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Abstract

Collisions with vehicles are a major threat to wildlife populations and often occur in
identifiable patterns. To reduce wildlife road mortalities, mitigation structures including
exclusionary fencing and wildlife crossings are constructed. Openings in fencing at road
intersections may lead to concentration of road mortality hot spots at openings leading to a belief
that these gaps concentrate road mortalities. However, it is also possible that hot spots existed at
these locations before construction indicating that road mortality patterns have not changed with
mitigation structure construction. Therefore, to assess mitigation structure effectiveness, it is
important to examine both road mortality numbers and road mortality spatial distribution.
Wildlife road mortality data was collected on a 15-km section of rural highway in Texas, USA
before, during, and after the construction of wildlife mitigation structures. We expected that the
number of road mortalities would decrease after construction compared to before construction
and that road mortalities would become more concentrated around openings in the fence. We
used ANOVA to compare numbers of road mortalities and emerging hot spot analysis and
generalized linear modelling to assess changes in road mortality spatial distribution. Road
mortalities were not significantly different in the before and after construction periods (p =
0.092). While there were no significant changes in road mortality patterns with construction,
cluster intensity was greater when nearer to fence openings in all three time periods. Emerging
hot spot analysis provides an effective and easy way to visualize road mortality patterns through
time, however, due to low numbers of mortalities in many road mortality studies, including this
one, the power of this analysis to detect significant changes in road mortality may be limited.
This technique can provide both ecologists and transportation planners an effective tool for

identifying patterns that may warrant further investigation using traditional statistical techniques.
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1 Introduction

The distribution of wildlife road mortalities (WRMs) is not random and is often
associated with surrounding habitat and access to the road (Clevenger, Chruszcz & Gunson
2001; Ascensao et al. 2017). Clustering of WRMSs represents unique patterns of WRMs that may
be associated with different environmental factors than WRM counts (Snow, Williams & Porter
2014; Bil et al. 2019). In the road ecology literature, clustering is often mistaken as simply areas
with a large number of WRMs (Teixeira et al. 2017), however these locations may not represent
true clusters of WRMs and may lead to misinterpretation of which factors influence WRMs (Bil
et al. 2019). Misidentification of where clustering occurs could lead to wildlife mitigation
structures being placed in areas where they may not be most needed (Andis, Huijser & Broberg
2017; Teixeira et al. 2017).

An effective examination of WRM clustering requires analyses that identify the statistical
significance of an identified cluster. Statistics that exist to identify statistically significant
clustering include hot spot analysis and Moran’s I analysis (Caldas de Castro & Singer 2006;
Grubesic, Wei & Murray 2014). Both methods can identify the exact locations of a statistically
significant cluster using localized versions of the tests (Caldas de Castro & Singer 2006). When
examining clustering in WRMs, identifying where clustering occurs is more important than
determining that clustering occurs (van der Ree, Smith & Grilo 2015).

Local hot spot analysis measures how different a group of cells is compared to its
surrounding cells by providing a measure of how concentrated those cells are (Getis & Ord
1992) while local Moran’s I analysis identifies how an individual cell differs from its
surrounding cells (Anselin 1995). These two methods can complement each other and provide a

better overall assessment of where clustering occurs along a highway (Ord & Getis 1995). In
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addition, by performing these analyses at the same spatial scale in different time periods, one can
assess how the intensity of a WRM cluster changes through time (Getis & Ord 1992).

Once WRM clusters have been identified, we can examine how environmental factors
influence the intensity of said cluster and how this influence varies in time. Factors that influence
the distribution of WRM clusters include variation in landcover and land use (Caceres 2011;
Ascensao et al. 2017) and the properties of the highway (Clevenger, Chruszczc & Gunson 2003;
Grilo, Ferreira & Revilla 2015). Wildlife mitigation structures, especially exclusionary fencing,
may also influence the intensity of WRM clusters (Cserkész et al. 2013). Fencing restricts access
to roadways to narrow gaps at road intersections and private drives which can decrease the
overall number of WRMs on the highway (Forman et al. 2003), however it could increase the
intensity of WRM clusters near these locations by funneling animals towards gaps in the fences
(Cserkész et al. 2013). The potential for funneling is often a concern in wildlife mitigation
structure construction (Huijser ef al. 2016) so gaps are often mitigated by different structures
including gates, wildlife guards, and wing walls. These structures are not 100% effective at
keeping wildlife off roads and may still result (Allen, Huijser & Willey 2013; van der Ree, Smith
& Grilo 2015). Examining how fence gaps influence the intensity of WRM clusters may be
important in determining how wildlife mitigation structures affect WRMs.

We describe methods for identifying how WRM clusters change through time with the
construction of wildlife mitigation structures on State Highway 100 (SH100) in Cameron
County, Texas, USA. We examined how the intensity of WRM clusters changed with mitigation
structure construction at a fine temporal scale and how factors influencing road mortality clusters
change from before construction to after construction of wildlife mitigation structures. We

expected the overall number of WRMs to decrease after construction, but the intensity of WRM
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clusters to increase after construction. We also expected that the intensity of WRM clusters will
decrease with increased distance to wildlife mitigation structures in the after-construction period

only.

2 Methods
2.1 Study Area

The study area was a 15-km section of SH100 in Cameron County, Texas, USA between
the towns of Laguna Vista and Los Fresnos (Fig. 1). The highway was a four-lane divided road
where the directions of traffic are separated by a concrete traffic barrier. This section of SH100
had a speed limit of 105 kmh and an average annual daily traffic of between 7000 and 9000
vehicles (Texas Department of Transportation 2019).

Wildlife mitigation structures were built along an 11.9 km section of the study area
between Sep 2016 and May 2018 which included exclusionary fencing, five wildlife crossings,
18 wildlife guards, three wing walls, and 16 gates. The mitigation structures were designed to
prevent ocelots (Leopardus pardalis), bobcats (Lynx rufus), and other medium to large mammals
from accessing the road, while still providing connectivity across the highway (Environmental
Affairs Division 2015). The fencing material was 5.1 cm wide black plastic-coated chain-link,
1.8 m tall, and along most of the fence line is buried 30.5 cm into the ground. In areas where
burial was not possible, the fence was secured to the ground away from the highway.

2.2 Wildlife Road Mortality Methodology

Wildlife road mortality surveys were conducted before, during, and after the construction

of the mitigation structures on SH100. The survey transects included the full mitigation area as

well as a 1.5 km buffer on both sides. Survey frequency, speed, and marking differed (Table 1),
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resulting in differences in the total number of surveys conducted among periods. The total
number of surveys were 30 before construction (Aug 2015 — Aug 2016), 127 during construction
(Sep 2016 — May 2018), and 67 after construction (Jun 2018 — Sep 2019). The switch to one
survey per week was due to a previous study on SH100 that showed that most carcasses lasted
for at least a week (Livingston 2019).

Only those species for which fencing provided a barrier to movement were used in
analyses to assess how fencing changed WRM patterns. These included all mammals larger than
rodents as well as turtles and tortoises (Table 2). Snakes, amphibians, birds, and small mammals
were not included in analyses; see Appendix A for a complete list of species found during WRM
surveys.

2.3 Land Classification

To identify land use and land cover types around SH100, we created a classified
vegetation map using the Interactive Supervised Classification Tool in ArcMap 10.6 (ESRI
2017). We identified 10 classes: trees, mixed trees/shrubs, cactus, cord grass, open, bare, paved
road, dirt road, water, and bahia. Classification was confirmed by visual inspection of the map.
These classes were reduced to three major land cover classes: forested (trees and bahia), shrub
(mixed trees, cactus), and open (open, bare, paved road, and dirt road). The water class was
excluded because water was identified using a different method, described below.

We identified permanent sources of fresh and salt water using the National Wetlands
Inventory (U.S. Fish & Wildlife Service 2018). Saltwater areas were identified as all locations
that had the saltwater, tidal regime subgroup and included the subtidal, irregularly exposed,
regularly flooded, and irregularly flooded water regimes. Permanent freshwater sources were

those that were classified as Non-tidal in their regime subgroup and had the permanently
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flooded, intermittently exposed, or semi permanently flooded water regimes as all of these
represented areas where fresh water covered the area for all or most of the year. In addition to
these sources of permanent freshwater, the drainage ditches around SH100 were included
because they had flowing water throughout most of the year. To identify drainage ditches,
features that were clear linear features in the Wetlands Inventory and had the excavated tag were
manually selected using ArcMap 10.6. The locations of these drainage ditches were confirmed
using published maps available from the Cameron County Drainage District (Cameron County
Drainage District #1 2010). A three-m buffer was created around the drainage network to capture
the full width of the canals.

To identify agricultural and developed areas, we manually digitized a ESRI orthoimage
(year taken: 2018). Older orthoimages taken at different times of year were used to confirm
agricultural areas. Developed areas included all buildings, windmills, power stations, and utility
towers; roads were digitized separately. Locations of buildings and agricultural areas were
confirmed using the Cameron County parcel information (Cameron CAD 2020) and by visits to
sites. The majority of roads in the study area were identified from the TxDOT roads database
(Texas Department of Transportation 2020), however there were several new dirt roads
associated with the San Roman Wind Farm that were digitized manually. A 20 m buffer was
created around all paved roads to encompass the full road area as well as the right-of-way while
a 10 m buffer was used around all dirt roads.

Using the Reclassify and Raster Calculator tools in ArcGIS 10.6, the classified vegetation
map was combined with the water, agriculture, and developed land use layers. Saltwater was
given the highest priority and was always on top of other land uses. Buildings, paved roads, and

dirt roads were combined into a single class called “developed” and were given the next highest
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priority, followed by agricultural areas and permanent freshwater. This gave seven classes:
saltwater, freshwater, developed, agriculture, forested, shrubs, and open.

The survey transect was divided up into 151 100 m segments and we created a 100-m
buffer around each segment. This scale was chosen because WRM risk has been shown to be
associated with the presence of specific habitat features such as freshwater sources, access to the
road, or movement corridors (Cervinka et al. 2015; Grilo et al. 2016) and this distance was
expected to be small enough to assess these effects. In addition, gaps in the fence are highly
localized features and would not be expected to influence WRM clustering at large spatial scales.
We calculated the proportions of each landcover class within each buffer for each of the
segments using an iterative version of the Tabulate Area tool in ArcMap 10.6.

2.4 Statistical Methods

To assess how WRMs changed with construction of mitigation structures, road
mortalities were first divided into 13 four-month time blocks. We used an ANOVA in R version
3.6.0 (R Development Core Team 2019) to compare differences in the number of WRMs before,
during, and after construction. We categorized the four-month blocks by time period with blocks
assigned to the time period in which the majority of dates in the block fell. The number of
WRMs in each block were scaled by number of survey days in each time block to account for
differences in survey frequency between periods. We applied a log transformation to ensure
normality and homoscedasticity. We ran a Shapiro-Wilk test and Levene’s test in R to test for
normality and homoscedasticity, respectively. We performed post-hoc tests using the Tukey
Honestly Significant Difference test in R.

We ran Emerging Hot Spot Analysis (EHSA) based on the tool of the same name

available in ArcGIS to assess how the location and strength of WRM clusters changed through



184  time, (Harris et al. 2017). The ArcGIS tool was modified so we could use the space blocks used
185 to identify the percentage of land cover. These blocks better fit the highway than the tool-created
186 Dblocks and could accommodate areas with zero WRMSs throughout the entire study period.

187  Wildlife road mortalities divided up by time period; the count of WRMs for each time period in
188 each space-block was calculated using the Spatial Join tool in ArcGIS. We ran the Local Hot
189 Spot Analysis tool in ArcMap 10.6 on each time block using a 500 m fixed distance threshold
190 and the Euclidean distance method for calculating distance between locations (Mitchell 2005).
191 We applied the false discovery rate (FDR) correction to the analyses to account for multiple
192 testing and spatial autocorrelation (Caldas de Castro & Singer 2006). The Local Moran’s I tool
193 was also run in ArcMap 10.6 on each time block using the same parameters as the hot spot

194 analysis. Statistical significance was estimated using 9999 permutations. Next, the hot spot

195 results were exported to R and the Mann-Kendall trend test was run on the hot spot z scores
196 using the “mk.test” function in the trend package to assess change in hot spot intensity through
197 time (Pohlert 2018). We performed the FDR correction for the Mann-Kendall test using the

198 “padjust” function in R (R Development Core Team 2019). Spatiotemporal patterns of WRMs
199 were assessed using the defined pattern types for the EHSA and the Local Outlier Analysis tools
200 in ArcGIS (Harris et al. 2017).

