VII. REFERENCES

Allendorf, F. W., & Thorgaard, G. H. (1984). Tetraploidy and the evolution of salmonid fishes. In Evolutionary genetics of fishes (pp. 1-53). Springer, Boston, MA.
Baillie, S. M., et al. (2016). ”Loss of genetic diversity and reduction of genetic distance among lake trout Salvelinus namaycush ecomorphs, Lake Superior 1959 to 2013.” Journal of Great Lakes Research 42(2): 204-216.
Balon, E. K. (1980). Charrs, salmonid fishes of the genus Salvelinus. Kluwer Boston.
Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., … & Pevzner, P. A. (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of computational biology, 19(5), 455-477.
Bertolotti, A. C., Layer, R. M., Gundappa, M. K., Gallagher, M. D., Pehlivanoglu, E., Nome, T., … & Macqueen, D. J. (2020). The structural variation landscape in 492 Atlantic salmon genomes. Nature communications, 11(1), 1-16.
Blackie, C.T., Weese, D.J., & Noakes, D.L.G. (2003). Evidence for resource polymorphism in the lake charr (Salvelinus namaycush) population of Great Bear Lake, Northwest Territories, Canada. Ecoscience 10(4), 509-514.
Bolger, A. M., Lohse, M., & Usadel, B. (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15), 2114-2120.
Bourgey, M., Dali, R., Eveleigh, R., Chen, K. C., Letourneau, L., Fillon, J., … & Bourque, G. (2019). GenPipes: an open-source framework for distributed and scalable genomic analyses. GigaScience, 8(6), giz037.
Catchen, J., Amores, A., & Bassham, S. (2020). Chromonomer: a tool set for repairing and enhancing assembled genomes through integration of genetic maps and conserved synteny. G3: Genes, Genomes, Genetics, 10(11), 4115-4128.
Chaisson, M. J., & Tesler, G. (2012). Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory. BMC bioinformatics, 13(1), 1-18.
Chavarie, L., Howland, K., Harris, L., & Tonn, W. (2015). Polymorphism in lake trout in Great Bear Lake: intra-lake morphological diversification at two spatial scales. Biological Journal of the Linnean Society 114(1): 109-125.
Chin, C. S., Alexander, D. H., Marks, P., Klammer, A. A., Drake, J., Heiner, C., … & Turner, S. W. (2013). Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nature Methods, 10(6), 563.
Chin, C. S., Peluso, P., Sedlazeck, F. J., Nattestad, M., Concepcion, G. T., Clum, A., … & Schatz, M. C. (2016). Phased diploid genome assembly with single-molecule real-time sequencing. Nature methods, 13(12), 1050-1054.
Christensen, K. A., Rondeau, E. B., Minkley, D. R., Leong, J. S., Nugent, C. M., Danzmann, R. G., … & Koop, B. F. (2018). The Arctic Char (Salvelinus alpinus) genome and transcriptome assembly. PloS one, 13(9), e0204076.
Christensen, K.A., Leong, J.S., Sakhrani, D., Biagi, C.A., Minkley, D.R., Withler, R.E., Rondeau, E.B., Koop, B.F., & Devlin, R.H. (2018). Chinook salmon (Oncorhynchus tshawytscha) genome and transcriptome. PloS One 13(4 (2018): e0195461.
Christensen, K. A., Rondeau, E. B., Minkley, D. R., Leong, J. S., Nugent, C. M., Danzmann, R. G., … & Koop, B. F. (2021). Retraction: The Arctic charr (Salvelinus alpinus) genome and transcriptome assembly.
Crête-Lafrenière, A., Weir, L. K., & Bernatchez, L. (2012). Framing the Salmonidae family phylogenetic portrait: a more complete picture from increased taxon sampling. PloS one, 7(10), e46662.
De‐Kayne, R., Zoller, S., & Feulner, P. G. (2020). A de novo chromosome‐level genome assembly of Coregonus sp.“Balchen”: one representative of the Swiss Alpine whitefish radiation. Molecular Ecology Resources.
