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Abstract:  The  Budyko  framework,  which  can  describe  a  simple  but  useful

partitioning of precipitation under supply and energy limits, is used widely to estimate

evapotranspiration  (ET).  Previous  studies  have  investigated  time-variant  Budyko

functions on annual or interannual scales but seldom on the intra-annual scale. This

study used a monthly two-parameter (  and ) Budyko function and three schemes

that considered single observations (ET or streamflow (Q)) and dual observations (ET

and Q) to assimilate the time-varying parameters using the ensemble Kalman filter

method.  The  study  considered  the  contiguous  USA (CONUS)  using  the  Model

Parameter  Estimation  Experiment  dataset.  The  time-varying  parameters  were

explained on the basis  of time series  analysis  and correlation with meteorological

data. Three conclusions were as follows. (1) The identified time-varying parameters (

 and ) of the Budyko function could effectively simulate ET. (2) The assimilation

using only  ET observations could identify a plausible set for parameter   but was

inadequate for  .  (3) Most time-varying parameters exhibited a 12-month period,

and  the  trend  and  change  points  detected  for  Midwest  CONUS  were  related  to

anthropogenic influences such as extraction and use of groundwater.  The findings

show that changing environment can be detected by using the proposed time-varying

parameters of the Budyko function.

Keywords:  monthly Budyko function; time-varying parameters;  ensemble Kalman

filter; contiguous USA; MOPEX dataset;

1. Introduction

Hydrological models generalize the complex processes of the water cycle, which

is of great importance in relation to research and experiments on the hydrological

system. Parameters adopted in hydrological models play a crucial role in simulation

performance and are often calibrated as constants. However, as with the effects of

varying conditions such as afforestation, climate change, and human activities (Peel &

Bloschl, 2011; Wu & Johnston, 2007), model parameters cannot be treated as time-

invariant. Thus, it is more practical to analyze model parameters taking time-variant

climatic factors and underlying surface conditions into consideration (Merz, Parajka,
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& Bloschl, 2011; Patil & Stieglitz, 2015; Thirel et al., 2015).

The responses of time-varying parameters to changes in the underlying surface

and climatic  conditions  can  be  obtained using  various  methods.  For  example,  the

functional form of parameters can be established with seasonal, annual, or interannual

trends (Jeremiah, Marshall, Sisson, & Sharma, 2013; Marshall, Sharma, & Nott, 2006;

Westra, Thyer, Leonard, Kavetski, & Lambert, 2014). However, additional judgement

is required to establish such functions and the parameters must always be adjusted for

different situations. An alternative method is  to calibrate the model parameters by

dividing the available data into consecutive subsets using optimization algorithms (de

Vos, Rientjes, & Gupta, 2010; Seibert, McDonnell, & Woodsmith, 2010; Vaze et al.,

2010).  Unfortunately,  the selection of such subsets  is  subjective,  and optimization

algorithms  based  on  simple  screening  criteria  (commonly,  the  Nash–Sutcliffe

efficiency (NSE) for runoff) cannot take full advantage of the information provided

by climatic data.

The data assimilation (DA) technique, the main concept of which is to compare

the errors between observations and model simulations to obtain optimal estimates of

the current system, is used widely to identify model parameters. Through the balance

of information (uncertainties) between a model and observations, the observations can

be used via DA to update model states and obtain model parameters simultaneously

(Abbaszadeh, Moradkhani, & Yan, 2018; Clark et al., 2008). In studies that focus on

identifying parameters, application of DA methods is generally effective (Chao Deng,

Liu, Guo, Li, & Wang, 2016; Feng et al., 2017; Smith, Beven, & Tawn, 2008; Vrugt,

ter Braak, Diks, & Schoups, 2013). Additionally, more than one set of observations

could be used to improve the efficiency of the DA method (M. S. Xiong et al., 2019).

However, similar to traditional optimization algorithms, DA methods have problems

regarding  parameter  equifinality  when  the  hydrological  model  has  a  number  of

parameters.  To  overcome  this  drawback,  a  simple  model  such  as  the  Budyko

framework was used in this study.

