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ABSTRACT

In recent years various probability models have been proposed for describing lifetime
data. Increasing model flexibility is often sought as a means to better describe asym-
metric and heavy tail distributions. Such extensions were pioneered by the beta-G
family. However, efficient goodness-of-fit (GoF) measures for the beta-G distribu-
tions are sought. In this paper, we combine probability weighted moments (PWMs)
and the Mellin transform (MT) in order to furnish new qualitative and quanti-
tative GoF tools for model selection within the beta-G class. We derive PWMs
for the Fréchet and Kumaraswamy distributions; and we provide expressions for
the MT, and for the log-cumulants (LC) of the beta-Weibull, beta-Fréchet, beta-
Kumaraswamy, and beta-log-logistic distributions. Subsequently, we construct LC
diagrams and, based on the Hotelling’s T 2 statistic, we derive confidence ellipses for
the LCs. Finally, the proposed GoF measures are applied on five real data sets in
order to demonstrate their applicability.
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1. Introduction

Survival analysis tools have been applied in several contexts, such as survival time of
mechanical components [1], the failure times of electrical insulator films [2], the effect
of varying IL-2 concentration on T cell response [3], and in censored data from head-
and-neck-cancer clinical trials [4]. Further applications were found in digital image
processing, for instance in synthetic aperture radar (SAR) imagery analysis [5,6]. The
derivation of new probability models capable of better explaining reliability data is
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a central task in the field of survival analysis. In recent years, an effort to extend
classical models by means of probability distribution generators has been sought [7].
As a result, the following probability models were introduced: the Marshall and Olking
(MG)-G class of distributions [8], the generalized exponential distribution [9], the
beta-normal distribution [7], the Kumaraswamy (Kw)-G class [10], the McDonald
normal distribution [11], the generalized gamma distribution [12,13], the T-X family
of distributions [14,15], and the generalized Weibull distribution [16].

Despite the significant number of new models, few goodness-of-fit (GoF) measures
have been proposed for the recent distributions; thus hindering model selection. Con-
sidering progressive type-II censored data, Pakyari and Balakrishnan [17] proposed a
general GoF test [18] that encompasses the GoF test described in [19]. Such methods
are based on distance measures between theoretical and empirical cumulative distri-
bution functions.

Taking a different approach, Linhart and Zucchini [20] proposed information-
theoretical measures considering the Akaike and Bayesian information criteria [21]
as figures of merit for model selection. An alternative method for GoF assessment
was given by the Pearson system diagram for model selection [22], which is based on
skewness and kurtosis measures [23, p. 23]. Delignon et al. [24] and Vogel and Fen-
nessey [25] applied such diagram for SAR and hydrology data, respectively. Chabert
and Tourneret [26] introduced a generalization of the Pearson diagram for bivariate
random vectors. Nagahara [27] examined the problem of devising GoF measures for
multivariate non-normal distributions by using the Pearson system.

However, in [28], Nicolas noticed that the Pearson diagram tends not to be well-
suited for positive random variables. Thus, the log-cumulant (LC) diagram, which
plots the third-kind LC κ̃3 against the second-kind LC κ̃2, was introduced as an al-
ternative [28]. The LC diagram offers some advantages over the Pearson diagram. Be-
sides being suitable for positive random variables, its computational implementation
is more direct and it also captures the distribution flexibility in the sense of skewness
and kurtosis [29]. Such diagram was demonstrated to be relevant for quantitative and
qualitative comparison of non-nested distributions in SAR and Polarimetric SAR (Pol-
SAR) data [30–33]. A detailed description of the LC diagram is provided in [28,29].
In [28], Nicolas proposed the application of the Mellin transform (MT) [34, p. 50] as an
alternative to the usual characteristic function. Li et al. [29] also considered the MT-
based diagram for the classification of empirical probability density functions (pdf)
from SAR imagery data. Nicolas and Maruani [35] compared the MT-based method
with the second kind cumulant, moment, lower order moment, and maximum likeli-
hood (ML) methods. Khan and Guida [32] have applied the MT to describe complex
vector data having the G model; whereas Anfinsen and Eltoft [36] have demonstrated
that MT can be useful for PolSAR data analysis.

In this paper, we propose a combination of probability weighted moments (PWMs)
and the MT in order to furnish new GoF qualitative and quantitative tools for model
selection in classes of generalized distributions [7]. We introduce a general expres-
sion for the MT of the beta generalized (beta-G) distributions. Because of analytical
tractability and suitability for beta-generalization, we separate the following base-
line distributions for investigation: Weibull [37], Fréchet [38,39], Kumaraswamy [40],
and log-logistic (LL) [41]. Their corresponding beta-generalizations are: the beta-Wei-
bull (BW) [42], the beta-Fréchet (BF) [43], the beta-Kumaraswamy (BKw) [44], and
the beta-LL (BLL) [45] distributions. We introduce closed-form expressions for the
Fréchet and Kumaraswamy PWM functions. Moreover, we propose a relationship be-
tween the Hotelling’s T 2 statistic and the multivariate delta method to obtain asymp-
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totic confidence ellipses for hypothesis testing that involves second kind cumulants.
Based on Monte Carlo experiments, the performance of the proposed GoF tests are
quantified e compared with that due to other well-defined tests. Finally, five actual
data sets in the context of survival analysis were submitted to the proposed method-
ology.

The structure of this work is outlined as follows. Section 2 reviews the beta-G class
of distributions with four particular cases. In Section 3, the MT and its properties
are outlined. Moreover, we summarize the PWM theory and derive the PWM for the
Fréchet and Kw distributions. Section 4 presents new GoF measures for four extended
models from the beta-G class. In Section 5, numerical results are displayed. Finally,
concluding remarks are presented in Section 6.

2. The Beta-G Distribution Family

The beta-G family of distributions was proposed by Eugene et al. [7] and is defined
as follows. Let G(x; τ ) be a cumulative distribution function (cdf) with parameter
vector τ . We refer to such cdf as the baseline distribution. The beta-G approach
extends the baseline distribution into another distribution F (x) according to:

F (x) = F (x; a, b, τ ) = IG(x;τ )(a, b)
1

B(a, b)

∫ G(x;τ )

0
ωa−1(1− ω)b−1 dω, (1)

where a > 0 and b > 0 are shape parameters, Iy(a, b) = By(a, b)/B(a, b) is the in-
complete beta function ratio, By(a, b) =

∫ y
0 ω

a−1(1−ω)b−1 dω is the incomplete beta

function, B(a, b) = Γ(a)Γ(b)/Γ(a+b) is the beta function, and Γ(a) =
∫
∞

0 ωa−1 e−ω dω
is the gamma function. The pdf associated with (1) is given by:

f(x) = f(x; a, b, τ ) =
1

B(a, b)
g(x; τ )G(x; τ )a−1 [1−G(x; τ )]b−1, (2)

where g(x; τ ) = dG(x; τ )/d x is the baseline pdf. In the next subsections, we sepa-
rate four particular beta-G distribution, given in Table 1, for further assessment and
derivation of GoF measures.

Figure 1 presents pdf curves of BW, BF, BKw, and BLL for several parameters
values. Due to the inclusion of shape parameters (a and b), these distributions are
more flexible than their baselines and are candidates for modeling positive real data
sets [46–48].

3. Mellin Transform as a Special PWM: Second Kind Statistics for Beta
Generalized Models

The Fourier transform is a central tool in signal analysis [49,50]. Traditionally a prob-
ability distribution can be described by means of its characteristic function (cf) of
the first kind, which is the Fourier transform of its pdf. Let X be random variable
equipped with cdf F (x). Then, its cf ΦX(t) is defined as [51, p. 342]:

ΦX(t) = E(ei tX) =

∫
∞

−∞

ei t x dF (x), t ∈ R,
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where i =
√
−1. However, the cf can be not analytically tractable, as noticed in the

BW [42], BF [43], BKw [44], BLL [45], beta-Gumbel [43], and beta log-normal [52]
models. To address this issue, Colombo [53] has suggested the MT as an alternative.
In [28], Nicolas introduced the second kind statistics based on the MT for analyzing
distributions over R+.

In this section, we show that the MT of beta-G distributions can be directly obtained
from the PWM of baseline distributions. For such, in the following, we review PWM
for baseline distributions.

3.1. PWM Background

PWM was introduced by Greenwood et al. [54] and consists of a generalized moment
expression for probability models. In terms of estimation theory, PWMs can furnish
useful closed-form estimators when classical estimators, such as the method of mo-
ments and ML, are analytically intractable [54–56].

The PWM is defined by

Ml,j,k = E
{
X lF (X)j [1− F (X)]k

}
=

∫ 1

0
Q[F (x)]lF (x)j(1− F (x))k dF (x), (3)

where l, j, k ∈ R and Q(·) represents the quantile function of F (·). Notice that (3)
generalizes the usual moments, which are obtained by taking l ∈ Z+ and j = k = 0
(Ml,0,0). If Ml,0,0 is finite, then PWM Ml,j,k is well-defined for all j, k ∈ R+ [54].
Table 2 presents the quantile function, the cdf, and the sample space X for the baseline
distributions considered in this paper.

3.2. PWM of Particular Baseline Distributions

Greenwood et al. [54] and Caiza and Ummenhofer [57] derived the PWM for the
following models: the Weibull, the Gumbel [54], the generalized lambda [54], the logis-
tic [54,57], the Wakeby [54], and the kappa distribution [54]. Mahdi and Ashkar [58] de-
rived the PWM for the LL model as a means to investigate the generalized probability
weighted moments and ML fitting methods. They also showed how to provide an esti-
mation based on PWMs. Mahdi and Ashkar [59,60] also derived and described PWMs
linked to the Weibull and LL models as an alternative to estimation methods such as
the generalized PWMs [61], generalized moments [62–64], and ML methods [65].

However, the current literature lacks PWM expressions for the Fréchet and Kw
distributions. In the following propositions, we address this literature gap.

Proposition 3.1. Let X be a random variable following the Fréchet model with λ > 0
and α > 0 as location and shape parameters, respectively. The PWM of X is given by

Ml,j,k = λlΓ

(
1− l

α

) ∞∑

r=0

(
k

r

)
(−1)r

1

(j + r + 1)1−
l

α

.

Proposition 3.2. Let X be a random variable following the Kw model with shape
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parameters λ > 0 and α > 0. The PWM of X is given by

Ml,j,k = λ

∞∑

r=0

(
j

r

)
(−1)r B

[
1 +

l

α
, λ(k + r + 1)

]
.

Proofs for the above propositions are given in the Appendix A. A summary of the
PWM results is listed in Table 3; central moments are also shown as particular cases.

3.3. Mellin Transform

Let X ∈ R+ be a random variable with cdf F (x). Then the first cf of the second kind
is defined by means of the MT:

φX(s) =

∫
∞

0
xs−1 dF (x) = E(Xs−1), (4)

where s ∈ C is a complex variable [28].
Considering the beta-G family, we introduce the following theorem relating the MT

to the PWMs.

Theorem 3.3. Let X be a random variable having distribution in the beta-G family

with cdf and pdf given by (1) and (2), respectively. Then, the MT of X, referred to as

φBG(s), is given by

φBG(s) =
1

B(a, b)
Ms−1, a−1, b−1, (5)

where Ms−1, a−1, b−1 is the PWM of a baseline G.

Proof. Applying (1) into (4) with G(x) = 1−G(x) we can show that:

φBG(s) =

∫
∞

0
xs−1 dF (x)

=

∫
∞

0
xs−1 g(x)

B(a, b)
G(x)a−1G(x)b−1 dx

=
1

B(a, b)

∫
∞

0
xs−1G(x)a−1G(x)b−1 dG(x)

=
1

B(a, b)
E
[
X s−1 G(X)a−1G(X)b−1

]

=
1

B(a, b)
Ms−1, a−1, b−1.

Table 4 displays the obtained MT for the considered distributions.
The second cf of the second kind is defined as follows:

ψX(s) = log (φX(s)) . (6)
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The second kind cumulants or LCs of order ν are obtained from the νth derivative of
ψX(s) evaluated at s = 1:

κ̃ν =
dν ψX(s)

d sν

∣∣∣∣
s=1

, ν ∈ N. (7)

Table 5 presents LCs for the considered beta-G models.

3.4. The Log-cumulants Diagram

As discussed by Delignon et al. [24], the Pearson diagram is a tool for model selec-
tion and assessment of fitting. Such diagram is based on skewness and kurtosis mea-
sures. Nicolas [28] presented evidence that the Pearson diagram can be analytically
intractable and introduced the (κ̃3, κ̃2) diagram, which is similar to the Pearson dia-
gram, but employs the second kind statistics κ̃3 and κ̃2 instead of skewness and kurtosis
measures. In [28], it is also shown that the (κ̃3, κ̃2) diagram is a suitable alternative
for classifying SAR images whose associate Pearson diagram is often intractable.

Anfinsen and Eltoft [30] introduced the matrix LC (MLC) diagram as means to
visually inspect the multidimensional space where each dimension is represented by
one particular MLC with order ν. Thus, such visualization tool facilitates the use of
MT and provides intuition to the LC method. The diagram in [30] is an extension of
the LC diagram considered by Nicolas [28,66] for the univariate MT. In [29,31,32,36],
the MT-based LC diagram was employed for pdf classification from SAR imagery data.

In this paper, we employ the (κ̃3, κ̃2) diagram as a tool for assessing fits under beta-
G models. The LCs (see Table 5) of such models were derived using PWMs and the
MT and are displayed in Table 5, where the LCs are given in terms of the digamma and
polygamma functions given by ψ(z) = d

d z log Γ(z) and ψ(n)(z) = dn+1

d zn+1 log Γ(z) [67,
p. 258–260], respectively.

Figure 2 exhibits the regions in the (κ̃3, κ̃2) diagram linked to the BW, BF, BKw,
and BLL models. These regions can be understood as manifolds [30]. Each distribution
is represented by a subspace, whose dimensions depend on the parameter number of
the associated distribution [30,36]. However, the resulting region can degenerate into
a curve [30,36]. For instance, the LL distribution has no shape parameters and its
manifold is represented by a line (vertical dashed line), which can be viewed as a
zero-dimensional manifold.

The regions linked to the BW and BF distributions are parameterized by one pa-
rameter. These regions are represented, respectively, by a solid and dotted curve in
Figure 2 of the Diagram of the LCs (κ̃3, κ̃2) for BW, BF, BKw, and BLL models,
being one-dimensional manifolds. On the other hand, the BKw and BLL distributions
result in two-dimensional manifold because they are parametrized by two and three
parameters, respectively.

4. New GoF Tools for Beta-G Models

In recent years, several models have been proposed to describe survival data, such
as the beta power exponential [68], McDonald exponentiated gamma [69], gamma
extended Weibull [70], and the models considered in this paper. These models are
however in need of accurate GoF tools. In this section, we propose four GoF tools for
beta-G models based on the Hotelling’s T 2 statistic [71, p. 170].
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4.1. Hotelling’s T 2 Statistic

The Hotelling’s T 2 statistic is a generalization of the Student’s t statistics [71, p. 170]
given by:

T 2 = n (x− µ)⊤ S−1 (x− µ) , (8)

where x = 1
n

∑n
r=1 xr is the sample mean vector based on a random sample

x1,x2, . . . ,xn from the ν-variate normal random vector x ∼ Nν(µ, Σ); µ and Σ are
the mean vector and covariance matrix, respectively; and S = 1

n

∑n
r=1 xrx

⊤
r − nxx⊤

is the sample covariance matrix. Such statistics follows the F -Snedecor distribution
with ν and n− ν degrees of freedom denoted by Fν,n−ν [71, p. 177].

Considering a significance level η, the likelihood ratio test for the hypothesis
E(X) = µ can be rejected if T 2 ≥ QF (1 − η; ν, n − ν), where QF (·; ν, n − ν) is
the quantile function for Fν,n−ν [71]. Additionally one may consider ν-dimensional
confidence ellipsoids given by [71]:

n (x− µ)⊤ S−1 (x− µ) ≤ QF (1− η; ν, n − ν).

For large samples, the T 2 distribution can be approximated by its limiting distribution,
which is the chi-squared distribution with ν degrees of freedom [36]. This result is
relevant for the case where xr is not normal and the exact distribution for (8) is not
known.

4.2. Hotelling’s T 2 statistic and Log-cumulants

We aim at applying the Hotelling’s T 2 statistic as a means for proposing GoF tests
based on the LCs. Our goal is to estimate the LCs and then classify the underlying

distribution according to the location of the estimated LCs
[
̂̃κ2 ̂̃κ3

]⊤
over the (κ̃3, κ̃2)

diagram.