English, A. C., Richards, S., Han, Y., Wang, M., Vee, V., Qu, J., … & Gibbs, R. A. (2012). Mind the gap: upgrading genomes with Pacific Biosciences RS long-read sequencing technology. PloS One, 7(11), e47768.
Flynn, J. M., Hubley, R., Goubert, C., Rosen, J., Clark, A. G., Feschotte, C., & Smit, A. F. (2020). RepeatModeler2 for automated genomic discovery of transposable element families. Proceedings of the National Academy of Sciences, 117(17), 9451-9457.
Gagnaire P-A, Normandeau E, Pavey SA, Bernatchez L. 2013. Mapping phenotypic, expression and transmission ratiodistortion QTL using RAD marker in the Lake Whitefish (Coregonus clupeaformis). Molecular Ecology. 22: 3036-3048.
Garrison, E., & Marth, G. (2012). Haplotype-based variant detection from short-read sequencing. arXiv preprint arXiv:1207.3907.
Ghurye, J., Pop, M., Koren, S., Bickhart, D., & Chin, C. S. (2017). Scaffolding of long read assemblies using long range contact information. BMC genomics, 18(1), 1-11.
Goetz, F., Rosauer, D., Sitar, S., Goetz, G., Simchick, C., Roberts, S., … & Mackenzie, S. (2010). A genetic basis for the phenotypic differentiation between siscowet and lean lake trout (Salvelinus namaycush). Molecular ecology, 19, 176-196.
Goetz, F., Smith, S. E., Goetz, G., & Murphy, C. A. (2016). Sea lampreys elicit strong transcriptomic responses in the lake trout liver during parasitism. BMC genomics, 17(1), 1-16.
Goodier, J. L. (1981). Native lake trout (Salvelinus namaycush) stocks in the Canadian waters of Lake Superior prior to 1955. Canadian Journal of Fisheries and Aquatic Sciences, 38(12), 1724-1737.
Gu, Z., Gu, L., Eils, R., Schlesner, M., & Brors, B. (2014). circlize implements and enhances circular visualization in R. Bioinformatics, 30(19), 2811-2812.
Guinand, B., K.T. Scribner, K.S. Page, and M.K. Burnham-Curtis. 2003. Genetic variation over space and time: analyses of extinct and remnant lake trout populations in the upper Great Lakes. Proc. Roy. Soc. Lond. 270: 425-434.
Hansen, Michael J. ”Lake trout in the Great Lakes: basin-wide stock collapse and binational restoration.” (1999): 417-453. Pages 417-453 in William W Taylor, C Paola Ferreri (eds). Great Lakes Fishery Policy and Management: A Binational Perspective. Michigan State University Press.
Hanson, S. D., Holey, M. E., Treska, T. J., Bronte, C. R., & Eggebraaten, T. H. (2013). Evidence of wild juvenile lake trout recruitment in western Lake Michigan. North American Journal of Fisheries Management, 33(1), 186-191.
Harris, L. N., Chavarie, L., Bajno, R., Howland, K. L., Wiley, S. H., Tonn, W. M., & Taylor, E. B. (2015). Evolution and origin of sympatric shallow-water morphotypes of Lake Trout, Salvelinus namaycush, in Canada’s Great Bear Lake. Heredity, 114(1), 94-106.
Hotaling, S.; Kelley, J.L. The rising tide of high-quality genomic resources. Mol. Ecol. Resour. 2020, 19, 567–569.
Kajitani, R., Toshimoto, K., Noguchi, H., Toyoda, A., Ogura, Y., Okuno, M., … & Itoh, T. (2014). Efficient de novo assembly of highly heterozygous genomes from whole-genome shotgun short reads. Genome research, 24(8), 1384-1395.
Komen, H., & Thorgaard, G. H. (2007). Androgenesis, gynogenesis and the production of clones in fishes: a review. Aquaculture, 269(1-4), 150-173.
Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., Bergman, N. H., & Phillippy, A. M. (2017). Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome research, 27(5), 722-736.