The Budyko framework contains few parameters,  and describes  a  simple but

useful  partitioning  of  precipitation  into  evaporation  and  runoff  under  supply  and

energy  limits  (Sankarasubramanian.  et  al.,  2020).  The  Budyko  hypothesis  is  that
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multiyear average evaporation depends on available water capacity and atmospheric

water requirement. The framework based on the Budyko hypothesis has been used

extensively in the hydrological field to estimate evaporation (Bagrov, 1953; Fu, 1981;

Mezentsev,  1955;  Milly,  1994;  Pike,  1964;  Porporato,  Daly,  &  Rodriguez-Iturbe,

2004; Turc, 1954; Yang et al., 2007; L. Zhang, Dawes, & Walker, 2001; L. Zhang et

al., 2004).

Budyko-type  equations  have  been  applied  widely  on  annual  or  interannual

scales, and time-varying investigations at such temporal scales have recently drawn

considerable attention. For example,  Sinha, Jha, and Goyal (2019) estimated mean

annual-scale watershed parameter with watershed properties using the multiple linear

regression method and machine learning techniques. X. Zhang, Dong, Cheng, and Xia

(2019) improved the fitting capability for most catchments in the United States by

establishing a function between annual-scale time-varying parameters and time steps.

However,  few  studies  have  focused  on  the  time-varying  parameters  of  Budyko

functions at the intra-annual (e.g., monthly) scale. Model parameters on long temporal

scales  represent  an  average  reflection  of  the  annual  or  interannual  climatic  and

underlying  conditions,  and  their  variation  weakens  at  such  scales.  Consequently,

important  change rules  regarding both parameters  and varying climatic  conditions

might  not  be  investigated  adequately  on  annual  or  interannual  scales.  Moreover,

assumptions and applicability might lead to deviations when the Budyko framework

is  applied  on  shorter  temporal  scales (Mianabadi,  Davary,  Pourreza-Bilondi,  &

Coenders-Gerrits, 2020). For example, to investigate time-variant conditions using the

Budyko equation, soil water content must be changeable on the intra-annual scale,

which is markedly different to that on the annual scale. 

Thus, this study investigated time-varying Budyko functions on the intra-annual

scale.  The main objectives  of  this  research  were as  follows:  (1)  to  investigate  an

effective approach for identification of intra-annual-scale time-varying parameters of

the Budyko function, (2) to determine whether evaporation observations alone or in

combination  with  streamflow observations  could  be  used  effectively  to  assimilate

parameters, and (3) to establish whether reasonable change rules regarding parameters

could  be  explained  on  the  basis  of  the  climatic  or  underlying  conditions.  The

remainder of this paper is organized as follows. The methods and experimental design
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are introduced in Section 2.  Section 3 describes the case study, including the study

area  and parameter  setting.  The results  are  presented  and discussed  in  Section  4.

Finally, our conclusions are stated in Section 5.

2. Methodology

An overview of the methods and analysis structure adopted for this study are

shown in Fig. 1. Three schemes that considered single observations (ET or streamflow

(Q)) and dual observations (ET and Q) were used to incorporate different observations

into the assimilation. Subsequently, parameter sets were analyzed through time series

analysis.

2.1 A  two-parameter  Budyko  function  for  evaporation

calculation

Greve,  Gudmundsson,  Orlowsky,  and  Seneviratne  (2016) proposed  a  two-

parameter Budyko function that can be used for the intra-annual dimension, e.g., the

monthly scale. The parameters of this equation are   and  , which constitute the

following equation:

              (1)

where   is the evaporation of the catchment,   represents precipitation, and   is

the aridity index (AI), which is calculated as the ratio of potential evaporation and

precipitation.

As in the traditional Budyko approach, the first parameter   is a free model

parameter, while the second parameter  has physical significance because it might

account for the maximum amount of additional water available to   (Greve et al.,

2016). Specifically, Greve et al. (2016) interpret  as the integrator of various factors

other than the  AI that influence the partitioning of precipitation.  It  can have wide

application  in  relation  to  monthly  data  and  is  suitable  for  conditions  when
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evapotranspiration exceeds precipitation from the monthly to annual scale.

2.2 Calculation of monthly runoff

Monthly runoff can be calculated to assimilate runoff observations. Generally,

runoff  is  connected  with  soil  moisture  on  the  monthly  scale,  and  runoff  can  be

assumed to  have  a  hyperbolic  tangent  relationship  with  soil  water  content  (L.  H.

Xiong & Guo, 1999), which can be expressed as follows:

                       (2)

where  is the monthly streamflow and  represents the soil water content, which is

the  specific  parameter  that  can  reflect  the  water  storage  capacity  (SC)  of  the

watershed. 

