REFERENCES
1. Frost N. E. Marsh K. J. Pook L. P. Metal Fatigue. Clarendon Press
Oxford UK; 1974.
2. Palmgren A. Die Lebensdauer von Kugellagern.
Verfahrens-techinik. 1924; 68: 339-341.
3. De Los Rios E. R. Mercier P. El-Sehily B. M. Short crack growth
behaviour under variable amplitude loading of shot peened surfaces.
Fatigue Fract Engng Mater Struct. 1996; 19: 175-184
4. Santecchia E. Hamouda A. M. S. Musharavati F. Zalnezhad E. Cabibbo M.
El-Mehtedi M. Spigarelli S. A review on fatigue life prediction methods
for metals. Advances in Materials Science and Engineering. 2016; 1-26.
5. Schijve J. Fatigue of structures and Materials. 2nded. Springer; 2009.
6. Cui W. A state-of-the-art review on fatigue life prediction methods
for metal structures. J Mar Sci. Technol. 2002; 7:43–56.
7. Nadot Y. Propagation lifetime from the surface and internal defects
in the ultra-high cycle fatigue regime. The Open Materials Science
Journal. 2008; 2: 35-39.
8. Takahashj K. Murakami Y. Quantitative evaluation of the effect of
surface roughness on fatigue strength. Engineering against Fatigue
Symposium. Sheffield, UK; 1997.
9. Hussain K. Short fatigue crack behaviour and analytical models: a
review. Engineering Fracture Mechanics. 1997; 4: 327-354.
10. Miller K. J. The short crack problem. Fatigue Fract Engng Mater
Struct. 1982; 3: 223-232.
11. Miller K. J. The behavior of short fatigue cracks and their
initiation: part II- a general summary. Fatigue Fract Engng Mater
Struct. 1987; 2: 93-113.
12. Ellyin F. Fatigue Damage, Crack Growth and Life Prediction,
Springer, 1996.
13. Lemaitre J. Desmorat R. Engineering damage mechanics: ductile,
creep, fatigue and brittle failures. Springer, 2005.
14. Valluri, S. R. A theory of cumulative damage in fatigue. Report No.
ARL 182. Aeronautical Research Laboratory. Office of Aerospace Research.
United States Air Force, 1961.
15. Scharton T. D. Crandall S. H. Fatigue failure under complex stress
histories. ASME Journal of Basic Engineering. 1966; 88: 247-251.
16. Chaboche J. L. Lesne P. M. A non-linear continuous fatigue damage
model. Fatigue Fract Eng Mater Struct. 1988; 11: 1-7.
17. Fatemi A. Yang L. Cumulative fatigue damage and life prediction
theories: a survey of the state of the art for homogeneous materials,
Int. J. Fatigue. 1998; 20: 9-34.
18. Miner M. A. J. Cumulative Damage in Fatigue. Journal of Applied
Mechanics .1945; 67: A159-A164.
19. Makkonen M. Predicting the total fatigue life in metals. Int J
Fatigue. 2009; 7: 1163-1175.
20. Gao H. Zuo F. Lü Z. Zhu S. Huang H. Residual life prediction based
on nonlinear fatigue damage accumulation model. J Shanghai Jiaotong
Univ. 2015; 4: 449-53.
21. Manson S. S. Halford G. R. Practical implementation of the double
linear damage rule and damage curve approach for treating cumulative
fatigue damage. Int J Fract. 1981; 2: 169-92.
22. Shang D. G. Yao W. X. A nonlinear damage cumulative model for
uniaxial fatigue. Int J Fatigue. 1999; 2: 187-94.
23. Mesmacque G. Garciab S. Amrouchea A. Rubio-Gonzalez C. Sequential
law in multiaxial fatigue, a new damage indicator. Int J Fatigue. 2005;
4: 461-7.
24. Siriwardane S. Ohgaa M. Dissanayakeb R. Taniwaki K. Application of
new damage indicator-based sequential law for remaining fatigue life
estimation of railway bridges. J Constr Steel Res. 2008; 2: 228-37.