Krueger, C. C., Horrall, R. M., & Gruenthal, H. (1983). Strategy for the use of lake trout strains in Lake Michigan. Wisconsin Department of Natural Resources, Administrative Report, 17.
Lantry JR (2015) Eastern basin of Lake Ontario warmwater fisheries assessment, 1976–2014. 2014 annual report, Bureau of Fisheries, Lake Ontario Unit and St Lawrence River Unit to the Great Lakes Fishery Commission’s Lake Ontario Committee, pp. 1–35
Larson, W. A., Kornis, M. S., Turnquist, K. N., Bronte, C. R., Holey, M. E., Hanson, S. D., … & Sloss, B. L. (2021). The genetic composition of wild recruits in a recovering lake trout population in Lake Michigan. Canadian Journal of Fisheries and Aquatic Sciences, 99(999), 1-15.
Li, H. (2018). Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34(18), 3094-3100.
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., … & Durbin, R. (2009). The sequence alignment/map format and SAMtools. Bioinformatics, 25(16), 2078-2079.
Lien, S., Koop, B. F., Sandve, S. R., Miller, J. R., Kent, M. P., Nome, T., … & Davidson, W. S. (2016). The Atlantic salmon genome provides insights into rediploidization. Nature, 533(7602), 200-205.
Limborg, M. T., Seeb, L. W., & Seeb, J. E. (2016). Sorting duplicated loci disentangles complexities of polyploid genomes masked by genotyping by sequencing. Molecular Ecology. DOI: 10.1111/mec.13601
Lynch, M., & Force, A. G. (2000). The origin of interspecific genomic incompatibility via gene duplication. The American Naturalist, 156(6), 590-605.
Macqueen, D. J., & Johnston, I. A. (2014). A well-constrained estimate for the timing of the salmonid whole genome duplication reveals major decoupling from species diversification. Proceedings of the Royal Society B: Biological Sciences, 281(1778), 20132881.
Marcais, G., & Kingsford, C. (2012). Jellyfish: A fast k-mer counter. Tutorialis e Manuais, 1-8.
Marin, K., Coon, A., Carson, R., Debes, P. V., & Fraser, D. J. (2016). Striking phenotypic variation yet low genetic differentiation in sympatric lake trout (Salvelinus namaycush). PloS one, 11(9), e0162325.
Marsden, J. E., Noakes, D. L., & Krueger, C. C. (2021). Terminology Issues in Lake Charr Early Development. In A. M. Muir (Ed.), The Lake Charr Salvelinus namaycush: Biology, Ecology, Distribution, and Management (1st ed., Fish and Fisheries, Ser. 39, pp. 487-497). Cham, Switzerland: Springer International Publishing. doi:10.1007/978-3-030-62259-6
Mérot, C., Oomen, R. A., Tigano, A., & Wellenreuther, M. (2020). A roadmap for understanding the evolutionary significance of structural genomic variation. Trends in Ecology & Evolution, 35(7), 561-572.
Muir, A. M., Bronte, C. R., Zimmerman, M. S., Quinlan, H. R., Glase, J. D., & Krueger, C. C. (2014). Ecomorphological diversity of lake trout at Isle Royale, Lake Superior. Transactions of the American Fisheries Society, 143(4), 972-987.
Muir, A. M., Hansen, M. J., Bronte, C. R., & Krueger, C. C. (2016). If Arctic charr Salvelinus alpinus is ‘the most diverse vertebrate’, what is the lake charr Salvelinus namaycush?. Fish and Fisheries, 17(4), 1194-1207.
Ohno S. (1970). Evolution by gene duplication. New York: Springer-Verlag.
Pan, W., Jiang, T., & Lonardi, S. (2020). OMGS: optical map-based genome scaffolding. Journal of Computational Biology, 27(4), 519-533.
Pearse, D. E., Barson, N. J., Nome, T., Gao, G., Campbell, M. A., Abadía-Cardoso, A., … & Lien, S. (2019). Sex-dependent dominance maintains migration supergene in rainbow trout. Nature Ecology & Evolution, 3(12), 1731-1742.