Finally, the monthly soil water content can be expressed as follows:

                      (3)

Descriptions and ranges of the parameters  introduced in  Section 2.1 and  2.2,

listed in  Table  ,  are based on previous research by  M. S. Xiong et al.  (2019) and

Greve et al. (2016).

2.3 Ensemble Kalman filter

The  ensemble  Kalman  filter  (EnKF)  is  a  type  of  DA technique  that  uses

sequential data, in which an error covariance matrix is approximated using the Monte-

Carlo method. An ensemble of state simulations is generated to regenerate the state

variables and calibrate the model parameters, i.e., update is performed on the basis of

a sequence of observed data  (C. Deng, Liu, Guo, Wang, & Wang, 2015; Evensen,

1994). The steps necessary in application of the EnKF method are as follows.

(1) Initialize  the  background  field.  First,  choose  the  state  and  observation

variables to build the equations. Second, set the size of ensemble  and the length of

the time step  for the DA, which is determined by the data length. Then, the state

variables are created following a Gaussian distribution.
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(2) Forecast the value.  After initializing the background field at  time step  ,

forecasts of state variables and model parameters can be generated by disturbing the

values updated from the previous time step. The state equation is as follows:

      (4)

where   (parameter  vector)  and   (state  vector)  mean  the  -th  ensemble

forecast variable at time step  ;   and   are analysis variables of the  -th

ensemble member at time step ;  can be described as a model operator; and 

and   represent  the model error (white  noise) of the  -th ensemble member.  It

should be noted that the model errors obey a normal distribution with mean value of

zero and variance . All uncertainties regarding the model structure and data

are reflected in .

(3) Observation perturbing. The universal observation equation is as follows:

               (5)

where  is the simulation value of the -th ensemble member at time step ;

 is  the observation  vector  of  time  ;   is  the  observational  operator  that

converts the model state variables to observations; and  is the measurement error

following the normal distribution.

(4) Update. The updating process is formalized as follows:

            (6)
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where  represents the Kalman gain matrix, the calculation method of which was

described by Moradkhani, Sorooshian, Gupta, and Houser (2005) as follows:

              (7)

              (8)

             (9)

            (10)

where  is the cross covariance of the simulated  and forecasted states 

(Snyder & Zhang, 2003);   is the cross covariance of the simulated   and

forecasted parameters;   represents the error covariance of the simulated  

(Mitchell & Houtekamer, 2000);  and  are the means of the forecasted states

and parameter ensembles, respectively; and  is the mean of the simulated 

ensemble.

2.4 Experimental design

Using the evaporation and runoff calculation, the state and observation equations

can be described as follows:

State equation: 
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                             (11)

           (12)

Observation equation: 

                     (13)

              (14)

           (15)

Three  schemes  were  designed  to  obtain  time-varying  hydrological  model

parameters by the DA method using single data (ET or Q) and multivariate data (ET

and Q). Experimental investigation was implemented to compare the three schemes in

terms  of  model  efficiency  and  parameter  variation.  Each  of  the  three  schemes  is

outlined below and brief descriptions are presented in  Table 2. Descriptions of the

assimilated time-varying parameters, calculation modules and observational data of

the designed experimental schemes.

(1) Scheme 1 updates model parameters  and  by assimilating only  data

with  the  two-parameter  Budyko  function  to  investigate  the  performance  of

assimilation through the simple equation. Owing to the low complexity, there is no

state variable in this scheme. Thus, Eqs. (11) and (13) are included in Scheme 1.

(2)  Scheme 2  assimilates  only   data  to  update  the  model  parameters.  The

difference from Scheme 1 is that the model combines the Budyko function with the

monthly water balance model and the number of parameters is increased to three: ,

, and  . The state variable   is updated solely by assimilating  . Therefore,
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Scheme 2 contains Eqs. (12) and (14).

(3) Scheme 3 uses an additional set of data. Multivariate data are used to update

both model parameters , , and  and state variable . The model structure of

Scheme 3 is similar to that of Scheme 2, in that both the Budyko function and the

water balance model are used to obtain the parameters. Thus, Scheme 3 uses Eqs. (12)

and (15).

2.5 Performance evaluation criteria

(1) The NSE  (Nash & Sutcliffe, 1970) is an evaluation criterion applicable to

evaluation of the effect of DA in this study:

                    (16)

where   and  are the simulated and observed variables for the  -th month,

respectively,  is the average of the observed variable, and  is the total number of

data time points. The NSE value ranges from  to 1, where the upper limit means

perfect match between the simulation and observations.