201 To assess how distance to fence gaps affected the intensity of WRM clusters, we ran a
202 separate hot spot analysis in ArcMap 10.6 for each of the three construction periods: before,
203  during, and after. The parameters were the same as those for the EHSA. The Z scores,

204 representing cluster intensity, were used as the response variable in linear regressions for each

205 time period.
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Distance to fence gaps included distance from the center of the space-block to the nearest
wildlife guard, wing wall, and gate, as well as the presence of fencing in most of the space-block.
Fence presence was a binary variable and represented whether greater than 50% of a space-block
was within the fenced area. Since all the distances and fence presence were highly correlated
with each other, the effects of different fence gaps could not be distinguished. Instead, a principal
components analysis (PCA) was run to include all four factors. The “prcomp” function in R was
used to identify the proportion of variance explained for each principal component axis (R
Development Core Team 2019). The first PC axis explained 85% of the variation so it was the
only axis included in the regression.

For each time period, hot spot Z score was regressed against fence gap PC axis 1,
forested proportion, shrub proportion, open proportion, agriculture proportion, developed
proportion, and freshwater proportion. The saltwater class did not appear in any of the buffers, so
this class was excluded. No interactions were tested because it was not expected that the
proportion of land use would affect how distance to fence gaps influence mortality concentration.
While road characteristics such as traffic volume, road size and type, and speed limit may also
impact WRMs (Clevenger, Chruszcz & Gunson 2001; Grilo, Ferreira & Revilla 2015), on
SH100, there were only minor changes in these characteristics along the highway so none of
these characteristics were included.

Using the MuMIn package in R, model selection and model averaging were performed to
assess the relationship between WRM concentration and fence gaps and surrounding habitat
(Burnham & Anderson 2002; Barton 2013). Models that were within two AAICc values of the
best model were used for averaging. McFadden pseudo R? values for the individual models were

calculated using the pscl package in R (Jackman 2012).
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3 Results
3.1 Change in Wildlife Road Mortalities through Time

In total, we surveyed 3360 km of road and identified 390 target species WRNs (13-44 per
time block) and 376 non-target WRMs (10-60) (Table 2). Most target species WRMs were
mammals with Virginia opossums (Didelphis virginiana), eastern cottontails (Sylvilagus
floridanus), and northern raccoons (Procyon lotor) making up the majority of WRMs throughout
all time periods (Appendix A). There was greater variation in WRMs/survey day in the before
construction period when only two surveys were conducted per month than in either of the other
periods when more surveys were conducted (Fig. 2). Visually, the majority of WRMSs occurred
on the western side of the survey transect, an area with most of the wildlife crossings and fence
gaps (Fig. 3). Overall, there were significant differences in the log of number of WRMs before,
during, and after construction of wildlife mitigation structures (F,,0 = 10.88, P = 0.003; Table 3).
Post-hoc tests revealed that there were significantly more WRMs before construction than during
construction (t =-1.314, p = 0.002), however there were not significant differences between the
before and after (t =-0.703, p = 0.092) and the during and after construction periods (t=0.611, p
=0.125).

Throughout the entire study period, there were few statistically significant clusters,
mostly occurring before and during construction (33 space-time blocks out of a possible 1963
space-time blocks; Fig. 4). There were several non-statistically significant hot spots that occurred
throughout the study period, primarily on the western side of the survey transect and in similar

locations as most of the WRMs. Additionally, the Mann-Kendall Trend test revealed no
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statistically significant trends in hot spot z scores through time (Fig. 5). There were several non-
significant increasing and decreasing trends distributed throughout the survey transect.

The local Moran’s I tests showed that there were several locations where clustering of
both high numbers of WRMs and low numbers of WRMs occurred (Fig. 6). There were several
locations where spikes in WRMs occurred (High-Low clusters), as well as some places where
fewer than expected WRMs occurred (Low-High clusters). Most High-Low outliers occurred on
the eastern side of the survey transect while most of the Low-High outliers occurred on the
western side of the survey transect. Before construction, there was also an area of High-High
clustering which was in the same area as a statistically significant hot spot.