25. Siriwardane S. Ohga M. Kaita T. Dissanayake R. Grain-scale
plasticity based fatigue model to estimate fatigue life of bridge
connections. J Constr Steel Res. 2009; 10: 1942-53.
26. Subramanyan S. A cumulative damage rule based on the knee point of
the S-N curve. ASME J. Eng. Mater. Technol. 1976; 4: 316-21.
27. Ben-Amoz M. Cumulative damage model based on two-mode fatigue damage
bounds. Materials Science and Engineering 2009; A 504: 114-123.
28. Aid A. Amrouche A. Bouiadjra B.B. Benguediab M. Mesmacque G. Fatigue
life prediction under variable loading based on a new damage mode,
Materials and Design. 2011; 32: 183-191.
29. Aid A. Bendouba M. Aminallah L. Amrouche A. Benseddiq N. Benguediab
M. An equivalent stress process for fatigue life estimation under
multiaxial loadings based on a new on linear damage model. Materials
Science and Engineering. 2012; 538: 20-27.
30. Djebli A. Aid A. Bendouba M. Amrouche A. Benguediab M. Benseddiq N.
A non-linear energy model of fatigue damage accumulation and its
verification for Al-2024 aluminum alloy. Int J Nonlinear Mech. 2013; 51:
145-151.
31. Benkabouche S. Guechichi H. Amrouche A. Benkhettab M. A modified
nonlinear fatigue damage accumulation model under multiaxial variable
amplitude loading. Int J Mech Sci. 2015; 100:180-194.
32. Peng Z. Huang H. Z. Zhou J. Li Y. F. A New Cumulative Fatigue Damage
Rule Based on Dynamic Residual S-N Curve and Material Memory Concept.
Metals. 2018; 456: 1-17.
33. Pavlou D. G. The theory of the S-N fatigue damage envelope:
Generalization of linear, double-linear and non-linear fatigue damage
models. Int J Fatigue. 2018; 110: 204-214.
34. Zhang W. Miller K. J. A study of cumulative fatigue damage under
variable loading-mode conditions. Fatigue Fract Engng Mater Struct.
1996; 213: 229-239.
35. Kuroda M. Extremely low cycle fatigue life prediction based on a new
cumulative fatigue damage model. International Journal of Fatigue. 2001;
24: 699-703.
36. Miller K. J. Zachariah K. P. Cumulative damage laws for fatigue
crack initiation and stage Ι propagation, Journal of Strain Analysis.
1977; 4: 262-270.
37. Miller K. J. Ibrahim M. F. E. Damage accumulation during initiation
and short crack growth regimes. Fatigue of Engineering Materials and
Structures. 1981; 3: 263-277.
38. He Z. Kotousov A. Branco R. A simplified method for the evaluation
of fatigue crack front shapes under mode I loading. Int. J. Fract. 2014;
188: 203–211.
39. Zakavi He B. Kotousov A. Khanna A. Branco R. On evaluation of
fatigue crack front shapes. 9th Australas. Congr. Appl. Mech. ACAM.
2017; 27 - 29.
40. Wen J. F. Zhan Y. Tu S. T. Xuan F. Z. A combination rule for
multiple surface cracks based on fatigue crack growth life. AIMS Mater.
Sci. 2016; 3: 1649–1664.
41. Coules H. E. Interaction of surface cracks subjected to non-uniform
distributions of stress. Int. J. Press. Vessel. Pip. 2017; 157: 20–29.
42. Carpinteri A. Shape change of surface cracks in round bars under
cyclic axial loading. Int. J. Fatigue.1993; 15, 21–26.
43. Caspers M. Mattheck C. Weighted averaged stress intensity factors of
circular‐fronted cracks in cylindrical Bars. Fatigue Fract. Eng. Mater.
Struct.1987; 9: 329–341.
44. Toribio J.. Matos J. C. González B. Escuadra J. Compliance evolution
in round cracked bars under tensile fatigue. Eng. Fract. Mech. 2011; 78:
3243–3252.
