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Centrifugal pumps are used in several industrial processes.
It is common the operation of this equipmentwith gas-liquid
mixtures, which is the case of the electrical submersible
pumping artificial lift method used in the oil industry. The
increase of free gas fraction inside the pump may lead to
unstable operation and problems such as surging and gas
locking phenomena to occur. In this study a drift-fluxmodel
is proposed for the gas-liquid flow subjected to centrifugal
fields using the impeller as an example. The model is closed
with experimental data of bubble diameter, displacements
and velocities acquired via high-speed camera at several dif-
ferent rotational speeds and gas mass flow rates using wa-
ter as the continuous medium. From the modeling and the
forces balance in the bubbles, a quantitative criterion for
the start point of surging and gas locking conditions was
proposed.
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Nomenclature

Lattin Letters

Bb - Bubble volume I - Impeller rotation between frames
CB - Basset coefficient M - Momentum transfer
CD - Drag coefficient ¤m - Mass flow rate
CV - Virtual mass coefficient for bubbles P - Pressure
d - Diameter ∆P - Pump pressure increment
®F - Sum of the forces QBEP - Liquid flow rates at the best efficiency point
®FB - Basset force Q - Flow rate
®FD - Drag force Q ∗ - Dimensionless flow rate
®FP - Pressure force ri - Impeller channel intake radius
®FV - Added mass force ro - Impeller channel exit radius
®g - Gravitational acceleration rb - Bubble radius
H - Head ®V - Velocity vector in absolute frame of reference
H ∗ - Dimensionless head ®v - Relative velocity vector

Greek Letters

α - Gas void fraction τ - Stress tensor
β - Blade angle µ - Viscosity
θ - Tangential coordinate Ω - Rotational vector
ρ - Density ω - Angular velocity
σ - Interfacial or surface tension ∆ρ - Density difference between phases

Subscripts

1 - Liquid/water phase o - Exit2 - Gas/air phase r , θ - Polar coordinate system componentsb - Bubble s, n - Blade coordinate system componentsm - Mixture BEP - Best efficiency point
i - Intake

1 | INTRODUCTION

Electric Submersible Pump (ESP) is an artificial lift method used in the petroleum industry. The objective is to increase
the energy present in the fluid inside the reservoir and bring it to the surface. The internal flow is extremely complex,
involving turbulence effects, system rotation, separation and streamline curvature suffering influence of convex and
concave walls. Moreover, the flow is influenced by interaction mechanisms or other unsteady effects because of the
presence of a mobile structure and a static structure: impeller and diffuser (Feng et al., 2010 [1]).

In the past few decades, many experimental studies and modeling approaches have been made by many re-
searches to predict ESP pressure increment under gas-liquid flow conditions. Some analytical models are available
in the literature for predicting head degradation from low to high void fractions for the nuclear industry, such as
Mikielewicz et al. (1978) [2] and Wilson et al. (1979) [3]. These models used a semi-empirical approach, obtaining
correlations from single-phase and two-phase flows from experimental data. Some works related to these flows in
pumps are Estevam (2002) [4], Barrios (2007) [5], Solano (2009) [6], Paternost (2013) [7], Biazussi (2014) [8], among
others.

The acquisition of flow characteristics inside the pump is not an easy job due to the high pressures that these
equipment are submitted. The improvements in the pump operation can bring considerable benefits for the industry.
Some approaches related to visualization studies were conducted to observe multiphase flow structures, such as the
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flow patterns inside a rotating centrifugal pump. