma.u~dnorm(217,0.0025)

# probability to ID a male from picture c.id 
# correction as not all males can be identified individually
n.id~dbin(c.id,n.tot)

#marked males, individuals i in trap j out of J traps
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for (i in 1:maxM) {
zmm[i]~dbern(psimm)
smm[i,1]~dunif(xlim[1], xlim[2])
smm[i,2]~dunif(ylim[1], ylim[2])
for (j in 1:J) {

distmm[i,j]<-sqrt((smm[i,1]-X[j,1])^2+(smm[i,2]-X[j,2])^2)
lambdamm[i,j]<-lam.mm*exp(-distmm[i,j]^2/(2*sigma.mm^2))*zmm[i]
ymm[i,j]~dpois(lambdamm[i,j]*c.id*K)

} #for (j...
} #for (i..

#unmarked females
for (i in 1:Muf) {

zuf[i]~dbern(psiuf) #latent individual in SS?
suf[i,1]~dunif(xlim[1], xlim[2])
suf[i,2]~dunif(ylim[1], ylim[2])
for (j in 1:J) {

distuf[i,j]<-sqrt((suf[i,1]-X[j,1])^2+(suf[i,2]-X[j,2])^2)
lambdauf[i,j]<-lam.u*exp(-distuf[i,j]^2/(2*sigma.u^2))*zuf[i]

} #for (j ...
} #for (i...

#unmarked calves
for (i in 1:Muc) {

zuc[i]~dbern(psiuc) #latent individual in SS?
suc[i,1]~dunif(xlim[1], xlim[2])
suc[i,2]~dunif(ylim[1], ylim[2])
for (j in 1:J) {

distuc[i,j]<-sqrt((suc[i,1]-X[j,1])^2+(suc[i,2]-X[j,2])^2)
lambdauc[i,j]<-lam.u*exp(-distuc[i,j]^2/(2*sigma.u^2))*zuc[i]

} #for (j ...
} #for (i...

for (j in 1:J) {
bigLamUf[j]<-sum(lambdauf[,j])
bigLamUc[j]<-sum(lambdauc[,j])
#number of times latent individuals (if in SS) are detected in trap j during K 

occasions
nUfK[j]~dpois(K*bigLamUf[j]) 
nUcK[j]~dpois(K*bigLamUc[j]) 

} # for j

#derived parameters
Num<- sum(zum[])
Nuf<- sum(zuf[])
Nuc<- sum(zuc[])
Ntot<-Num+Nuf+Nuc
Dum<-Num/A
Duf<-Nuf/A
Duc<-Nuc/A
D<-Ntot/A
SR<-Num/(Nuf+Num) #sex ratio
F<-Nuc/Nuf #fertility

}" # model end
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