3.2 Impacts of Fence gaps on Mortality Trends

The PCA of distance to fence gaps indicated that approximately 85% of the variation
among fence gap types was explained along the first PC axis, 8.0% on the second axis, 4.1% on
the third, and 2.5% on the fourth (Fig. 7). Along the first PC axis, distance to wildlife guards,
wing walls, and gates increased in the same direction while fence presence increased in the
opposite direction.

Seven predictors were included in the final models giving a total of 128 possible models.
All seven predictors were included in the averaged model for models in all time periods (Table
4). The number of models included in the averaged model ranged from two (after-construction
period) to five (before- and during-construction periods). The range of pseudo R? varied from
0.042-0.044 for the before-construction model to 0.149 - 0.159 for the during-construction
model.

The first PC axis was a significant positive predictor of before, during, and after

construction WRM cluster intensity (Table 5). Therefore, as distance to wildlife guards, wing
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walls, and gates decreased, the intensity of WRM clusters increased, and intensity was greater
within the fenced area. The habitat variables (proportion of open, shrubs, and forested) had a
significant negative effect on WRM cluster intensity in all time periods with the exception of
open before construction (Table 6).

Proportions of developed and agriculture only had an effect in the after-construction
period (Table 5). Wildlife road mortality cluster intensity increased in areas with lower

proportions of developed and agriculture (Table 6).

4 Discussion

Overall, we found that neither the number of WRMs nor the intensity of WRM clusters
changed with construction of the wildlife mitigation structures on SH100. In the before, during,
and after-construction periods, there were stronger clusters near areas that had a fence gap in the
after-construction period, indicating no change in the spatial distribution of road mortalities. All
our analyses agreed, indicating that, as of 1.5 years after construction of mitigation structures on
SH100, WRM s have not yet decreased. There was a non-significant decrease in the number of
WRMs and fewer statistically significant clusters in the after-construction period so WRMs
appear to be trending down; with more time, we may see significantly fewer WRMs. Previous
studies have shown that it may take years for wildlife to regularly use wildlife crossings
(Clevenger & Waltho 2005). It is possible that as wildlife become familiar with wildlife
crossings, we will see fewer animals attempting to cross on the road surface and fewer WRMs as
a result.

Despite finding no significant changes in WRM patterns after construction of

exclusionary fencing and wildlife crossings, we still draw several interesting conclusions from
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the analyses. First, there appeared to be a geographical disparity between both WRM counts and
clusters along the length of the transect. Second, more WRMs appeared to be occurring in places
where there were more fence gaps. Finally, EHSA can provide a unique picture of how WRM
patterns change over time.
4.1 Wildlife Road Mortality Distribution along SH100

Despite not finding statistically significant patterns in WRM concentration, the patterns
observed may still be important. Most WRMs throughout all time blocks occurred on the western
end of the survey transect, an area mostly consisting of private lands and thornscrub habitat on
Laguna Atascosa National Wildlife Refuge with fewer WRMs occurring around parts of the
survey transect with more open vegetation. One possible explanation for this is that there were
fewer animals living around the eastern end of the survey transect. This area was made up
primarily of oxeye daisy prairie, cord grass prairie, and salt marsh (Elliott ef al. 2014) which
tended to have fewer species and fewer individuals than forested habitats in South Texas
(Yamashita 2020). The western side of the transect was primarily agricultural and forested
habitat and both of these have been shown to be associated with greater WRM rates (Puglisi,
Lindzey & Bellis 1974; Smith-Patten & Patten 2008; Ascensao et al. 2017). Therefore, it is
possible that WRM rates may be similar along the length of the survey transect. Additionally,
wildlife living in disturbed habitats (such as those near agricultural lands) may be more willing
to use road rights-of-way than individuals living in more natural habitats, increasing their risk of
vehicle caused mortality (Forman et al. 2003).

In 2018 and 2019, there were favorable environmental conditions for population growth
in many wildlife species in the study area which may have contributed to the lack of change seen

in total WRM rates. Wildlife mitigation structures like exclusionary fencing and wildlife
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crossings have been shown to increase wildlife populations living around roads (van der Ree,
Smith & Grilo 2015) so the combination of favorable growth conditions and mitigation
structures may have led to a decrease in the per capita WRM rate. Caceres (2011) showed that, in
Brazil, abundance was the most significant predictor of WRM counts so natural increases in
animal abundance around SH100 may have led to increases in WRMs after construction.
Therefore, the lack of change seen in WRM rates may reflect increased wildlife populations
rather than an ineffectiveness of mitigation structures. If wildlife populations are increasing
around SH100 and wildlife crossings become more effective with time, then we would expect
the decreasing trend in WRMs to continue.