Perreault‐Payette, A., Muir, A. M., Goetz, F., Perrier, C., Normandeau, E., Sirois, P., & Bernatchez, L. (2017). Investigating the extent of parallelism in morphological and genomic divergence among lake trout ecotypes in Lake Superior. Molecular Ecology, 26(6), 1477-1497.
Pflug, J. M., Holmes, V. R., Burrus, C., Johnston, J. S., & Maddison, D. R. (2020). Measuring genome sizes using read-depth, k-mers, and flow cytometry: methodological comparisons in beetles (Coleoptera). G3: Genes, Genomes, Genetics, 10(9), 3047-3060.
Prince, D. J., O’Rourke, S. M., Thompson, T. Q., Ali, O. A., Lyman, H. S., Saglam, I. K., … & Miller, M. R. (2017). The evolutionary basis of premature migration in Pacific salmon highlights the utility of genomics for informing conservation. Science advances, 3(8), e1603198.
Pycha, R. L. (1980). Changes in mortality of lake trout (Salvelinus namaycush) in Michigan waters of Lake Superior in relation to sea lamprey (Petromyzon marinus) predation, 1968–78. Canadian Journal of Fisheries and Aquatic Sciences, 37(11), 2063-2073.
Quinlan, A. R., & Hall, I. M. (2010). BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics, 26(6), 841-842.
R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
Rakestraw, L. (1967). Post-columbian history of Isle Royale. Part II: fisheries. Master’s thesis Houghton: Michigan Technological University
Döring, A., Weese, D., Rausch, T., & Reinert, K. (2008). SeqAn an efficient, generic C++ library for sequence analysis. BMC bioinformatics, 9(1), 1-9.
Rezvoy, C., Charif, D., Guéguen, L., & Marais, G. A. (2007). MareyMap: an R-based tool with graphical interface for estimating recombination rates. Bioinformatics, 23(16), 2188-2189.
Riley, S. C., et al. (2007). ”Evidence of widespread natural reproduction by lake trout Salvelinus namaycush in the Michigan waters of Lake Huron.” Journal of Great Lakes Research 33: 917-921.
Rougeux C, Gagnaire PA, Praebel K, Seehausen O, Bernatchez L. 2019. Polygenic selection drives the evolution of convergent transcriptomic landscapes across continents within a Nearctic sister-species complex. Molecular Ecology. 28:4388-4403.
Ruan, J., & Li, H. (2020). Fast and accurate long-read assembly with wtdbg2. Nature methods, 17(2), 155-158.
Salzberg, S. L. (2019). Next-generation genome annotation: we still struggle to get it right. Genome Biology 20, 92. https://doi.org/10.1186/s13059-019-1715-2
Scribner, Kim, Iyob Tsehaye, Travis Brenden, Wendylee Stott, Jeannette Kanefsky, & James Bence. ”Hatchery strain contributions to emerging wild lake trout populations in Lake Huron.” Journal of Heredity 109, no. 6 (2018): 675-688.
Shedko, S. V. (2019). Assembly ASM291031v2 (Genbank: GCA_002910315. 2) identified as assembly of the Northern Dolly Varden (Salvelinus malma malma) genome, and not the Arctic char (S. alpinus) genome. arXiv preprint arXiv:1912.02474.
Siberchicot, A., Bessy, A., Guéguen, L., & Marais, G. A. (2017). MareyMap online: a user-friendly web application and database service for estimating recombination rates using physical and genetic maps. Genome biology and evolution, 9(10), 2506-2509.
Smit, AFA, Hubley, R & Green, P. (2015). RepeatMasker Open-4.0. <http://www.repeatmasker.org>.
Smith, S. H. (1968). ”Species succession and fishery exploitation in the Great Lakes.” Journal of the Fisheries Research Board of Canada 25: 667-693.