Therefore, we need a test statistics for the null hypothesis H0 : E
([
̂̃κ2 ̂̃κ3

])
=

[
κ̃2 κ̃3

]
. Such test would pave the way for accepting or rejecting the pertinence of

estimated LCs to particular regions over the (κ̃3, κ̃2) diagram.
Because the LCs tend to be analytically well-defined quantities, they can be given

closed-form expressions, as we showed in Table 5, for several beta-G distributions.
Such relationship between parameters and LCs can be used to derive estimators for
the LCs. In other words, we have that

̂̃κ2 = g2(θ̂) and ̂̃κ3 = g3(θ̂),

where θ̂ is the estimated parameter vector; and g2(·) and g3(·) are composite functions
that return the LCs in terms of the baseline distribution parameters by means of
evaluating: (7), (6), (4), and (5).

Further, we notice that for large samples, considering the generalized delta

method [72], the estimator vector
[
̂̃κ2 ̂̃κ3

]⊤
follows the bivariate normal distribu-

tion with mean
[
κ̃2 κ̃3

]⊤
and an asymptotic covariance matrix K, as previously

shown in [31,32,36]. The estimated asymptotic covariance matrix K̂ can be obtained
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from the asymptotic covariance matrix of the parameter estimators Σ [36]. As shown
in [36, p. 2769], we can write

K̂ = Ĵ⊤ · Σ̂ · Ĵ ,

where

Ĵ =




∂g2(θ̂)

∂θ̂1

∂g3(θ̂)

∂θ̂1

∂g2(θ̂)

∂θ̂2

∂g3(θ̂)

∂θ̂2

...
...

∂g2(θ̂)

∂θ̂r

∂g3(θ̂)

∂θ̂r




, (9)

θr is the rth parameter of the model and Σ̂ is the estimated asymptotic covariance
matrix of the estimator vector θ̂.

The ML estimators for the parameters of beta-G distributions often have no closed-
form expressions and its covariance matrix is unknown. This is illustrated by the
beta-Pareto [47], beta-Laplace [73], BW [42], and BF [74] distributions.

As presented in [65, p. 181–182] and [75,76], the inverse of Fisher information ma-
trix (FIM) can be employed as an approximation for the variance-covariance matrix,
since it is the asymptotic covariance matrix of the ML estimators [65, p. 181–182].
Thus, we have the following approximation for Σ [77, Th. 7.3.11]:

Σ ≈ −
[
E

(
∂2ℓ(θ)

∂θ⊤∂θ

)]−1

, (10)

under regularity conditions [65].
For the majority of beta-G models, the calculation of their FIMs is analytically

intractable. A common solution for this problem is the use of the observed information
matrix instead of the FIM, as supported by [47,73,78]. Thus, the observed information
matrix is an estimator for the FIM [79]. Therefore, in this work, we use the inverse
observed information matrix as replacement for the asymptotic covariance matrix
of the ML estimators. The observed information matrix has the advantage of being
definite positive matrix; thus measuring the observed curvature on the log-likelihood
surface. In other words, it provides an indication of how much a multidimensional
likelihood surface is rotated with respect to the parameter axes [80]. For the model
parameter estimation, we employed the ML estimation because it results in invariant,
consistent, and asymptotically efficient estimators [81, p. 3].

Thus, comparing with (8) and (9), for second and third order LCs κ̃2 and κ̃3, we have

that ν = 2, µ =
[
κ̃2 κ̃3

]⊤
, x =

[
̂̃κ2 ̂̃κ3

]⊤
, where ̂̃κ2 and ̂̃κ3 are sample estimators for

κ̃2 and κ̃3, respectively. The matrix S can be substituted by the estimated asymptotic

covariance matrix K̂ of [̂̃κ2, ̂̃κ3]⊤. Therefore, we obtain the following statistic:

T 2 = n

([
̂̃κ2
̂̃κ3

]
−
[
κ̃2
κ̃3

])⊤

K̂−1

([
̂̃κ2
̂̃κ3

]
−
[
κ̃2
κ̃3

])
, (11)
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where the inverse of K̂ is obtained via usual matrix inversion [82,83] if the matrix K̂

is nonsingular [84, p. 508]; otherwise the generalized Moore-Penrose inverse [84,85] is
applied.

For such, we submit the estimated LCs ̂̃κ2 and ̂̃κ3 from the (κ̃3, κ̃2) diagram [28]
to the Hotelling’s T 2 statistic formalism. Considering large samples, the limiting dis-
tribution of the random variable T 2 is the χ2 distribution [36]. Thus, in (11), we can
adopt the approximation QF (·; ν, n − ν) ≈ Qχ2(·; ν), where Qχ2(·; ν) is the quantile
function for the χ2 distribution with ν degrees of freedom. Therefore, we can derive a
confidence ellipse at significance level η according to:

([
̂̃κ2
̂̃κ3

]
−
[
κ̃2
κ̃3

])⊤

K̂−1

([
̂̃κ2
̂̃κ3

]
−
[
κ̃2
κ̃3

])
≤ 1

n
Qχ2(η; 2),

where Qχ2(η; 2) is the quantile function for χ2
2. The above ellipse is centered at (κ̃2, κ̃3)

and its axes are directed according the eigenvectors of K̂ [86].

4.3. Hotelling’s T 2 statistic for Selected Beta-G Distributions

Based on the last discussion, four GoF measures are proposed for the BW, BF, BKw,
and BLL distributions.

Proposition 4.1. Let X be a random variable following the BW distribution with

parameters a = 1, b > 0, α > 0 and λ > 0, then the Hotelling’s T 2 statistic, here

referred to as T 2
BW

, based on the LCs is given by

T 2
BW

=
nα̂6

4

(
1

α̂2
− 1

α2

)2
(

|ĤBW|
Uα̂α̂Ub̂b̂ − U2

λ̂b̂

)
,

where | · | is the determinant of a matrix Ĥ·; |ĤBW| is the estimator of |HBW| given by

|HBW| = Uαα(UλλUbb − U2
λb) + Uαλ(UαbUλb − UαλUbb) + Uαb(UαλUλb − UαbUλλ);

and α̂, b̂, λ̂ are the estimators for α, b, and λ, respectively. The quantities U· are the

entries of the associated information matrix and are given in the Appendix B.

Proposition 4.2. Let X be a random variable following the BF distribution with

parameters a > 0, b = 1, λ > 0 and α > 0, then the Hotelling’s T 2 statistic, referred

to as T 2
BF
, based on the LCs is given by

T 2
BF

=
nα̂6

4

(
1

α̂2
− 1

α2

)2
(

|ĤBF|
Uα̂α̂Uââ −U2

λ̂â

)
,

where |ĤBF| is the estimator of |HBF| given by

|HBF| = Uαα(UλλUaa − U2
λa) + Uαλ(UαaUλa − UαλUaa) + Uαa(UαλUλa − UαaUλλ);

and α̂, â, λ̂ are the estimates of the α, a, and λ, respectively. In the Appendix B, the
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quantities U· are fully detailed.

Proposition 4.3. Let X be a random variable following the BKw with parameters

a = 1, b > 0, λ > 0 and α > 0, then its Hotelling’s T 2 statistic, here called T 2
BKw

, is

given by

T 2
BKw

=
n|ĤBKw|

δ̂22δ̂33 − δ̂223
·
[
δ̂33

(
̂̃κ2 − κ̃2

)2
+ δ̂22

(
̂̃κ3 − κ̃3

)2
− 2δ̂23

(
̂̃κ2 − κ̃2

)(
̂̃κ3 − κ̃3

) ]
,

where |ĤBKw| is an estimator of |HBKw| is given by

|HBKw| = Uαα(UλλUbb −U2
λb) + Uαλ(UαbUλb − UαλUbb) + Uαb(UαλUλb − UαbUλλ);

and ̂̃κ2 and ̂̃κ3 are the estimates of the LCs κ̃2 and κ̃3, respectively; and δ̂22, δ̂23, and
δ̂33 are the estimates for δ22, δ23, and δ33 given in compact form by

δ22 =
[
J12 J22 J32

]
·ΣBKw ·

[
J12 J22 J32

]⊤
,

δ23 =
[
J12 J22 J32

]
·ΣBKw ·

[
J13 J23 J33

]⊤
,

δ33 =
[
J13 J23 J33

]
·ΣBKw ·

[
J13 J23 J33

]⊤
;

and

J12 =
2

α3

{
ψ(1)(λb+ 1)− ψ(1)(1)

}
,

J13 =
3

α4

{
ψ(2)(λb+ 1)− ψ(2)(1)

}
,

J22 =
b

α2
ψ(2)(λb+ 1), J23 =

b

α3
ψ(3)(λb+ 1),

J32 =
λ

α2
ψ(2)(λb+ 1), J33 =

λ

α3
ψ(3)(λb+ 1).