Another contributing factor may be that there were more fence gaps on the western side
of the survey transect than the eastern side. While this does not explain the high numbers of
WRMs before or during construction, it may have contributed to the lack of decrease in WRMs
after construction. The western side of the transect had 12 of 18 wildlife guards, 10 of 16 gates,
and two of three wing walls offering multiple places for wildlife to access the road. The effects
of different types of fence gaps were not examined in the present study, so it is possible that
WRM concentrations may be higher around more permeable gaps such as wing walls or WGs.
Therefore, these mitigated fence gaps may not be effective at reducing wildlife access to the
road.

4.2 Fence Gaps and Road Mortality

While intensity of WRM clusters was greater near fence gaps, this was true in the before-
and during-construction periods when there were no fences or fence gaps. Cserkész et al. (2013)
examined how WRM counts on a fenced highway was affected by distance to highway

interchanges and demonstrated fencing funneled animals towards fence gaps. However, we
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found no evidence fencing funneled animals onto SH100. Fence gaps along SH100 occurred at
high frequency (n =37 over 12 km of highway) compared to the Cserkész et al. (2013) (n="79
over 640 km) creating more access points and diffusing crossings across several kilometers of
road instead of a single access point.

Our study indicated that the spatial pattern of WRMs has not changed with construction
of fencing and that WRM clustering increased near fence gaps in all time periods indicating
fence gaps may be located in places previously used as wildlife travel corridors. In the after-
construction period, fence gaps probably represented known access points and likely had the
highest chance of an animal crossing, similar to what McCollister and van Manen (2010) found
after construction of wildlife mitigation structures in North Carolina. Fence gaps represent a
narrow access point so assessing how they impact WRMs requires a local scale analysis
(Cervinka et al. 2015). At broader scales, the influence of access points to the highway may
become masked by landscape level effects such as land cover and the presence of fresh water
(Yamashita 2020).

Finally, this study was conducted less than two years after the completion of mitigation
structures and it has been shown that wildlife may take several years to adjust to the presence of
wildlife crossings (Clevenger 2005; Clevenger & Waltho 2005). It is possible that animals along
SH100 were still in the “learning” phase and WRMs, especially around wildlife crossings, may
begin to decrease as time passes. There is some visual evidence of this already with only three
mortalities occurring within 200 m of crossings 1, 3, 3A, and 4 in the final two-time blocks
(eight months; Fig. 3). However, it is unclear if this was a result of learning or chance. Around
wildlife crossing 2, the large number of fence gaps near the crossing may increase the amount of

time it takes wildlife to learn to use the crossing.
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4.5 Using Road Mortality Clusters to Examine Road Mortality Patterns

Using EHSA to examine patterns of WRMs allows one to determine the statistical
significance of visually identified WRM hot spots. Knowing whether or not a cluster is
significant can have important management implications because wildlife crossings can be
expensive when they are built as a stand-alone project (Huijser et al. 2009). Solely using number
of WRMs may miss important clustering of fewer WRMs which may benefit more from a
wildlife crossing (Teixeira et al. 2017). Emerging hot spot analysis provides a framework for
examining fine scale spatial and temporal patterns of WRMs enabling assessment of how fine
scale changes (i.e. wildlife mitigation structures) along a highway affect WRM patterns. This
type of analysis can help determine how effective different mitigation structures are, an
important question for managers and transportation agencies. Complementing this analysis with
monitoring of wildlife mitigation structures using camera traps or another monitoring technique
can allow managers to obtain a complete assessment of how wildlife mitigation structures benefit
the animal community. Finally, EHSA can provide useful visualizations of WRM data that can
help display patterns hidden at larger scales. Generally, WRMs need to be examined at broad
spatial and temporal scales due to sample size limitations. These analyses can miss important
patterns occurring at finer scales (Levin 1992). While EHSA likely has low power to detect
changes in clustering due to low sample sizes in WRM datasets, it can provide useful
representations of data that may elucidate previously unknown patterns in WRM datasets. For
example, it would have been impossible to see that WRMSs appeared to be declining around
wildlife crossings 1, 3, 3a, and 4 without the visualizations produced by EHSA.