(2) Kling–Gupta efficiency (KGE) is implemented through three components to

avoid the NSE sensitivity to the data peak:

               (17)

where  is the correlation coefficient of the simulated and observed data, and ,

, , and  are the standard deviations and mean values of the simulated and

observed data, respectively.

(3) The Pearson correlation coefficient (R) was used to detect linear relationships

between  the  assimilated  parameters  and  between  the  parameters  and  the
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meteorological factors:

                       (18)

where  and  represent the correlated variables, and  and  represent the mean

values of the variables. 

(4) The root mean square error (RMSE) and volume error (VE), which were used

to  evaluate  the  estimated  parameter  results  in  our  study,  reflect  the  differences

between simulated and observed variables:

                   (19)

                      (20)

where  and  are the simulated and observed variables, respectively.

(5)  Diversity  (defined  just  like  the  mean  absolute  relative  error)  is  used  to

measure differences between the absolute values of two sets of data:

                     (21)

where  and  are the experimental and reference values, respectively.

2.6 Time series analytical methods

Three  time  series  analytical  methods  were  used  to  detect  the  trend,  change

points, and periodicity of the parameters to elucidate potential variation rules.
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(1) The Mann–Kendall trend test method (Kendall, 1975; Mann, 1945) has been

used widely for detecting data trends and is recommended as a standard method by

the World Meteorological Organization (Ziegler et al., 2003). If the standard normal

statistical variables are positive, there is an upward trend in the time series data, and

vice versa. 

(2) The Pettitt test is a nonparametric approach that was first used to examine the

change point of a dataset by Pettitt (1979). This method is simple and appropriate for

identifying the change points of data and parameters. Thus, we applied this method to

analyze the change points in this study.

(3) The wavelet transform analysis method, which can identify periodic changes

by exploring the fluctuation signal law and distribution of multiple temporal scale

hydrological sequences, has been used in general analysis of the laws of variation and

periodicity of rainfall, runoff, and storage water (Shao Xiaomei, 2006). The function

of the Morlet wavelet transform was used in this study to detect the periodicity of the

parameters,  because  wavelet  variance  can  reflect  the  principal  period  and  other

oscillation cycles of the parameters.

3. Case study

3.1 Study region and dataset

This  study  considered  the  contiguous  USA (CONUS),  which  lies  within  the

region 25°–49°N, 70°–130°W. The attributes of the studied catchments and relevant

climatic  data  were  obtained  from  the  Model  Parameter  Estimation  Experiment

(MOPEX)  (Duan et  al.,  2006).  The hydrometeorological dataset extended between

1983  and  2003,  in  which  precipitation  and  streamflow  data  were  obtained  from

MOPEX, and potential evaporation and actual evaporation data were collected from a

remote sensing dataset provided by the University of Montana  (K. Zhang, Kimball,

Nemani, & Running, 2010). In this dataset, actual evaporation is obtained using the

Penman–Monteith  equation  (Monteith,  1972;  Penman,  1948) and  remote  sensing

results,  and  potential  evaporation  is  computed  using  the  Priestly–Taylor  method

(Priestley, 1972). To introduce data reflecting vegetation cover conditions, bimonthly
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normalized difference vegetation index (NDVI) data were obtained from 8-km spatial

resolution Advanced Very High Resolution Radiometer imagery (Tucker et al., 2005).

All data were analyzed with consideration of first-year data as warmup.

Overall,  188 catchments  were chosen according to  the  following criteria:  (1)

acceptable simulation performance, e.g., early screening NSE value of streamflow and

evaporation larger than 0.6 (C. Deng, Liu, Wang, & Wang, 2018), (2) unabridged data

record during the entire 21-year period, (3) relative water balance error within 10%,

and (4) monthly ET no greater than potential ET (PET). The 188 selected catchments,

which had area of 67–9806 km2 and slope of 2.5%–25.6%, were classified into humid

and (semi-)arid regions based on the AI (defined as the ratio of average annual PET to

P) (Budyko, 1974). Catchments with AI > 1 were considered as (semi-)arid regions,

while all others were considered as humid regions. The location and AI distribution of

the selected catchments are  shown in  Fig.  2.  The area and meteorological  annual

mean value of certain indices of the catchments (1983–2003) are shown in Fig. 3.

