References
Aggarwal, G., & Ramaswamy, R. (2002). Ab initio gene identification: prokaryote genome annotation with GeneScan and GLIMMER. J Biosci, 27 (1 Suppl 1), 7-14. doi:10.1007/BF02703679
Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 25 (17), 3389-3402. doi:10.1093/nar/25.17.3389
Alwarawrah, Y., Kiernan, K., & MacIver, N. J. (2018). Changes in Nutritional Status Impact Immune Cell Metabolism and Function.Front Immunol, 9 , 1055. doi:10.3389/fimmu.2018.01055
Andrews, C. B., Mackenzie, S. A., & Gregory, T. R. (2009). Genome size and wing parameters in passerine birds. Proc Biol Sci, 276 (1654), 55-61. doi:10.1098/rspb.2008.1012
Bennett, M. D. (1971). The duration of meiosis. Proc. R. Soc. B., 178 , 277–299. doi:10.1098/rspb.1971.0066
Birney, E., Clamp, M., & Durbin, R. (2004). GeneWise and Genomewise.Genome Res, 14 (5), 988-995. doi:10.1101/gr.1865504
Burton, J. N., Adey, A., Patwardhan, R. P., Qiu, R., Kitzman, J. O., & Shendure, J. (2013). Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat Biotechnol, 31 (12), 1119-1125. doi:10.1038/nbt.2727
Carneiro, M., Rubin, C. J., Di Palma, F., Albert, F. W., Alfoldi, J., Martinez Barrio, A., . . . Andersson, L. (2014). Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication.Science, 345 (6200), 1074-1079. doi:10.1126/science.1253714
Cohen, S. P., & Leach, J. E. (2020). High temperature-induced plant disease susceptibility: more than the sum of its parts. Curr Opin Plant Biol, 56 , 235-241. doi:10.1016/j.pbi.2020.02.008
Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., . . . Genomes Project Analysis, G. (2011). The variant call format and VCFtools. Bioinformatics, 27 (15), 2156-2158. doi:10.1093/bioinformatics/btr330
Darwin, C. (1860). On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. Br Foreign Med Chir Rev, 25 (50), 367-404.
De Bie, T., Cristianini, N., Demuth, J. P., & Hahn, M. W. (2006). CAFE: a computational tool for the study of gene family evolution.Bioinformatics, 22 (10), 1269-1271. doi:10.1093/bioinformatics/btl097
Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res, 32 (5), 1792-1797. doi:10.1093/nar/gkh340
Eid, J., Fehr, A., Gray, J., Luong, K., Lyle, J., Otto, G., . . . Turner, S. (2009). Real-time DNA sequencing from single polymerase molecules. Science, 323 (5910), 133-138. doi:10.1126/science.1162986
Escobedo-Bonilla, C. M., Alday-Sanz, V., Wille, M., Sorgeloos, P., Pensaert, M. B., & Nauwynck, H. J. (2008). A review on the morphology, molecular characterization, morphogenesis and pathogenesis of white spot syndrome virus. J Fish Dis, 31 (1), 1-18. doi:10.1111/j.1365-2761.2007.00877.x
Feng, J., Li, D., Liu, L., Tang, Y., & Du, R. (2019). Interaction of the small GTP-binding protein (Rab7) with beta-actin in Litopenaeus vannamei and its role in white spot syndrome virus infection. Fish Shellfish Immunol, 88 , 1-8. doi:10.1016/j.fsi.2019.02.053
Feng, Y., Kong, J., Luo, K., Luan, S., Cao, B., Liu, N., . . . Meng, X. (2017). The comparison of the sensitivity to the white spot syndrome virus between Fenneropenaeus chinensis and Litopenaeus vannamei.Progress in Fishery Sciences, 38 (6), 78-84.
