REFERENCES
1. Frost N. E. Marsh K. J. Pook L. P. Metal Fatigue. Clarendon Press Oxford UK; 1974.
2. Palmgren A. Die Lebensdauer von Kugellagern. Verfahrens-techinik. 1924; 68: 339-341.
3. De Los Rios E. R. Mercier P. El-Sehily B. M. Short crack growth behaviour under variable amplitude loading of shot peened surfaces. Fatigue Fract Engng Mater Struct. 1996; 19: 175-184
4. Santecchia E. Hamouda A. M. S. Musharavati F. Zalnezhad E. Cabibbo M. El-Mehtedi M. Spigarelli S. A review on fatigue life prediction methods for metals. Advances in Materials Science and Engineering. 2016; 1-26.
5. Schijve J. Fatigue of structures and Materials. 2nded. Springer; 2009.
6. Cui W. A state-of-the-art review on fatigue life prediction methods for metal structures. J Mar Sci. Technol. 2002; 7:43–56.
7. Nadot Y. Propagation lifetime from the surface and internal defects in the ultra-high cycle fatigue regime. The Open Materials Science Journal. 2008; 2: 35-39.
8. Takahashj K. Murakami Y. Quantitative evaluation of the effect of surface roughness on fatigue strength. Engineering against Fatigue Symposium. Sheffield, UK; 1997.
9. Hussain K. Short fatigue crack behaviour and analytical models: a review. Engineering Fracture Mechanics. 1997; 4: 327-354.
10. Miller K. J. The short crack problem. Fatigue Fract Engng Mater Struct. 1982; 3: 223-232.
11. Miller K. J. The behavior of short fatigue cracks and their initiation: part II- a general summary. Fatigue Fract Engng Mater Struct. 1987; 2: 93-113.
12. Ellyin F. Fatigue Damage, Crack Growth and Life Prediction, Springer, 1996.
13. Lemaitre J. Desmorat R. Engineering damage mechanics: ductile, creep, fatigue and brittle failures. Springer, 2005.
14. Valluri, S. R. A theory of cumulative damage in fatigue. Report No. ARL 182. Aeronautical Research Laboratory. Office of Aerospace Research. United States Air Force, 1961.
15. Scharton T. D. Crandall S. H. Fatigue failure under complex stress histories. ASME Journal of Basic Engineering. 1966; 88: 247-251.
16. Chaboche J. L. Lesne P. M. A non-linear continuous fatigue damage model. Fatigue Fract Eng Mater Struct. 1988; 11: 1-7.
17. Fatemi A. Yang L. Cumulative fatigue damage and life prediction theories: a survey of the state of the art for homogeneous materials, Int. J. Fatigue. 1998; 20: 9-34.
18. Miner M. A. J. Cumulative Damage in Fatigue. Journal of Applied Mechanics .1945; 67: A159-A164.
19. Makkonen M. Predicting the total fatigue life in metals. Int J Fatigue. 2009; 7: 1163-1175.
20. Gao H. Zuo F. Lü Z. Zhu S. Huang H. Residual life prediction based on nonlinear fatigue damage accumulation model. J Shanghai Jiaotong Univ. 2015; 4: 449-53.
21. Manson S. S. Halford G. R. Practical implementation of the double linear damage rule and damage curve approach for treating cumulative fatigue damage. Int J Fract. 1981; 2: 169-92.
22. Shang D. G. Yao W. X. A nonlinear damage cumulative model for uniaxial fatigue. Int J Fatigue. 1999; 2: 187-94.
23. Mesmacque G. Garciab S. Amrouchea A. Rubio-Gonzalez C. Sequential law in multiaxial fatigue, a new damage indicator. Int J Fatigue. 2005; 4: 461-7.
24. Siriwardane S. Ohgaa M. Dissanayakeb R. Taniwaki K. Application of new damage indicator-based sequential law for remaining fatigue life estimation of railway bridges. J Constr Steel Res. 2008; 2: 228-37.