For the sake of brevity, the matrix ΣBKw is shown in Appendix B.4 where the above

expressions are also given fully expanded forms.

Proposition 4.4. Let X be a random variable following the BLL distribution with

parameters a > 0, b = 1, λ > 0 and α > 0, then its Hotelling’s T 2 statistic, here

named T 2
BLL

, based on the LCs is given by

T 2
BLL

=
n|HBLL|

δ̂22δ̂33 − δ̂223

[
δ̂33

(
̂̃κ2 − κ̃2

)2
+ δ̂22

(
̂̃κ3 − κ̃3

)2
− 2δ̂23

(
̂̃κ2 − κ̃2

)(
̂̃κ3 − κ̃3

) ]
,

where |ĤBLL| is an estimator of |HBLL| is given by

|HBLL| = Uαα(UλλUaa −U2
λa) + Uαλ(UαaUλa − UαλUaa) + Uαa(UαλUλa − UαaUλλ);

and ̂̃κ2 and ̂̃κ3 are the estimates of the LCs κ̃2 and κ̃3, respectively; δ̂22, δ̂23, and δ̂33

10



are the estimates for δ22, δ23, and δ33 given in compact form by

δ22 =
[
0 J22 J32

]
·ΣBLL ·

[
0 J22 J32

]⊤
,

δ23 =
[
0 J22 J32

]
·ΣBLL ·

[
0 J23 J33

]⊤
,

δ33 =
[
0 J23 J33

]
·ΣBLL ·

[
0 J23 J33

]⊤
;

and

J22 = − 2

λ3

{
ψ(1)(a) + ψ(1)(1)

}
,

J23 = − 3

λ4

{
ψ(2)(a)− ψ(2)(1)

}
,

J32 =
1

λ2
ψ(2)(a), J33 =

1

λ3
ψ(3)(a).

The matrix ΣBLL is shown in Appendix B.5 with the above expressions fully expanded.

4.4. Mellin-based GoF tests

It is known a GoF test consists at testing as null hypothesis (H0) whereas a set of
random variables follows a specific distribution. For a totally specified distribution,
when all its parameters are known, H0 is said to be a simple hypothesis. When any
of the parameters are unknown, the null hypothesis is composite and the associated
problem is of composite GoF [87]. According to D’ Agostino and Stephens [88], to
derive a GoF test, different ways are adopted. The most manners are: Pearson’s χ2

test, tests based on the EDF (Empirical Distribution Function) and tests based on
moments. The classic Anderson–Darling, and Cramér–von Mises tests are qualified
as EDF-based tests. Moment-based strategies to GoF problems have been introduced
in [89] and [90].

In Algorithm (1), we displayed a contextual summary of the Monte Carlo simulation
for the general case of the evaluation of the test statistics given in Propositions 4.1–
4.4. In next section, following Algorithm (1), we will illustrate the effectiveness of the
Hotellings T 2 statistics for the BW, BF, BKW and BLL models, comparing with the
Anderson–Darling and Cramér–von Mises statistics for some scenarios.

5. Simulations study and Application to Actual Data

5.1. Simulations Study

The Mellin-based GoF test has been recently developed for PolSAR distributions [36].
Now we are in position to check the performance of the GoF tests given in (11) resulting
from Propositions 4.1–4.4.

To that end, we do a Monte Carlo simulation with five thousand replicas and,
for each replica, samples drawn from the BW(θ1), BF(θ2), BKW(θ3) and BLL(θ4)
distributions are generated. As parametric setting, we use θ1 ∈ {(1, 1, 5, 1), (1, 1, 8, 1)},
θ2 ∈ {(1, 1, 8, 1), (1, 1, 3, 2)}, θ3 ∈ {(1, 1, 0.5, 8), (1, 1, 1, 15)} and θ4 ∈ {(1, 1, 8, 0.6),
(1, 1, 8, 1)}. Further, we use the nominal levels η ∈ {1%, 5%, 10%} and sample sizes
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Algorithm 1: LC-based GoF test of the composite hypothesis with Monte Carlo
simulation of the test statistic sampling distribution

Step 1. Determine the significance level η;
Step 2. Generate a sample of size n from a probability distribution (BW, BF,
BKw or BLL);

Step 3. Estimate the parameters of θ of the hypothesized from distribution
model and determine the LCs this model;

Step 4. Generate the observed information matrix of the hypothesized from
distribution model;

Step 5. Use the obtained sample in Step 2 to compute the required sample LCs
by means of the moment-to-cumulant transformations;

Step 6. Obtained the Hotelling’s T 2 statistics given in Propositions 4.1–4.4, here
called T 2

p ;
Step 7. Randomly generate m samples of size n under the hypothesized model.
For each sample, repeat Steps 2-6 and store the simulated test statistics as{
T 2
s (i)

}m
i=1

.
Step 8. Count the number of simulated test statistics that are larger than the
test statistic T 2

p obtained in Step 6 and compute the fraction with respect to
the number of Monte Carlo simulations. This yields the p value, this is,

PMC =
1

m

m∑

i=1

I
(
T 2
s (i) > T 2

p

)
,

where I(·) is the indicator function subjecte to the superscripted condition.
That is, we compute the fraction of simulated T 2

s (i) that are larger than T 2
p .

The Monte Carlo simulated p value PMC is then evaluated against the chosen
significance level η in the test rejected H0 if PMC < η.

Step 9. Perform the hypothesis test by comparing the p value to the significance
level.
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n ∈ {10, 15, 20, 100}. The performance of the proposed GoF tools is compared with
those due to the Arderson-Darling (AD) and Cramer-von Mises (W) tests [19].

Table 6 displays the empirical test sizes. Results show that the proposed GoF tests
outperform the others. See for example the scenario for BW model, with η = 1% and
θ = (1, 1, 5, 1).

5.2. Selected Data Sets and Descriptive Statistics

We separated five real data sets to be submitted to our proposed methodology, deter-
mining according to the introduced GoF criteria a suitable candidate among the BW,
BF, BKw, and BLL models. In the following, we describe briefly the selected data sets:

(i) Breaking (BR) data [91]: 100 observations on breaking stress of carbon fibres (in
Gba);

(ii) Guinea.pig (GU) data [92]: 72 survival times of guinea pigs injected with different
doses of tubercle bacilli;

(iii) Stress-rupture (SR) data [93]: the stress-rupture life of kevlar 49/epoxy strands
subjected to constant sustained pressure at the 90% stress level until failure;

(iv) Airborne (AI) data [94,95]: repair times (in hours) for an airborne communication
transceiver;

(v) River flow (RF) data [96]: lower discharge of at least seven consecutive days
and return period (time) of ten years (Q7,10) of the Cuiabá River, Mato Grosso,
Brazil.

Table 7 gives the descriptive summary for each data set. The first and second data
sets are homogeneous with sample variation coefficient (VC) of 38.68% and 37.26%,
respectively. The remaining data sets are heterogeneous. The river flow data set has
negative skeweness and platykurtic distribution (kurtosis is less than 3). The remaining
data sets have positive skeweness with leptokurtic distribution (kurtosis is greater
than 3).

5.3. (κ̃3, κ̃2) Diagram and Log-cumulants Estimation

Figure 4 exhibits the (κ̃3, κ̃2) diagram and regions linked to particular distributions are
emphasized. For each data set, we computed the sample LCs according to bootstrap
sampling with 1,000 replicates and 90% sample sizes. Each data set is represented by
a different dot pattern.

For each data set, we computed the 95% confidence interval in each replications
(sample sizes n ∈ {10, 50, 100, 300}) and repeated this process 1,000 times to compute
these intervals without the Bonferroni correction (WOBC) and with the Bonferroni
correction (WBC). Bellow Table 8 displays centers and ranges of the confidence interval
for bootstrap percentile WOBC andWBC.We note that for the five data sets the larger
the sample size the smaller confidence interval. Both for the WOBC and WBC meth-
ods. Also, we highlight that for all data sets and in all scenarios (n ∈ {10, 50, 100, 300}
and the second and third order sample LCs), the method WOBC had a lower confi-
dence interval that WBC.