Smith, S. R., Amish, S. J., Bernatchez, L., Le Luyer, J., C. Wilson, C., Boeberitz, O., … & Scribner, K. T. (2020). Mapping of Adaptive Traits Enabled by a High-Density Linkage Map for Lake Trout. G3: Genes, Genomes, Genetics, 10(6), 1929-1947.
Soderlund, C., Nelson, W., Shoemaker, A., & Paterson, A. (2006). SyMAP: A system for discovering and viewing syntenic regions of FPC maps. Genome research, 16(9), 1159-1168.
Soderlund, C., Bomhoff, M., & Nelson, W. M. (2011). SyMAP v3. 4: a turnkey synteny system with application to plant genomes. Nucleic acids research, 39(10), e68-e68.
Thibaud-Nissen, F., DiCuccio, M., Hlavina, W., Kimchi, A., Kitts, P. A., Murphy, T. D., … & Souvorov, A. (2016). P8008 The NCBI Eukaryotic Genome Annotation Pipeline. Journal of Animal Science, 94(suppl_4), 184-184.
Thorgaard, Gary H., Fred W. Allendorf, & Kathy L. Knudsen. ”Gene-centromere mapping in rainbow trout: high interference over long map distances.” Genetics 103, no. 4 (1983): 771-783.
Valiquette E, Perrier C, Thibault I, Bernatchez L. 2014. Loss of genetic integrity in wild Lake Trout populations following stocking: Insights from an exhaustive study of 72 lakes from Québec, Canada. Evolutionary Applications. 7: 625-644.
Van de Peer, Y., Mizrachi, E., & Marchal, K. (2017). The evolutionary significance of polyploidy. Nature Reviews Genetics, 18(7), 411.
Veale, A. J., & Russello, M. A. (2017). An ancient selective sweep linked to reproductive life history evolution in sockeye salmon. Scientific Reports, 7(1), 1-10.
Vurture, G. W., Sedlazeck, F. J., Nattestad, M., Underwood, C. J., Fang, H., Gurtowski, J., & Schatz, M. C. (2017). GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics, 33(14), 2202-2204.
Waples, R.S. K.A. Naish, and C.R. Primmer. 2020.Conservation and Management of salmon in the age of genomics. Ann. Rev. Anim. Biosci. 8: 117-143.
Whibley, A., Kelley, J., & Narum, S. (2020). The changing face of genome assemblies: guidance on achieving high‐quality reference genomes. Molecular ecology resources.
Wick, R. R., Judd, L. M., Gorrie, C. L., & Holt, K. E. (2017). Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS computational biology, 13(6), e1005595.
Williams, D., Trimble, W. L., Shilts, M., Meyer, F., & Ochman, H. (2013). Rapid quantification of sequence repeats to resolve the size, structure and contents of bacterial genomes. BMC Genomics, 14(1), 1-11.
Willoughby, J. R., Harder, A. M., Tennessen, J. A., Scribner, K. T., & Christie, M. R. (2018). Rapid genetic adaptation to a novel environment despite a genome‐wide reduction in genetic diversity. Molecular Ecology, 27(20), 4041-4051.
Wingett, S., Ewels, P., Furlan-Magaril, M., Nagano, T., Schoenfelder, S., Fraser, P., & Andrews, S. (2015). HiCUP: pipeline for mapping and processing Hi-C data. F1000Research, 4.
Workman RE, Tang AD, Tang PS, Jain M, Tyson JR, Zuzarte PC, et al. Nanopore native RNA sequencing of a human poly(a) transcriptome. bioRxiv; 2018. p. 459529. https://doi.org/10.1101/459529
Zimin, A. V., & Salzberg, S. L. (2020). The genome polishing tool POLCA makes fast and accurate corrections in genome assemblies. PLoS computational biology, 16(6), e1007981.
Zimmerman, Mara S., Charles C. Krueger, & Randy L. Eshenroder. ”Phenotypic diversity of lake trout in Great Slave Lake: differences in morphology, buoyancy, and habitat depth.” Transactions of the American Fisheries Society 135, no. 4 (2006): 1056-1067.