3.2 Parameter settings

Many  previous  studies  have  discussed  the  equilibrium  between  assimilation

performance  and  computational  demand,  which  is  influenced  by  ensemble  size

(DeChant  & Moradkhani,  2012;  Evensen,  2004;  Moradkhani  et  al.,  2005).  In  our

study, the ensemble size  was set as 1000, based on consideration of other research

and  the  performance  investigation  of  this  study.  The  initial  parameters  and  state

variables were generated randomly as a Gaussian distribution, and the variance of the

noise added to the parameters and the state and output variables was set on the basis

of  its  magnitude  (Leisenring  &  Moradkhani,  2012).  The  initial  values  of  the

proportionality factors were set as follows: 10% for   and   in Scheme 1; 10%,

10%,  and  5%  for  ,  ,  and   in  both  Scheme  2  and  Scheme  3;  and  the

observation error of streamflow and evaporation was 15%. Meanwhile, the parameter

variance multipliers and uncertainty bounds were used to adjust the proportion of the

error automatically in Scheme 1 and Scheme 2  (Leisenring & Moradkhani, 2012).

Owing to the great difficulty in applying this method in multivariate assimilation, the

multipliers and uncertainty bounds were not used in Scheme 3.
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4. Results and discussion

4.1 Model performance

Results  of several evaluation criteria (NSE,  KGE,  RMSE,  VE)  that reflect the

performance of the evapotranspiration simulation in each of the three schemes are

shown in Fig. 4. The values of NSE and KGE in Scheme 1 and Scheme 3 (hereafter,

presented as S1 and S3, respectively) are high and close to 1, while the RMSE value is

reasonable compared with the magnitude of  ET. Meanwhile, the values of  VE in S1

and S3 are symmetrical on both sides of zero, and the median of which is approximate

to zero. However, the relative magnitude in Scheme 2 (hereafter, presented as S2) is

unacceptable. The above results demonstrate that the simulated ET of both S1 and S3

is plausible and that DA with the EnKF method is effective in terms of simulating ET

well  using  assimilated  time-varying  parameters.  However,  the  effect  of  S2  is

unsatisfactory  and  its  poor  performance  can  be  attributed  to  the  lack  of  direct

utilization of evaporation observations.

4.2 Relationships between parameters in schemes

Parameters  and  were used in all three schemes; thus, relationships between

and comparisons of the two parameters among the three schemes need to be detected.

Ternary diagrams reflecting the mean values of the two parameters in each of the

three schemes are presented in  Fig. 5. The mean values of   and  are nearly all

situated on straight line  ,  indicating that the mean values of the two parameters

assimilated  from  the  188  catchments  under  S1  and  S3  are  of  similar  order  of

magnitude. However, the mean values of the parameters of the catchments in S2 differ

markedly from those of the other two schemes.

The  correlation  coefficients  and  diversity  of  the  two  parameters  were

investigated among the three schemes two by two, the results of which are drawn in

half-box plots in Fig. 6a and 6b. Almost all the coefficients of  between S1 and S3

are close to 1 and the median values of   are near 0.5, whereas no correlation is

evident among other compared combinations. In terms of diversity, the metrics of 
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and  are both <0.10 between S1 and S3, indicating similarity in the magnitudes of

the parameters between these two schemes at each time step. Intuitively, it appears

that  there  is  a  strong relationship  and that   has  similar  magnitude  between the

scheme  solely  using  ET data  and  that  using  both  ET and  Q observations  in  the

assimilation. Additionally, there are certain differences in the correlation coefficient in

identifying  after the introduction of Q data (i.e., S3 compared with S1).

Mutual  correlation  coefficients  between  parameters   and   in  the  same

scheme were calculated and drawn as half-box plots in Fig. 6c. It can be seen that the

median value of the coefficients in S1 and S2 is near zero. However, the median value

of the coefficients in S3 lies near 0.6, representing clear correlation. The reason is the

additional  observation  set  in  S3  (streamflow  against  S1;  evaporation  against  S2)

revises the model parameters better. It can activate the relationships among different

climatic variables that constitute a more complete water cycle, which helps identify

the relationship between two parameters.

The spatial distribution of the mean values of two parameters are drawn in Fig.