45. Seah T. T. Qian X. An interaction factor to estimate the
over-constraining effect in plates with co-planar cracks. Eng. Fract.
Mech. 2018; 199: 13–28.
46. Levan A. Royer J. Part-circular surface cracks in round bars under
tension, bending and twisting. Int. J. Fract. 1993; 61: 71–99.
47. Navarro A. De Los R. E. R. Fatigue crack propagation modeling by
successive blocking of dislocations. Proc R Soc. 1992; A437: 375-390.
48. Hobson P. D. Brown M. W. De Los Rios E. R. Two phases of short crack
growth in a medium carbon steel, In. The Behavior of Short Fatigue
Cracks (Edited by K. J. Miller and E. R. de los Rios). Mech. Engng Pub1.
Inst Mech Engrs London. 1986; 1: 441-459.
49. Zhu C. A model for small fatigue crack growth. Fatigue Fract Engng
Mater Struct. 1994; 17: 69-73.
50. Angelova D. Akid R. A note on modeling short fatigue cracks
behavior. Fatigue Fract Engng Mater Struct. 1998; 21: 771-779.
51. Newmamn J. C. Ji. A review of modeling small-crack behavior and
fatigue-life predictions for aluminum alloys. Fatigue Fract Engng Mater
Struct. 1994; 17: 429-439.
52. Farag M. M. El-Kady R. M. Hammouda M. M. I. Cracking simulation
based fatigue life assessment. Fatigue Fract Eng Mater Struct. 2020;
1–13.
53. Zhonghua L. Yimin L. Jinghua L. The development of stresses and
their during cyclic loading. Fatigue Fract. Engng Mater. Strucl. 1993;
16: 781-794.
54. Gorash Y. MacKenzie D. On cyclic yield strength in definition of
limits for characterisation of fatigue and creep behaviour. Open Eng.
2017; 7:126–140.
55. Watson P. Topper T. H. Fatigue-damage evaluation for mild steel
incorporating mean stress and overload effects, Experimental mechanics,
vol 12, 11-17, 1972.
56. Hammouda M. M. I. El-Sehily B. M. De Los R. E. R. The significance
of crack tip deformation foe short and long fatigue cracks. Fatigue
Fract Eng Mater Struct. 1995; 19: 475-484.
57. Rakitaky A. A. de los Rios E. R Miller K. J. Fatigue resistance of a
medium carbon steel with a wear resistant thermal spray coating. Fatigue
Fract Engng Mater Struct. 1994; 17: 563-570.
58. Hammouda M. M. I. Ahmad S. S. E. Sallam H. E. M. Correlation of
fatigue crack growth by crack tip deformation behavior. Fatigue Fract
Engng Mater Struct. 1995; 18: 93-104.
59. Hammouda M. M. I. Ahmad S. S. E. Sherbini A.S. Sallam H. E. M.
Deformation behavior at the tip of a physically short fatigue crack due
to single over load. Fatigue Fract Engng Mater Struct. 1998; 22:
145-151.
60. Henry D. L. A theory of fatigue-damage accumulation in steel,
Transactions of the ASME. 1955; 77: 913-918.
61. Corten H. Dolant T. Cumulative fatigue damage, IME-ASME Int. Conf.
on Fatigue of Metals, London, September 235-246, 1956.
62. VALLURI S.R. A unified engineering theory of high stress level
fatigue, Aerosp. Eng., 20, 18-19, 68-69, October 1961.
63. Topper TH., Sandor B.I. Morrow J.D. Cumulative fatigue damage under
cyclic strain control, Journal of Materials, 4(1), 189-199, March 1969.
64. T Bui-Quoc et al., Trans ASME, Journal of Basic Engineering, vol 93,
1971
65. Manson, S. S. Freche, 1. C. and Ensign, C. 11. Application of a
Double Linear Damage Rule to Cumulative Fatigue. Fatigue Crack
Propagation, ASTM STP 415, 386 (1967).