Qualitatively we have the following analysis. For the breaking stress and stress-
rupture data sets, most of the points are located over the regions linked to the BKw
and BW distributions. The points derived from the Guinea.pig data are located in
the BLL distribution region. The airborne data set has its associated points over
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the central region, which includes the LL distribution region, and over the BLL and
BF distribution regions. Finally, we have the river flow data set, where the BKw
distribution region captures most of its points, while some of them spread over the
BW and LL distribution regions.

5.4. Hotelling’s T 2 statistic Analysis

The Hotelling’s T 2 statistic with p values were computed and are displayed in bellow
table 9. The obtained statistics can be interpreted as a measure of the distance between
the data and each particular beta-G model. Lower values of Hotelling’s T 2 statistic
suggest a better agreement between data and model; indicating therefore a better data
fitting.

By separating the models linked to the smallest values of Hotelling’s T 2 statistic,
we have that the BLL distribution is a good model for the guinea.pig and airborne
data sets. The stress-rupture and breaking data could be better modeled by the BW
distribution. Similarly, the river flow data could be fitted under the BKw distribution.
These quantitative results confirm the qualitative analysis provided in Figure 4.

5.5. Confidence Ellipses

To complement the previous analysis of visual application, we have plotted confidence
ellipses for each data set. The construction of the ellipses was based on (11). We
employed the smallest value of Hotelling’s T 2 statistic from Table 9 and the associated

beta-G distribution using the estimated LCs ̂̃κ2 and ̂̃κ3; and the sample variance-
covariance matrix Σ̂.

To obtain the ellipse for breaking and stress-rupture data set we used the BW model
with the T 2

BW statistics given by Proposition 4.1. For the guinea.pig and airborne data
set we apply the BLL model with the T 2

BLL statistics given by Proposition 4.4. In the
case of the river flow data, we apply the BKw model with the T 2

BKw statistics given by
Proposition 4.3. Figure 5 depicts the obtained ellipses.

6. Conclusion

In this paper, several GoF measures have been proposed for determining good fits at
the beta-G class in the survival analysis context. We provided qualitative and quanti-
tative analyses for the introduced GoF tools including numerical and visual inspection
approaches. We derived closed-form expressions for the second kind characteristic func-
tion, LCs, Hotelling’s T 2 statistic, and ellipse of confidence for the LCs of the BW,
BF, BKw, and BLL distributions. Further, Monte Carlo experiments have been made
to assess the performance of the GoF tests proposed to some beta-G models. Pro-
posed measures have been applied to five real data sets in order to demonstrate their
applicability.
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Table 1. Probability density function of the selected beta-G distributions

Models f(x) Reference

Beta-Weibul (BW) 1
B(a,b)

α
x

(
x
λ

)α
e−b (

x

λ)
α
[
1− e−(

x

λ)
α
]a−1

[13,42]

Beta-Fréchet (BF) 1
B(a,b)

α
x

(
x
λ

)−α
e−a (

x

λ)
−α
[
1− e−(

x

λ)
−α
]b−1

[43]

Beta-Kumaraswamy (BKw) αλ xα−1

B(a, b) (1− xα)λ b−1
[
1− (1− xα)λ

]a−1
[44]

Beta-log-logistic (BLL) (λ/α)
B(a, b)

(
x
α

)αλ−1
[
1 + (x/α)λ

]−(a+b)
[45]

Table 2. Quantile and Cumulative Distribution of Adapted Baselines

Models Q[F (x)] F (x) X

Weibull λ [− log(1− F (x))]
1/α 1− exp

{
−
(
x
λ

)α}
R+

Fréchet λ [− log(F (x))]−
1/α exp

{
−
(
x
λ

)−α}
R+

Kw
[
1− (1− F (x))

1/λ
]1/α [

1− (1− xα)λ
]

[0, 1]

LL α
[

F (x)
1−F (x)

]1/λ [
1 +

(
α
x

)λ]−1
R+

Table 3. Central Moments (CM) and Probability Weighted Moments

Models PWM, Ml,j,k CM, M1, 0, 0 Restriction

Weibull λl Γ
(
1 + l

α

)∑
∞

r=0

(
j

r

)
(−1)r 1

(k+r+1)1+l/α λΓ
(
1 + 1

α

)
l, k ∈ R, j ∈ R+

Fréchet λl Γ
(
1−

l
α

)∑
∞

r=0

(
k

r

)
(−1)r 1

(j+r+1)1−l/α λΓ
(
1−

1
α

)
l, j ∈ R, k ∈ R+

Kw λ
∑

∞

r=0

(
j

r

)
(−1)r B [1 + l/α, λ(k + r + 1)] λB (1 + 1/α, λ) l > −α and k > −(r + 1)

LL αl B (j + l/λ+ 1, k − l/λ+ 1) αB (1 + 1/λ, 1− 1/λ) j > −(l/λ+ 1) and k > l/λ− 1
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Table 4. Mellin transform for the BW, BF, BKw, and BLL models

Models MT Restriction

BW λs−1

B(1, b) Γ
(
1 + s−1

α

)
b−(s− 1 + α)/α for all a = 1, b > 0, α > 0, λ > 0

BF λs−1

B(a, 1) Γ
(
1− s−1

α

)
a(s− 1 − α)/α for all b = 1, a > 0, α > 0, λ > 0

BKw λ
B(1, b) B

(
1 + s−1

α , λ b
)

for all a = 1, b > 0, α > 0, λ > 0

BLL αs−1

B(a, 1) B
(
a+ s−1

λ , 1− s−1
λ

)
for all b = 1, a > 0, α > 0, λ > 0

Table 5. Log-cumulants of considered models

Model κ̃1 κ̃2 κ̃3 · · · κ̃ν ∀ ν > 1

BW log(λ) + ψ(1)−log(b)
α

1
α2ψ

(1)(1) 1
α3 ψ

(2)(1) · · ·
1
αν ψ

(ν−1)(1)

BF log(λ) − ψ(1)−log(a)
α

1
α2ψ

(1)(1) −
1
α3ψ

(2)(1) · · · (−1)ν 1
αν ψ

(ν−1)(1)

BKw
ψ(1)−ψ(λ b+1)

α

ψ(1)(1)−ψ(1)(λ b+1)

α2
ψ(2)(1)−ψ(2)(λ b+1)

α3 · · ·
ψ(ν−1)(1)−ψ(ν−1)(λb+1)

αν

BLL log(α) + ψ(a)−ψ(1)
λ

ψ(1)(a)+ψ(1)(1)
λ2

ψ(2)(a)−ψ(2)(1)
λ3 · · ·

ψ(ν−1)(a)+(−1)ν ψ(ν−1)(1)
λν
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Table 6. The GoF measure of the BW, BF, BKw, and BLL distribution, with a = 1 and b = 1 parameters.

Models parameters sample 1% 5% 10%

T 2 AD CM T 2 AD W T 2 AD W

BW (α = 5, λ = 1) 10 99.94 98.44 99.54 99.54 92.22 97.56 99.12 92.30 94.06

15 99.44 98.66 99.20 99.00 92.20 97.22 97.98 92.02 93.08
20 99.26 98.22 99.02 98.12 92.62 97.02 97.88 91.88 93.30
100 98.56 98.14 98.38 97.54 91.66 96.72 95.10 91.48 92.86

(α = 8, λ = 1) 99.92 97.80 99.40 99.70 89.90 95.98 99.30 89.12 90.70
99.76 97.46 99.22 99.26 89.52 95.92 98.66 89.82 91.28
99.54 97.76 99.30 98.90 89.16 95.16 98.32 89.36 91.28
99.00 97.26 98.14 98.16 89.14 95.72 96.90 89.70 91.26

BF (α = 8, λ = 1) 100.00 97.82 99.28 100.00 89.84 95.88 100.00 90.42 92.40
100.00 97.84 99.52 100.00 89.64 95.80 100.00 89.66 91.28
99.98 97.16 99.12 99.96 89.04 95.42 99.42 89.04 91.14
94.02 93.10 93.98 99.34 89.24 95.68 91.54 89.22 90.22

(α = 3, λ = 2) 99.86 99.38 99.84 99.88 95.76 98.82 97.56 95.50 96.00
99.98 99.50 99.82 99.98 96.50 98.84 99.94 96.86 97.12
99.96 99.38 99.82 99.94 96.52 98.72 99.98 96.02 96.48
99.82 99.26 99.36 99.06 95.38 98.34 90.02 96.10 96.62