25. Siriwardane S. Ohga M. Kaita T. Dissanayake R. Grain-scale plasticity based fatigue model to estimate fatigue life of bridge connections. J Constr Steel Res. 2009; 10: 1942-53.
26. Subramanyan S. A cumulative damage rule based on the knee point of the S-N curve. ASME J. Eng. Mater. Technol. 1976; 4: 316-21.
27. Ben-Amoz M. Cumulative damage model based on two-mode fatigue damage bounds. Materials Science and Engineering 2009; A 504: 114-123.
28. Aid A. Amrouche A. Bouiadjra B.B. Benguediab M. Mesmacque G. Fatigue life prediction under variable loading based on a new damage mode, Materials and Design. 2011; 32: 183-191.
29. Aid A. Bendouba M. Aminallah L. Amrouche A. Benseddiq N. Benguediab M. An equivalent stress process for fatigue life estimation under multiaxial loadings based on a new on linear damage model. Materials Science and Engineering. 2012; 538: 20-27.
30. Djebli A. Aid A. Bendouba M. Amrouche A. Benguediab M. Benseddiq N. A non-linear energy model of fatigue damage accumulation and its verification for Al-2024 aluminum alloy. Int J Nonlinear Mech. 2013; 51: 145-151.
31. Benkabouche S. Guechichi H. Amrouche A. Benkhettab M. A modified nonlinear fatigue damage accumulation model under multiaxial variable amplitude loading. Int J Mech Sci. 2015; 100:180-194.
32. Peng Z. Huang H. Z. Zhou J. Li Y. F. A New Cumulative Fatigue Damage Rule Based on Dynamic Residual S-N Curve and Material Memory Concept. Metals. 2018; 456: 1-17.
33. Pavlou D. G. The theory of the S-N fatigue damage envelope: Generalization of linear, double-linear and non-linear fatigue damage models. Int J Fatigue. 2018; 110: 204-214.
34. Zhang W. Miller K. J. A study of cumulative fatigue damage under variable loading-mode conditions. Fatigue Fract Engng Mater Struct. 1996; 213: 229-239.
35. Kuroda M. Extremely low cycle fatigue life prediction based on a new cumulative fatigue damage model. International Journal of Fatigue. 2001; 24: 699-703.
36. Miller K. J. Zachariah K. P. Cumulative damage laws for fatigue crack initiation and stage Ι propagation, Journal of Strain Analysis. 1977; 4: 262-270.
37. Miller K. J. Ibrahim M. F. E. Damage accumulation during initiation and short crack growth regimes. Fatigue of Engineering Materials and Structures. 1981; 3: 263-277.
38. He Z. Kotousov A. Branco R. A simplified method for the evaluation of fatigue crack front shapes under mode I loading. Int. J. Fract. 2014; 188: 203–211.
39. Zakavi He B. Kotousov A. Khanna A. Branco R. On evaluation of fatigue crack front shapes. 9th Australas. Congr. Appl. Mech. ACAM. 2017; 27 - 29.
40. Wen J. F. Zhan Y. Tu S. T. Xuan F. Z. A combination rule for multiple surface cracks based on fatigue crack growth life. AIMS Mater. Sci. 2016; 3: 1649–1664.
41. Coules H. E. Interaction of surface cracks subjected to non-uniform distributions of stress. Int. J. Press. Vessel. Pip. 2017; 157: 20–29.
42. Carpinteri A. Shape change of surface cracks in round bars under cyclic axial loading. Int. J. Fatigue.1993; 15, 21–26.
43. Caspers M. Mattheck C. Weighted averaged stress intensity factors of circular‐fronted cracks in cylindrical Bars. Fatigue Fract. Eng. Mater. Struct.1987; 9: 329–341.
44. Toribio J.. Matos J. C. González B. Escuadra J. Compliance evolution in round cracked bars under tensile fatigue. Eng. Fract. Mech. 2011; 78: 3243–3252.