While EHSA provides several benefits, performing the analysis effectively requires

balancing sample size limitations of the WRM dataset with the minimum spatial and temporal
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resolution required for the hot spot analysis and Mann-Kendall test. Generally, assessments of
local hot spots or local clustering require large sample sizes to detect significant clusters (Caldas
de Castro & Singer 2006; Grubesic, Wei & Murray 2014). For analysis purposes, medium to
large mammal WRM rates tend to be fairly low (Ascensao ef al. 2017). Therefore, unless one is
working in an area with many WRMs or they have a long-term dataset, the power of hot spot
analysis may be too low to detect significant WRM hot spots in medium to large mammals. This
is especially true for local hot spot analysis when one must apply a correction for multiple testing
and spatial autocorrelation (Caldas de Castro & Singer 2006).

The Mann-Kendall test requires a minimum of 10 time blocks to run (Hipel & Mcleod
2005; Harris ef al. 2017). In order to meet this requirement, we divided WRMs into four-month
time periods. This meant that the total number of WRMs used to identify clustering for each time
block (range 21-44) was likely too low to detect significant changes in clustering through time
(Caldas de Castro & Singer 2006; Grubesic, Wei & Murray 2014). Therefore, an assessment of
how sample size affects the power of local hot spot analysis will be required before this method
can be applied more broadly.
4.6 Conclusions

We present a novel method for assessing how the construction of wildlife mitigation
structures modifies the distribution of WRMs. Unfortunately, the ability of EHSA to explain
variation in WRMs may be limited by the number of WRMs, which in this study, was low
through all time periods. Emerging hot spot analysis in WRM studies can provide a useful
snapshot of how patterns change through time, but appears to perform powerful statistical tests
unless larger WRM datasets are available which can only be obtained through long-term datasets

or very long survey transects. We recommend transportation managers conduct long-term WRM
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surveys, especially in areas where mitigation structures such as wildlife crossings are employed
to document whether WRMs are reduced.

By combining EHSA results with comparisons of the before-, during-, and after-
construction periods, we were able to demonstrate that the construction of exclusionary fencing
and wildlife crossings did not change patterns of WRMs, possibly because fence gaps were
located in places where WRM concentration was high before construction. Visual inspection of
fine scale WRM patterns, available from EHSA, revealed that WRMs may be decreasing around
wildlife crossings on SH100, indicating that animals may be learning that wildlife crossings
provide a safer passageway across roads than the road surface. Therefore, EHSA can provide

useful insights into how changes in the roadway impact wildlife use of the road area.
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Figures and Tables

Table 1: Comparison of wildlife road mortality survey methodologies among construction

periods on State Highway 100, Cameron County, Texas. Surveys per month are the approximate

number of wildlife road mortality surveys conducted per month, time period is the dates that

surveys were being conducted, and carcass removal indicates if carcasses were marked or moved

by surveyors.

Before During After
Surveys/month 2 8 4
Time period Aug 2015 —-Aug 2016  Sep 2016 —May 2018  Jun 2018 — Sep 2019
Vehicle Speed 40 kmh 48 — 64 kmh 48 — 64 kmh
People/Vehicle 2 2 2
Coordinates GPS GPS GPS
Photograph No Yes Yes
Carcass removal Marked but not Unmarked and not Unmarked and not

removed removed removed

Taxa recorded Mammalia, Reptilia All All
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Table 2: Total number of wildlife road mortalities by class before, during, and after construction
of wildlife mitigation structures on State Highway 100, Cameron County, Texas. For a complete

breakdown of wildlife road mortalities by species and time period, see Appendix A.

Group Class Before During After Total Mortalities
Months of Data 11 20 16 e
Mammalia 89 140 114 343
Target Species Reptilia 28 4 16 48
Total 117 144 130 391
- Awes 5= 50 101 156
Mammalia 36 12 25 73
. Reptilia 67 19 40 126
Non-target Species
Malacostraca 0 0 6 6
Unknown 1 0 1 2
Total 109 81 186 376
___________ Grand Total 226 225 316 767

27



563

564

565

566

567

Table 3: ANOVA table comparing the log of number of wildlife road mortalities on State
Highway 100, Cameron County, Texas in the before, during, and after construction periods. Post-
hoc tests were performed using the Tukey’s Honestly Significant Difference test. The test

statistic for the ANOVA was an F; post-hoc testsused T values.