BKW (α = 0.5, λ = 8) 99.96 99.54 99.92 99.92 97.10 99.10 99.96 97.48 97.72
99.90 99.56 99.88 99.96 96.64 98.72 99.90 97.06 97.16
99.94 99.38 99.76 99.82 97.12 99.02 99.94 96.54 97.06

100.00 99.28 99.86 99.98 95.72 98.68 100.00 95.60 96.18
(α = 1, λ = 15) 99.44 99.58 99.90 99.44 96.44 98.74 99.44 96.08 96.46

99.88 99.56 99.86 99.86 97.36 98.86 99.88 97.36 97.34
99.90 99.44 99.94 99.96 96.84 98.60 99.90 96.78 97.04

100.00 99.46 99.80 100.00 96.22 98.48 100.00 96.26 96.46

BLL (α = 8, λ = 0.6) 79.26 31.04 46.98 79.42 18.02 29.72 77.08 18.34 22.20
76.82 23.66 35.14 75.34 13.20 23.14 75.30 13.12 16.58
86.62 19.58 30.08 81.52 18.80 18.58 82.02 19.74 13.50
22.40 15.14 15.68 22.34 14.02 14.30 21.38 14.08 14.36

(α = 8, λ = 1) 74.26 38.68 50.60 73.54 28.06 37.82 73.54 27.66 30.78
72.16 32.18 42.98 72.52 21.60 30.76 71.94 20.58 23.44
78.46 26.16 38.80 78.32 16.48 25.04 78.38 15.30 18.18
22.04 10.68 18.86 20.68 10.36 18.16 21.08 10.34 16.80

Table 7. Descriptive statistics and LCs (̂̃κ2 and ̂̃κ3) for selected data sets

Data Mean Median SD Skewness Kurtosis VC (%) ̂̃κ2 ̂̃κ3

BR 2.62 2.70 1.01 0.36 3.10 38.68 0.19 −0.09
GU 99.82 70.00 81.12 1.80 5.61 81.26 0.50 0.04
SR 1.02 0.80 1.12 3.00 16.71 109.22 2.02 −2.71
AI 3.64 1.75 5.07 2.91 11.67 139.34 1.18 0.35
RF 107.60 114.10 40.90 −0.15 1.93 37.26 0.19 −0.06
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Table 8. Centers and ranges of the confidence interval for bootstrap percentile WOBC and WBC

Center Range

Data n ̂̃κ2 ̂̃κ3 ̂̃κ2 ̂̃κ3
WOBC WBC WOBC WBC WOBC WBC WOBC WBC

BR 10 0.254 0.270 −0.191 −0.224 0.395 0.454 0.417 0.508
50 0.205 0.215 −0.111 −0.130 0.175 0.215 0.205 0.251
100 0.200 0.206 −0.101 −0.107 0.129 0.153 0.162 0.182
300 0.198 0.199 −0.089 −0.095 0.073 0.088 0.094 0.115

GU 10 0.487 0.526 0.001 −0.027 0.674 0.810 0.706 0.842
50 0.505 0.504 0.029 0.027 0.335 0.398 0.306 0.379
100 0.500 0.503 0.035 0.033 0.232 0.291 0.225 0.263
300 0.502 0.503 0.041 0.041 0.134 0.166 0.131 0.153

SR 10 1.928 2.032 −2.850 −3.106 2.878 3.371 6.049 7.159
50 2.016 2.015 −2.556 −2.643 1.395 1.693 2.927 3.440
100 2.001 2.018 −2.661 −2.631 0.952 1.151 2.122 2.515
300 2.020 2.018 −2.678 −2.675 0.547 0.648 1.183 1.476

AI 10 1.144 1.183 0.373 0.359 1.477 1.660 2.076 2.628
50 1.175 1.172 0.372 0.378 0.697 0.773 1.080 1.280
100 1.170 1.174 0.365 0.367 0.479 0.567 0.777 0.938
300 1.168 1.173 0.355 0.358 0.271 0.320 0.450 0.521

RF 10 0.179 0.179 −0.057 −0.064 0.232 0.268 0.140 0.169
50 0.186 0.186 −0.058 −0.058 0.111 0.126 0.070 0.080
100 0.185 0.184 −0.058 −0.060 0.074 0.087 0.047 0.060
300 0.185 0.185 −0.059 −0.059 0.045 0.053 0.027 0.033

Table 9. Hotelling’s T 2 statistic and p-value (in parentheses) with respect to the data sets

Models Breaking Guinea.pig Stress-rupture Airborne River flow

BW 0.178 (0.8367) 6.727 (0.0021) 0.055 (0.9462) 2.949 (0.0638) 2.681 (0.0821)
BF > 10 (≈ 0.00) 5.466 (0.0062) > 10 (≈ 0.00) 2.393 (0.1042) 2.289 (0.1159)
BKw 6.772 (0.0018) > 10 (≈ 0.00) 0.133 (0.8752) > 10 (≈ 0.00) 0.225 (0.7990)
BLL 5.500 (0.0054) 0.862 (0.4266) > 10 (≈ 0.00) 0.318 (0.7289) 0.935 (0.4016)
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Figure 1. The pdf of the BW, BF, BKw, and BLL distribution, for several values of parameters a, b, α, and
λ, respectively.
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Figure 2. Diagram of the LCs (κ̃3, κ̃2) for BW, BF, BKw, and BLL models.
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Figure 3. The GoF measure of the BW, BF, BKw, and BLL distribution, with a = 1 and b = 1 parameters.
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Appendix A. Proof of PWMs for Baseline Distributions

In this appendix, we derive PWM expressions for Fréchet and Kumaraswamy distri-
butions.

A.1. Fréchet PWM

Applying the Fréchet quantile function

Q[F (x)] = λ [− log(F (x))]−
1/α

to (3), and considering the substitution u = − log(F (x)), we obtain:

Ml,j,k = λl
∫

∞

0
u−

l/α e−u(j+1)
(
1− e−u

)k
du.

Taking into account the following series expansion described in [97,98]

(1− z)j =

∞∑

r=0

(
j

r

)
(−1)r zr,

for |z| < 1 and j > 0, (??) becomes:

Ml,j,k = λl
∞∑

r=0

(
k

r

)
(−1)r

∫
∞

0
u−

l/α e−u(j+r+1) du.

From Γ(δ) = vδ
∫
∞

0 xδ−1 e−vx dx, the following result holds:

Ml,j,k = λl Γ

(
1− l

α

) ∞∑

r=0

(
k

r

)
(−1)r

1

(j + r + 1)1−l/α
,

For integer, non-negative values of k, we have [99, p. 612]:

Ml,j,k = λl Γ

(
1− l

α

) k∑

r=0

(
k

r

)
(−1)r

1

(j + r + 1)1−l/α
.

The last results are valid for (1− l/α) /∈ Z−.

A.2. Kumaraswamy PWM

Applying the Kumaraswamy model quantile function Q[F (x)] =
[
1− (1− F (x))

1/λ
]1/α

in (3), and considering the substitution u = 1− (1− F (x))
1/λ, we have:

Ml,j,k = λ

∫ 1

0
u
l/α(1− u)λ(k+1)−1[1− (1− u)λ]j du.
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Again, take v = (1− u)λ and use [99, p. 271]

∫ b

a
f(x) dx = −

∫ a

b
f(x) dx,

to obtain

Ml,j,k =

∫ 1

0
(1− v

1/λ)
l/α(1− v)jvk d v.

Invoking (??), we have

Ml,j,k =

∞∑

r=0

(
j

r

)
(−1)r

∫ 1

0
(1− v

1/λ)
l/αvr+k d v.

Given t = 1− v
1/λ, we obtain

Ml,j,k = λ

∞∑

r=0

(
j

r

)
(−1)r

∫ 1

0
t
l/α(1− t)λ(k+r+1)−1 d t.

As B(δ, τ ) =
∫ 1
0 x

δ−1(1− x)τ−1 dx , the following holds:

Ml,j,k = λ

∞∑

r=0

(
j

r

)
(−1)r B [1 + l/α, λ(k + r + 1)] .

For integer, non-negative values of j, we have that [99, p. 612]:

Ml,j,k = λ

j∑

r=0

(
j

r

)
(−1)r B [1 + l/α, λ(k + r + 1)] .

Appendix B. Proof of GoF Criteria

In this appendix, we furnish proofs for Propositions 4.1, 4.2, 4.3, and 4.4.