Gregory, T. R. (2001). Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biol Rev Camb Philos Soc, 76 (1), 65-101. doi:10.1017/s1464793100005595
Hoff, K. J., & Stanke, M. (2019). Predicting Genes in Single Genomes with AUGUSTUS. Curr Protoc Bioinformatics, 65 (1), e57. doi:10.1002/cpbi.57
Hosomi, K., & Kunisawa, J. (2020). Diversity of energy metabolism in immune responses regulated by micro-organisms and dietary nutrition.Int Immunol, 32 (7), 447-454. doi:10.1093/intimm/dxaa020
Hughes, A. L., & Hughes, M. K. (1995). Small genomes for better flyers.Nature, 377 (6548), 391. doi:10.1038/377391a0
Jiang, G., Yu, R., & Zhou, M. (2006). Studies on nitric oxide synthase activity in haemocytes of shrimps Fenneropenaeus chinensis and Marsupenaeus japonicus after white spot syndrome virus infection.Nitric Oxide, 14 (3), 219-227. doi:10.1016/j.niox.2005.11.005
Kim, D., Langmead, B., & Salzberg, S. L. (2015). HISAT: a fast spliced aligner with low memory requirements. Nat Methods, 12 (4), 357-360. doi:10.1038/nmeth.3317
Korf, I. (2004). Gene finding in novel genomes. BMC Bioinformatics, 5 , 59. doi:10.1186/1471-2105-5-59
Korkut, G. G., Noonin, C., & Soderhall, K. (2018). The effect of temperature on white spot disease progression in a crustacean, Pacifastacus leniusculus. Dev Comp Immunol, 89 , 7-13. doi:10.1016/j.dci.2018.07.026
Kozlowski, J., Konarzewski, M., & Gawelczyk, A. T. (2003). Cell size as a link between noncoding DNA and metabolic rate scaling. Proc Natl Acad Sci U S A, 100 (24), 14080-14085. doi:10.1073/pnas.2334605100
Krieger, I. (1978). Relation of specific dynamic action of food (SDA) to growth in rats. Am J Clin Nutr, 31 (5), 764-768. doi:10.1093/ajcn/31.5.764
Li, H., & Durbin, R. (2010). Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics, 26 (5), 589-595. doi:10.1093/bioinformatics/btp698
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., . . . Genome Project Data Processing, S. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25 (16), 2078-2079. doi:10.1093/bioinformatics/btp352
Li, L., Stoeckert, C. J., Jr., & Roos, D. S. (2003). OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res, 13 (9), 2178-2189. doi:10.1101/gr.1224503
Lieberman-Aiden, E., van Berkum, N. L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., . . . Dekker, J. (2009). Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 326 (5950), 289-293. doi:10.1126/science.1181369
Loftus, R. M., & Finlay, D. K. (2016). Immunometabolism: Cellular Metabolism Turns Immune Regulator. J Biol Chem, 291 (1), 1-10. doi:10.1074/jbc.R115.693903
Lopez, M. E., Neira, R., & Yanez, J. M. (2014). Applications in the search for genomic selection signatures in fish. Front Genet, 5 , 458. doi:10.3389/fgene.2014.00458
Majoros, W. H., Pertea, M., & Salzberg, S. L. (2004). TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders.Bioinformatics, 20 (16), 2878-2879. doi:10.1093/bioinformatics/bth315
Mulder, N., & Apweiler, R. (2007). InterPro and InterProScan: tools for protein sequence classification and comparison. Methods Mol Biol, 396 , 59-70. doi:10.1007/978-1-59745-515-2_5
Nielsen, R., Hellmann, I., Hubisz, M., Bustamante, C., & Clark, A. G. (2007). Recent and ongoing selection in the human genome. Nat Rev Genet, 8 (11), 857-868. doi:10.1038/nrg2187
Olmo, E. (1983). Nucleotype and cell size in vertebrates: a review.Basic Appl Histochem, 27 (4), 227-256.
Organ, C. L., & Shedlock, A. M. (2009). Palaeogenomics of pterosaurs and the evolution of small genome size in flying vertebrates. Biol Lett, 5 (1), 47-50. doi:10.1098/rsbl.2008.0491
Parra, G., Blanco, E., & Guigo, R. (2000). GeneID in Drosophila.Genome Res, 10 (4), 511-515. doi:10.1101/gr.10.4.511
Pertea, M., Pertea, G. M., Antonescu, C. M., Chang, T. C., Mendell, J. T., & Salzberg, S. L. (2015). StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol, 33 (3), 290-295. doi:10.1038/nbt.3122
Ren, X., Zhang, Y., Liu, P., & Li, J. (2019). Comparative proteomic investigation of Marsupenaeus japonicus hepatopancreas challenged with Vibrio parahaemolyticus and white spot syndrome virus. Fish Shellfish Immunol, 93 , 851-862. doi:10.1016/j.fsi.2019.08.039
Roberts, K. L., & Baines, J. D. (2011). Actin in herpesvirus infection.Viruses, 3 (4), 336-346. doi:10.3390/v3040336
Rokas, A. (2011). Phylogenetic analysis of protein sequence data using the Randomized Axelerated Maximum Likelihood (RAXML) Program. Curr Protoc Mol Biol, Chapter 19 , Unit19 11. doi:10.1002/0471142727.mb1911s96
Ruan, J., & Li, H. (2020). Fast and accurate long-read assembly with wtdbg2. Nat Methods, 17 (2), 155-158. doi:10.1038/s41592-019-0669-3
Spear, M., & Wu, Y. (2014). Viral exploitation of actin: force-generation and scaffolding functions in viral infection.Virol Sin, 29 (3), 139-147. doi:10.1007/s12250-014-3476-0
Szarski, H. (1983). Cell size and the concept of wasteful and frugal evolutionary strategies. J Theor Biol, 105 (2), 201-209. doi:10.1016/s0022-5193(83)80002-2
Trapnell, C., Pachter, L., & Salzberg, S. L. (2009). TopHat: discovering splice junctions with RNA-Seq. Bioinformatics, 25 (9), 1105-1111.
Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M. J., . . . Pachter, L. (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol, 28 (5), 511-515. doi:10.1038/nbt.1621
Uengwetwanit, T., Pootakham, W., Nookaew, I., Sonthirod, C., Angthong, P., Sittikankaew, K., . . . Karoonuthaisiri, N. (2021). A chromosome-level assembly of the black tiger shrimp (Penaeus monodon) genome facilitates the identification of growth-associated genes.Mol Ecol Resour . doi:10.1111/1755-0998.13357
Vahl, O. (1984). The relationship between specific dynamic action (SDA) and growth in the common starfish, Asterias rubens L. Oecologia, 61 (1), 122-125. doi:10.1007/BF00379097
van Dijk, E. L., Jaszczyszyn, Y., Naquin, D., & Thermes, C. (2018). The Third Revolution in Sequencing Technology. Trends Genet, 34 (9), 666-681. doi:10.1016/j.tig.2018.05.008
Van Quyen, D., Gan, H. M., Lee, Y. P., Nguyen, D. D., Nguyen, T. H., Tran, X. T., . . . Austin, C. M. (2020). Improved genomic resources for the black tiger prawn (Penaeus monodon). Mar Genomics, 52 , 100751. doi:10.1016/j.margen.2020.100751
Vinogradov, A. E., & Anatskaya, O. V. (2006). Genome size and metabolic intensity in tetrapods: a tale of two lines. Proc Biol Sci, 273 (1582), 27-32. doi:10.1098/rspb.2005.3266
Wang, M., Kong, J., Meng, X., Luan, S., Luo, K., Sui, J., . . . Shi, X. (2017). Evaluation of genetic parameters for growth and cold tolerance traits in Fenneropenaeus chinensis juveniles. PLoS One, 12 (8), e0183801. doi:10.1371/journal.pone.0183801
Yang, Z. (2007). PAML 4: phylogenetic analysis by maximum likelihood.Mol Biol Evol, 24 (8), 1586-1591. doi:10.1093/molbev/msm088
You, X., Shan, X., & Shi, Q. (2020). Research advances in the genomics and applications for molecular breeding of aquaculture animals.Aquaculture, 526 (735357).
Yu, Y., Zhang, X., Yuan, J., Li, F., Chen, X., Zhao, Y., . . . Xiang, J. (2015). Genome survey and high-density genetic map construction provide genomic and genetic resources for the Pacific White Shrimp Litopenaeus vannamei. Sci Rep, 5 , 15612. doi:10.1038/srep15612
Yuan, J., Zhang, X., Liu, C., Yu, Y., Wei, J., Li, F., & Xiang, J. (2017). Genomic resources and comparative analyses of two economical penaeid shrimp species, Marsupenaeus japonicus and Penaeus monodon.Marine Genomics , 22-25.
Yuan, J., Zhang, X., Wang, M., Sun, Y., Liu, C., Li, S., . . . Li, F. (2021). Simple sequence repeats drive genome plasticity and promote adaptive evolution in penaeid shrimp. Commun Biol, 4 (1), 186. doi:10.1038/s42003-021-01716-y
Zhang, P., Zhang, X., Li, J., & Meng, Q. (2008). Observation of behavior in Fenneropenaeus chinensis and Litopenaeus vannamei postlarvae. JOURNAL OF FISHERIES OF CHINA, 32 (2), 223-228.
Zhang, X., Yuan, J., Sun, Y., Li, S., Gao, Y., Yu, Y., . . . Xiang, J. (2019). Penaeid shrimp genome provides insights into benthic adaptation and frequent molting. Nat Commun, 10 (1), 356. doi:10.1038/s41467-018-08197-4