S1. A similar distribution in central CONUS can be observed in relation to S1 and S3,

especially  for  .  There  exists  a  type  of  neighborhood  effect (i.e.,  similar  values

among neighboring catchments) in terms of the mean values of the parameters. Thus,

it can be considered that the underlying surfaces and ecological attributes of these

catchments are  similar.  In fact,  these catchments  are  located in  the same Bailey’s

ecoregion, which is a classification first proposed by  Bailey (1994). Catchments in

central CONUS belong to tropical continental and steppe regions, where similar types

of natural vegetation grow. Interestingly,  Carmona,  Sivapalan,  Yaeger,  and Poveda

(2014) obtained similar results using a single-parameter Budyko function. They found

that catchments in the same area as identified in our study have almost the same value

of parameter . 

4.3 Time series analysis of two parameters

In  this  section,  analyses  of  the  trend,  change point,  and periodicity  of  time-

varying parameters are discussed. However, emphasis is placed on S1 and S3 owing
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to the inadequate accuracy and poor performance of S2.

4.3.1 Trend analysis

As shown in Fig. 7 and Fig. S2, there exist similar overall situations and spatial

distributions of the trend of  in S1 and S3. Decreasing and nonsignificant trends in

 are found in central CONUS, while increasing trends are evident in northwestern

and eastern areas in S1. However, in S3, the decreasing and nonsignificant trends are

retained,  whereas  the  increasing  trend  in  other  catchments  weakens.  This  is

attributable  to  the  introduction  of  streamflow  data  that  can  correct  catchment

attributes, especially water storage change. This aspect of this attribute is represented

by  (consistent with the definition by Greve et al. (2016)), which demonstrates that

the method using only evaporation data cannot adequately identify the perfect trend of

. It should be noted that there is no obvious difference for .

Additional  analysis  was  conducted  in  relation  to  other  parameters  and  state

variable  in S3, which is a comparatively more reliable scheme. Several catchments

situated in central CONUS exhibit the same decreasing trend, shown by the green

color in Fig. 8a. Similar change points detected in these catchments are also discussed

in Section 4.4. Carmona et al. (2014) concluded that these central catchments (shown

by the red circle in  Fig. 8a) have similar values of parameter   (in the classical

Budyko function) with abnormal runoff coefficients and evaporation ratios. Human

activities have substantial impact on the MOPEX catchments in this region. Dams,

surface water utilization, groundwater extraction, and changes in agricultural land are

the primary factors that cause the decreasing trends and change points in this area.

Moreover,  such  grassland  regions  are  mostly  dominated  by  tile  and  agricultural

drainage (especially in Iowa, shown by the brilliant blue circle in  Fig. 8a),  which

results in changes in evaporation and groundwater level. Similar attribution can be

found in both  Wang and Hejazi  (2011) and  Ye, Yaeger,  Coopersmith,  Cheng,  and

Sivapalan (2012).

4.3.2 Change point analysis
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Few catchments in S1 have change points. It is noteworthy that no catchment has

a change point of , except for two catchments in northwestern CONUS in S3, which

can illustrate a weakening of change points from S1 to S3. As for , change points

are identified in most catchments in S1, while the number declines to 63 in S3. These

catchments are scattered over CONUS, although some are distributed in the middle of

the continent; detailed information is presented in Fig. S3.

Results  concerning detection  of  the  change points  of  state  variable  storage are

shown in  Fig. 8b. Almost the same change points are identified in central CONUS,

i.e., Iowa and surrounding states. Together with the results in Section 4.3.1, it can be

considered that these catchments have the same trends of decrease and similar change

points of storage water (state variable in our model). Furthermore, these discoveries

reflect anthropogenic influences such as the extraction and usage of groundwater and

other types of water resource. Hence, the parameters identified under the finer scale in

our study can be considered as indicators of these changes.

4.3.3 Periodicity analysis

The spatial distribution of periodicity in the catchments is shown in Fig. S4. The

colors  from green to  red represent  a gradual  increase in  the number of  identified

period cycles. We suppose that a period of 12 or near 12 months can represent the

characteristic annual hydrological cycle, which is reasonable for catchments whose

weather characteristics cycle annually. In each catchment,  is the general parameter

that  might  have  a  period  of  one  year.  Intuitively,  periodicity  can  be  deemed

unreasonable when the identified period cycle is relatively long (e.g., >60 months and

even up to 200 months in our identification).  First,  the result  of S2 is  considered

unreasonable because the periods of  are discrepant and far from an exact value. A

period  of  one  year  can  be  identified  in  most  catchments  in  S1  and S3,  and this

phenomenon is more obvious in the latter than in the former. As shown in Fig. S4d

and  S4f,  catchments  in  S1  do  not  have  periodicity  in  ,  while  nearly  half  the

catchments (92 catchments) have a period of 12 months in S3. Owing to the physical

significance of  water  storage in  ,  this  can prove that  additional  introduction of
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streamflow data can help identify the physical mechanism and definition. Catchments

for  which  a  period  cannot  be  identified  are  situated  in  central  and  southwestern

CONUS.