B.1. General Derivation

According to (11), in order to derive the sought statistics for the distribution, we need

to obtain the following quantities: (i) the estimates ̂̃κ2 and ̂̃κ3 and (ii) K̂−1.
With the outputs from Algorithm 2 and 3, the sought statistics can be obtained

according to the algebraic manipulation implied by (11).
In the next subsections, for each considered model, we state the necessary inputs

for the above algorithms and derive the statistics.
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Algorithm 2: Computation of ̂̃κ2 and ̂̃κ3
Step 1. If BW or BKw models are considered, then let θ =

[
λ α b

]⊤
;

otherwise θ =
[
λ α a

]⊤
;

Step 2. Compute log-likelihood function ℓ(θ);

Step 3. Derive the ML estimates θ̂ by solving the score vector at zero, which
can be performed by means of iterative methods, such as the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm;

Step 4. Derive estimates for κ̃2 and κ̃3 LCs based on ̂̃κ2 = g2(θ̂) and ̂̃κ3 = g3(θ̂).

Algorithm 3: Computation of K̂−1

Step 1. Compute the LC matrix Ĵ according to (9), considering the particular
functions g2(·) and g3(·);

Step 2. Derive the matrix Σ according to (10);

Step 3. Compute: K̂ = Ĵ⊤ · Σ̂ · Ĵ ;
Step 4. If K̂ is nonsingular, compute K̂−1 by usual inversion [82] [83]; otherwise

compute the generalized inverse of K̂ [84] [85].

B.2. Beta-Weibull Distribution

B.2.1. Log-likelihood Function

ℓ(θ) = n log(α)− nα log(λ)− n log B(1, b) + (α− 1)

n∑

r=1

log(xr)− b

n∑

r=1

(xr
λ

)α
.

B.2.2. Score vector components

∂ℓ(θ)

∂α
=
n

α
+

n∑

r=1

log
(xr
λ

)
− b

n∑

r=1

(xr
λ

)α
log
(xr
λ

)
,

∂ℓ(θ)

∂λ
= −nα

λ
+ b

α

λα+1

n∑

r=1

xαr ,

∂ℓ(θ)

∂b
= −n {ψ(b)− ψ(1 + b)} − 1

λα

n∑

r=1

xαr .

B.2.3. Functions g2(θ) and g3(θ)

g2(θ) =
1

α2
ψ(1)(1) and g3(θ) =

1

α3
ψ(2)(1).
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B.2.4. Information Matrix and Its Inverse

HBW = − ∂2ℓ(θ)

∂θ⊤∂θ
=




Uαα Uαλ Uαb

Uλα Uλλ Uλb

Ubα Ubλ Ubb


 ,

where Uαα = n
α2 + bξBW

2 , Uαλ = Uλα = 1
λ(n − bξBW

3 ), Uαb = Ubα = ξBW
1 , Uλλ =

[bα(α+ 1)ξBW
0 − nα]/λ2, Uλb = Ubλ = −α

λξ
BW
0 , Ubb = n[ψ(1)(b) − ψ(1)(1 + b)], ξBW

s =
∑n

r=1

(
xr

λ̂

)α̂
logs

(
xr

λ̂

)
, for s = 0, 1, 2; and ξBW

3 =
∑n

r=1

(
xr

λ

)α [
log
(
xr

λ

)α
+ 1
]
.

If the determinant |HBW| 6= 0, the asymptotic covariance matrix is given by ΣBW ≈
H−1

BW, where the usual matrix inversion is applied [82,83]; otherwise we apply the
generalized Moore-Penrose inverse [84,85].

B.2.5. Log-cumulant Matrix

JBW = −




2
α3ψ

(1)(1) 3
α4ψ

(2)(1)

0 0

0 0


 .

B.2.6. Asymptotic Covariance Matrix and Its Inverse

KBW =

(
UααUbb −U2

λb

α8|HBW|

)
·
[

4α2ψ(1)(1)2 6αψ(1)(1)ψ(2)(1)

6αψ(1)(1)ψ(2)(1) 9ψ(2)(1)2

]
.

where

|HBW| = Uαα(UλλUbb −U2
λb) + Uαλ(UαbUλb −UαλUbb) + Uαb(UαλUλb −UαbUλλ).

Because KBW is singular, the generalized Moore-Penrose inverse was computed [84,
p. 508]:

K−1
BW =

(
α6|HBW|

UααUbb −U2
λb

)[(2ψ(1)(1))−2 0

0 0

]
.

B.2.7. Hotelling’s T 2 statistic Derivation

Therefore, we obtain:

T 2
BW =

nα̂6

4

(
1

α̂2
− 1

α2

)2
(

|ĤBW|
Uα̂α̂Ub̂b̂ −U2

λ̂b̂

)
.
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B.3. Beta-Fréchet Distribution

B.3.1. Log-likelihood Function

ℓ(θ) = n log(α) + nα log(λ)− n log B(a, 1)− (1 + α)

n∑

r=1

log(xr)− a

n∑

r=1

(
λ

xr

)α
.

B.3.2. Score vector components

∂ℓ(θ)

∂α
=
n

α
+ n log(λ)−

n∑

r=1

log (xr)− a

n∑

r=1

(
λ

xr

)α
log

(
λ

xr

)
,

∂ℓ(θ)

∂λ
= n

α

λ
− aα λα−1

n∑

r=1

x−αr ,

∂ℓ(θ)

∂a
= −n {ψ(a)− ψ(1 + a)} − λα

n∑

r=1

x−αr .

B.3.3. Functions g2(θ) and g3(θ)

g2(θ) =
1

α2
ψ(1)(1) and g3(θ) = − 1

α3
ψ(2)(1).

B.3.4. Information Matrix and Its Inverse

HBF = − ∂2ℓ(θ)

∂θ⊤∂θ
=




Uαα Uαλ Uαa

Uλα Uλλ Uλa

Uaα Uaλ Uaa


 ,

where Uαα = n
α2 + aξBF

2 , Uαλ = Uλα = 1
λ(aξ

BF
3 − n), Uαa = Uaα = ξBF

1 , Uλλ =
1
λ2 [nα− aα(1− α)ξBF

0 ], Uλa = Uaλ = α
λξ

BF
0 , Uaa = n[ψ(1)(a) − ψ(1)(1 + a)], ξBF

s =
∑n

r=1

(
λ̂
xr

)α̂
logs

(
λ̂
xr

)
with s = 0, 1, 2, and ξBF

3 =
∑n

r=1

(
λ
xr

)α [
log( λxr

)α + 1
]
.

If the determinant |HBF| 6= 0, the asymptotic covariance matrix is given by ΣBF ≈
H−1

BF [82,83]; otherwise we apply the generalized Moore-Penrose inverse [84,85].
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B.3.5. Log-cumulant Matrix

JBF =




− 2
α3ψ(1)(1) 3

α4ψ(2)(1)

0 0

0 0


 .

B.3.6. Asymptotic Covariance Matrix and Its Inverse

KBF =

(
UααUaa −U2

λa

α8|HBF|

)
·
[

4α̂2ψ(1)(1)2 −6α̂ψ(1)(1)ψ(2)(1)

−6α̂ψ(1)(1)ψ(2)(1) 9ψ(2)(1)2

]
.

Because KBF is singular, the generalized Moore-Penrose inverse was computed [84,
p. 508]:

K−1
BF =

(
α6|HBF|

UααUaa −U2
λa

)

(
2ψ(1)(1)

)−2
0

0 0


 .

B.3.7. Hotelling’s T 2 statistic Derivation

Therefore, we obtain:

T 2
BF =

nα̂6

4

(
1

α̂2
− 1

α2

)2
(

|ĤBF|
Uα̂α̂Uââ −U2

λ̂â

)
.

B.4. Beta-Kumaraswamy Distribution

B.4.1. Log-likelihood Function

ℓ(θ) = n log(αλ)− n log B(1, b) + (α− 1)

n∑

r=1

log(xr) + (λ b− 1)

n∑

r=1

log (1− xαr ) .
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B.4.2. Score vector components

∂ℓ(θ)

∂α
=
n

α
+

n∑

i=1

log (xr)− (λb− 1)

n∑

r=1

xαr log(xr)

1− xαr
,

∂ℓ(θ)

∂λ
=
n

λ
+ b

n∑

r=1

log(1− xαr ),

∂ℓ(θ)

∂b
= −n {ψ(b)− ψ(1 + b)}+ λ

n∑

r=1

log(1− xαr ).