45. Seah T. T. Qian X. An interaction factor to estimate the over-constraining effect in plates with co-planar cracks. Eng. Fract. Mech. 2018; 199: 13–28.
46. Levan A. Royer J. Part-circular surface cracks in round bars under tension, bending and twisting. Int. J. Fract. 1993; 61: 71–99.
47. Navarro A. De Los R. E. R. Fatigue crack propagation modeling by successive blocking of dislocations. Proc R Soc. 1992; A437: 375-390.
48. Hobson P. D. Brown M. W. De Los Rios E. R. Two phases of short crack growth in a medium carbon steel, In. The Behavior of Short Fatigue Cracks (Edited by K. J. Miller and E. R. de los Rios). Mech. Engng Pub1. Inst Mech Engrs London. 1986; 1: 441-459.
49. Zhu C. A model for small fatigue crack growth. Fatigue Fract Engng Mater Struct. 1994; 17: 69-73.
50. Angelova D. Akid R. A note on modeling short fatigue cracks behavior. Fatigue Fract Engng Mater Struct. 1998; 21: 771-779.
51. Newmamn J. C. Ji. A review of modeling small-crack behavior and fatigue-life predictions for aluminum alloys. Fatigue Fract Engng Mater Struct. 1994; 17: 429-439.
52. Farag M. M. El-Kady R. M. Hammouda M. M. I. Cracking simulation based fatigue life assessment. Fatigue Fract Eng Mater Struct. 2020; 1–13.
53. Zhonghua L. Yimin L. Jinghua L. The development of stresses and their during cyclic loading. Fatigue Fract. Engng Mater. Strucl. 1993; 16: 781-794.
54. Gorash Y. MacKenzie D. On cyclic yield strength in definition of limits for characterisation of fatigue and creep behaviour. Open Eng. 2017; 7:126–140.
55. Watson P. Topper T. H. Fatigue-damage evaluation for mild steel incorporating mean stress and overload effects, Experimental mechanics, vol 12, 11-17, 1972.
56. Hammouda M. M. I. El-Sehily B. M. De Los R. E. R. The significance of crack tip deformation foe short and long fatigue cracks. Fatigue Fract Eng Mater Struct. 1995; 19: 475-484.
57. Rakitaky A. A. de los Rios E. R Miller K. J. Fatigue resistance of a medium carbon steel with a wear resistant thermal spray coating. Fatigue Fract Engng Mater Struct. 1994; 17: 563-570.
58. Hammouda M. M. I. Ahmad S. S. E. Sallam H. E. M. Correlation of fatigue crack growth by crack tip deformation behavior. Fatigue Fract Engng Mater Struct. 1995; 18: 93-104.
59. Hammouda M. M. I. Ahmad S. S. E. Sherbini A.S. Sallam H. E. M. Deformation behavior at the tip of a physically short fatigue crack due to single over load. Fatigue Fract Engng Mater Struct. 1998; 22: 145-151.
60. Henry D. L. A theory of fatigue-damage accumulation in steel, Transactions of the ASME. 1955; 77: 913-918.
61. Corten H. Dolant T. Cumulative fatigue damage, IME-ASME Int. Conf. on Fatigue of Metals, London, September 235-246, 1956.
62. VALLURI S.R. A unified engineering theory of high stress level fatigue, Aerosp. Eng., 20, 18-19, 68-69, October 1961.
63. Topper TH., Sandor B.I. Morrow J.D. Cumulative fatigue damage under cyclic strain control, Journal of Materials, 4(1), 189-199, March 1969.
64. T Bui-Quoc et al., Trans ASME, Journal of Basic Engineering, vol 93, 1971
65. Manson, S. S. Freche, 1. C. and Ensign, C. 11. Application of a Double Linear Damage Rule to Cumulative Fatigue. Fatigue Crack Propagation, ASTM STP 415, 386 (1967).