Hydrologic regions defined by the US Geological Survey are drawn in  Fig. 9.

Those catchments without periodicity (red color) are in regions 3, 5, and 10, almost

consistent with the boundaries of the hydrologic regions. Catchments in region 10 are

near Midwest CONUS, where human activities, especially the pattern of use of water

resources, are considered the main impacts, as mentioned in Section 4.2. Catchments

in regions 3 and 5 suffered vegetation reduction during 1992–2001 (Wickham, Wade,

& Riitters, 2011), which might account for the lack of periodicity.

4.4 Relationships  between  parameters  and  meteorological

data

Correlation  coefficients  between  meteorological  data  and  the  parameters  of

corresponding  months  were  calculated  for  the  three  schemes.  Moreover,  the

coefficients between the parameters of corresponding months and forcing from 1–6

months prior to 1–3 months following (marked as lag-1 to lag-6 or pre-1 to pre-3)

were computed to detect whether meteorological factors could impact the catchment

attributes by way of delay or advance. Details of the results are illustrated in Fig. S5.

The magnitudes and situations of hysteresis in S1 and S3 are almost identical.

Parameter   has  positive  relationships  with  ET,  PET,  and  NDVI and  negative

relationships with the difference in precipitation and evapotranspiration (P−E) and

runoff. The absolute value of the correlation coefficient in S3 is larger than in S1,

which  proves  that  introducing  streamflow  data  into  the  assimilation  can  slightly

improve  the  correlation  between   and  the  data.  Interestingly,  there  is  certain

correlation between  and streamflow in S1, in which streamflow data were not used.

The reason might be the consideration of a more complete water cycle process in

calculating the other meteorological data.

Parameter   has  no  correlation  in  S2  but  there  is  weak  correlation  in  S1
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between   and  the  meteorological  data.  It  is  noteworthy  that  there  is  positive

correlation in S3 between  and ET, PET, and NDVI, the medians of which are >0.5.

Meanwhile,  parameter   has  negative  correlation  with P−E and  .  Introducing

streamflow data can activate the relationship between the assimilated parameter and

other  meteorological  factors.  The definition of   is  related  to  water  available  in

storage, and its consideration represents a more integrated water cycle. However, its

impact is indirect, because there is no obvious relationship between   and storage

water in S1 or S3, even if the distribution of the scatter plot data is closer in S3.

5. Conclusions

To detect rules of the intra-annual-scale variation of parameters in a changing

environment, this study implemented three schemes that differed in terms of the use

of observational data. Time-varying parameters of the Budyko function (evaporation

calculation module) were identified using the EnKF method, and assimilated model

performance  assessment,  correlation  analysis,  and  time  series  analysis  were

performed. The principal conclusions derived are as follows.

(1) Plausible time-varying parameters of the Budyko function can be identified

using the EnKF approach. Faithful evapotranspiration simulations of Scheme 1 (ET

observations only) and Scheme 3 (combined ET and Q observations) can be reflected

by criteria such as NSE, KGE, RMSE, and VE.

(2) Using only evaporation data in the assimilation can help identify a plausible

set for parameter , but it is inadequate for parameter  and relationships regarding

meteorological data. Introducing streamflow data into the assimilation based on  ET

data can improve efficiency. More obvious periodicity of the parameters (especially

) can be detected. Additionally, the results obtained when using only streamflow

data were unacceptable.
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(3) There exist 12-month periodicities in parameters  and . Obvious trends

and change points of the parameters were detected in certain regions, e.g., Midwest

CONUS,  as  detected  in  previous  related  research.  The  distribution  of  the  best

estimates of parameter   was found consistent with the hydrologic regions defined

by  the  US  Geological  Survey.  It  was  proved  that  changing  conditions  could  be

identified using the time-varying parameters of the Budyko function because of the

physical significance of the parameters.

The findings imply that evaporation observations are adequate when comparing

simple  catchment  attributes.  However,  streamflow observations  are  also  necessary

when focusing on additional processes such as soil water content. Further research

should focus on attributing physical mechanisms to the parameters and applying these

relationships to predictions.
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Table 1. Descriptions and ranges of parameters set in this study.