B.4.3. Functions g2(θ) and g3(θ)

g2(θ) =
ψ(1)(1) − ψ(1)(λb+ 1)

α2
and g3(θ) =

ψ(2)(1) − ψ(2)(λb+ 1)

α3
.

B.4.4. Information Matrix and Its inverse

HBKw = − ∂2ℓ(θ)

∂θ⊤∂θ
=




Uαα Uαλ Uαb

Uλα Uλλ Uλb

Ubα Ubλ Ubb


 ,

where Uαα = n
α2 + (λb − 1)

∑n
r=1

xα
r log2(xr)
(1−xα

r )
2 , Uαλ = Uλα = b

∑n
r=1

xα
r log(xr)
(1−xα

r )
, Uαb =

Ubα = λ
∑n

r=1
xα
r log(xr)
(1−xα

r )
, Uλλ = n

λ2 , Uλb = Ubλ = −∑n
r=1 log(1 − xαr ), and Ubb =

n[ψ(1)(b)− ψ(1)(1 + b)].
If the determinant |HBKw| 6= 0, the asymptotic covariance matrix is given by

ΣBKw ≈ 1

|HBKw|




Ubαα Ubαλ Ubαb

Ubλα Ubλλ Ubλb

Ubbα Ubbλ Ubbb


 ,

with Ubαα = UλλUbb − U2
λb, U

b
αλ = Ubλα = UαbUλb − UαbUλλ, U

b
αb = Ub

bα = UαλUλb −
UαbUλλ, U

b
λλ = UααUbb−U2

αb, U
b
λb = Ub

bλ = UαλUαb−UααUλb, U
b
bb = UααUλλ−U2

αλ;
otherwise we apply the generalized Moore-Penrose inverse [84,85].
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B.4.5. Log-cumulant Matrix

JBKw =




J12 J13

J22 J23

J32 J33


 ,

where

J12 =
2

α3
{ψ(1)(λb+ 1)− ψ(1)(1)},

J13 =
3

α4
{ψ(2)(λb+ 1)− ψ(2)(1)},

J22 =
b

α2
ψ(2)(λb+ 1), J23 =

b

α3
ψ(3)(λb+ 1),

J32 =
λ

α2
ψ(2)(λb+ 1), J33 =

λ

α3
ψ(3)(λb+ 1).

B.4.6. Asymptotic Covariance Matrix and Its Inverse

KBKw =
1

|HBKw|

[
δ22 δ32

δ23 δ33

]
,

where

δ22 = J12(J12U
b
αα + J22U

b
λα + J32U

b
bα) + J22(J12U

b
αλ + J22U

b
λλ + J32U

b
bλ)

+ J32(J12U
b
αb + J22U

b
λb + J32U

b
bb),

δ23 = δ32 = J13(J12U
b
αα + J22U

b
λα + J32U

b
bα) + J23(J12U

b
αλ + J22U

b
λλ + J32U

b
bλ)

+ J33(J12U
b
αb + J22U

b
λb + J32U

b
bb),

δ33 = J13(J13U
b
αα + J23U

b
λα + J33U

b
bα) + J23(J13U

b
αλ + J23U

b
λλ + J33U

b
bλ)

+ J33(J13U
b
αb + J23U

b
λb + J33U

b
bb).

If δ22δ33 > δ223 and |HBKw| 6= 0, then the inverse is given by

K−1
BKw =

|HBKw|
δ22δ33 − δ223

[
δ33 −δ32
−δ23 δ22

]
,

otherwise we apply the generalized Moore-Penrose inverse [84,85].
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B.4.7. Hotelling’s T 2 statistic Derivation

The sought T 2
BKw statistic is:

T 2
BKw =

n|ĤBKw|
δ̂22δ̂33 − δ̂223

[
δ̂33

(
̂̃κ2 − κ̃2

)2
+ δ̂22

(
̂̃κ3 − κ̃3

)2
− 2δ̂23

(
̂̃κ2 − κ̃2

)(
̂̃κ3 − κ̃3

) ]
.

B.5. Beta-log-logistic Distribution

B.5.1. Log-likelihood Function

ℓ(θ) = n log

(
λ

α

)
− n log B(a, 1) + (aλ− 1)

n∑

r=1

log
(xr
α

)
− (a+ 1)

n∑

r=1

log
[
1 + (xr/α)

λ
]
.

B.5.2. Score vector components

∂ℓ(θ)

∂α
= −nλa

α
+
λ(a+ 1)

α

n∑

r=1

(xr/α)
λ

[
1 + (xr/α)

λ
] ,

∂ℓ(θ)

∂λ
=
n

λ
+ a

n∑

r=1

log
(xr
α

)
− (a+ 1)

n∑

r=1

(xr/α)
λ log(xr/α)[

1 + (xr/α)
λ
] ,

∂ℓ(θ)

∂a
= −n {ψ(a) − ψ(1 + a)}+ λ

n∑

r=1

log
(xr
α

)
−

n∑

r=1

log
[
1 + (xr/α)

λ
]
.

B.5.3. Functions g2(θ) and g3(θ)

g2(θ) =
ψ(1)(1) + ψ(1)(1)

λ2
and g3(θ) =

ψ(2)(1) − ψ(2)(1)

λ3
.

B.5.4. Information Matrix and Its inverse

HBLL = − ∂2ℓ(θ)

∂θ⊤∂θ
=




Uαα Uαλ Uαa

Uλα Uλλ Uλa

Uaα Uaλ Uaa


 ,
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where

Uαα = − λ

α2

{
na− (a+ 1)

n∑

r=1

zr

[
1 +

λ

1 + yλr

]}
,

Uαλ =
1

α

[
na− (a+ 1)

n∑

r=1

(
zr + λyλr log(yr)

)]
,

Uαa = −λ
α

n∑

r=1

(zr − 1),

Uλλ =
n

λ2
+ (a+ 1)

n∑

r=1

zr log yr
1 + yλr

[
(1 + yλr ) log yr +

λ

α
yλr

]
,

Uλa = −
n∑

r=1

(1− zr) log yr,

Uaa = n[ψ(1)(a)− ψ(1)(1 + a)].

with zr = yλr/(1 + yλr ), and yr = xr/α.
If the determinant |HBLL| 6= 0, the asymptotic covariance matrix is given by

ΣBLL ≈ 1

|HBLL|




Uaαα Uaαλ Uaαa

Uaλα Uaλλ Uaλa

Uaaα Uaaλ Uaaa


 ,

with Uaαα = UλλUaa −U2
λa, U

a
αλ = Uaλα = UαaUλa −UαaUλλ, U

a
αa = Uaaα = UαλUλa −

UαaUλλ, U
a
λλ = UααUaa−U2

αa, U
a
λa = Uaaλ = UαλUαa−UααUλa, U

a
aa = UααUλλ−U2

αλ;
otherwise we apply the generalized Moore-Penrose inverse [84,85].

B.5.5. Log-cumulant Matrix

JBLL =




J12 J13

J22 J23

J32 J33



,

where

J12 = J13 = 0, J22 = − 2

λ3
{ψ(1)(a) + ψ(1)(1)},

J23 = − 3

λ4
{ψ(2)(a)− ψ(2)(1)},

J32 =
1

λ2
ψ(2)(a), J33 =

1

λ3
ψ(3)(a).
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B.5.6. Asymptotic Covariance Matrix and Its Inverse

KBLL =
1

|HBLL|



δ22 δ32

δ23 δ33


 ,

where

δ22 = J22(J22U
a
λλ + J32U

a
aλ) + J32(J22U

a
λa + J32U

a
aa),

δ23 = δ32 = J23(J22U
a
λλ + J32U

a
aλ) + J33(J22U

a
λa + J32U

a
aa),

δ33 = J23(J23U
a
λλ + J33U

a
aλ) + J33(J23U

a
λa + J33U

a
aa).

If δ22δ33 > δ223 and |HBLL| 6= 0, then the inverse is given by

K−1
BLL =

|HBLL|
δ22δ33 − δ223

[
δ33 −δ32
−δ23 δ22

]
,

otherwise we apply the generalized Moore-Penrose inverse [84,85].

B.5.7. Hotelling’s T 2 statistic Derivation

The sought T 2
BLL statistic is:

T 2
BLL =

n|ĤBLL|
δ̂22δ̂33 − δ̂223

[
δ̂33

(
̂̃κ2 − κ̃2

)2
+ δ̂22

(
̂̃κ3 − κ̃3

)2
− 2δ̂23

(
̂̃κ2 − κ̃2

)(
̂̃κ3 − κ̃3

)]
.
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