Variable Sum Squares Mean Squares df Statistic P value
Time Period 3.837 1.918 2 10.88 0.003
Before — During 1.31 0.002
Before — Post 0.70 0.092
During — Post -0.61 0.125
Residuals 1.762 0.176 10
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Table 4: Summary of the averaged regression models for the effect of land cover and fence gaps
on the intensity of wildlife road mortality clustering along State Highway 100, Cameron County,
Texas. The factors included in the model were the distance to fence gaps Principal Components
axis (Gap), open vegetation (Open), shrubs (Shrub), forested, developed, agriculture, and fresh
water (Water). The “models included” are the number of models used to compute the model
averaged estimates and p values. Significance of a factor is indicated by a “+” (positive effect) or
a “-” (negative effect). The pseudo R2 range is the range of McFadden pseudo R2 values for

each model included in the averaged model.

Time Period

Before During After

Models Included 5 5 2
Fence Gap + + +
Open NS - -
Shrub - - -
Forested - - -
Developed NS NS -
Agriculture NS NS -
Water NS NS NS
Pseudo R? Range 0.042 - 0.044 0.149 - 0.159 0.122-0.124
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Table 5: Full model summaries for the averaged regression model assessing the effects on
wildlife road mortality clustering on State Highway 100, Cameron County, Texas for before,
during, and after construction periods showing the estimated effect, standard error, Z score, and P

value. Significant effects are bolded.

Time Period Variable Estimate Adjusted SE Z score P value
(Intercept) 0.538 0.267 2.019 0.044
PC1 0.129 0.056 2.304 0.021
Forested -3.138 1.489 2.108 0.035
Shrubs -2.963 1.022 2.900 0.004
Before
Freshwater -2.758 8.496 0.325 0.745
Developed -0.238 0.738 0.323 0.747
Agriculture 0.218 0.804 0.271 0.786
Open -0.086 0.322 0.266 0.790
(Intercept) 1.626 0.482 3.373 0.001
PC1 0.137 0.055 2.504 0.012
Agriculture -1.384 1.616 0.856 0.392
) Developed -1.493 1.386 1.077 0.281
During
Freshwater 22.296 15.565 1.432 0.152
Forested -10.129 1.434 7.064 0.000
Open -1.445 0.601 2.404 0.016
Shrubs -2.733 0.972 2.812 0.005
(Intercept) 2.474 0.393 6.292 0.000
PC1 0.123 0.051 2.396 0.017
Agriculture -4.281 1.387 3.086 0.002
After Developed -5.243 1.104 4.751 0.000
Forested -3.677 1.309 2.808 0.005
Open -1.592 0.563 2.829 0.005
Shrubs -2.688 0.912 2.947 0.003
Freshwater 3.490 8.814 0.396 0.692
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Fig. 1: Map of the wildlife mitigation area on State Highway 100 showing the three types of

fence gaps: gates, wildlife guards, and wing walls. The wildlife road mortality survey transect is

divided into 151 100 m road segments.
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Fig. 2: Total number of wildlife road mortalities per time block normalized by number of survey
days along State Highway 100, Cameron County, Texas. Wildlife road mortalities shown include
target species (mammals larger than rodents, turtles, and tortoises) and all species combined
(target plus non-target species). Vertical lines delineate the periods before, during, and after the

construction of wildlife mitigation structures.
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Fig. 4: Heatmap of wildlife road mortality hot spots along State Highway 100, Cameron County,
Texas. Statistically significant hot spots are those that were significant after applying the false
discovery rate correction, while non-significant hot spots were those that were only significant
without the correction. The survey transect blocks represent road segments and increase from
west to east. To better relate this to the study area map, the approximate locations of wildlife
crossings and fence ends are also indicated by vertical lines and the construction periods are

indicated by horizontal lines.
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Cameron County, Texas from the Mann-Kendall trend test. Decreasing trends indicate that the
concentration of wildlife road mortalities decreased over time while increasing trends indicate

that concentration of wildlife road mortalities increased over time. No trends were statistically

significant (at a = 0.05) after the FDR correction was applied.
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components axes (left) and a scree plot showing the proportion of variance explained along each
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