Parameters Description Interval and unit

Watershed parameter 1.0-4.0 (-)

Evaporation/storage parameter 0.1-0.7 (-)

Water storage capacity 100-2000 (mm)
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Table 2. Descriptions of the assimilated time-varying parameters, calculation modules

and observational data of the designed experimental schemes.

Schemes Description

Scheme 1 Only use two-parameter Budyko model, P, PET, ET data for DA

Scheme 2
Use two-parameter Budyko model together with monthly runoff

calculation, P, PET, Q data for DA

Scheme 3
Use two-parameter Budyko model together with monthly runoff

calculation, P, PET, Q and ET data for DA
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Fig. 1 Framework of the methodologies used and corresponding experimental design

together with the structure of the analysis adopted in this paper. ET and Q next to the

first row of arrows represent utilized observational data in Ensemble Kalman Filter

(ET: evapotranspiration, Q: streamflow).
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Fig. 2 Locations of the 188 selected catchments and the corresponding aridity index

(AI) of humid catchments (blue) and (semi-)arid catchments (pale yellow).
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a) b)

c) d)

Fig. 3 Annual mean values of meteorological variables: a) precipitation, b) potential

evapotranspiration, and c) runoff and d) the area of the 188 selected catchments.
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Fig. 4 Box figures of four evaluation criteria a) NSE b) KGE c) RMSE d) VE of ET

simulations in the three schemes. In the plots, the whiskers represent the minimum

and maximum values, the bottom and top of the boxes are the 25th and 75th percentiles,

respectively, and the horizontal lines are the median values.
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Fig. 5 Ternary diagrams of the mean values of the parameters in the three schemes. a)

Example  in  which  the  three  stars  represent  three  sets  of  data  (each  having  three

proportions of the parameter values). The proportions were calculated based on the

ratio of the value in the corresponding scheme to the sum of the values in the three

schemes. Line  indicates points at which the location of the blue star has the same

proportion in S2 and S3, line  is the same for S1 and S3, and line  corresponds to

S1 and S2. b) and c) the distribution of magnitude of  and , respectively, where

the stars are situated on line .
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Fig. 6  Half-box plots of the correlation coefficients of  a)  and b)  between the

different schemes two by two, and c) half-box diagram of correlation between  and

 in each scheme. In the plots, the whiskers represent the minimum and maximum

values, the bottom and top of the boxes are the 25th and 75th percentiles, respectively,

and the horizontal lines are the median values. The data scatter plot forms the right

side of the half-box.
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Fig. 7 Number of catchments with increasing, decreasing, and nonsignificant trends of

the parameters (  and ) in a) S1, b) S2, and c) S3.
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Fig. 8 Spatial distribution of a) trend and b) change point conditions of state variable

storage in Scheme 3.
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Fig. 9 a)  US Geological Survey hydrologic regions with state boundaries where the

number  of  each  region  is  revealed.  b) Periodicity  of   in  Scheme  3,  where

catchments colored green represent a period of 12 months, and the others generally

represent no period.
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Fig. S1 Spatial distribution of mean values of parameters: a) – c)  and d) – f) .

a) and d) represent S1,  b) and  e) represent S2, and  c) and  f) represent S3. Color

intensity  indicates  the  magnitude of  the  parameter  value.  Accordingly,  catchments

with similar color have similar parameter values.
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Fig. S2 Spatial distribution of trends of parameters: a) – c)  and d) – f) . a) and

d) represent S1, b) and e) represent S2, and c) and f) represent S3. Red indicates an

increasing  trend,  green  means  a  decreasing  trend,  and  yellow  represents  a

nonsignificant result of the trend analysis.
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Fig. S3 Overall number of change points of a) the two parameters, b) and c) , and

d) and e) . Color intensity represents the magnitude of the time step; a darker color

indicates a greater number of change points with a large time step.
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Fig. S4 Spatial distribution of the periodicity identified in the parameters: a) – c) 

and d) – f) . a) and d) represent S1, b) and e) represent S2, and c) and f) represent

S3. Colors of catchments indicate different periodicity corresponding to the legend at

the bottom left of each panel.
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a) b)

c) d)

e) f)

Fig. S5 Half-box plots of the correlation coefficient between meteorological data and

parameters   and   in  a) and  d)  S1,  b) and  e) S2, and  c) and  f) S3. Red labels

represent the lag-1 to lag-6 and pre-1 to pre-3 mentioned in Section 4.4.
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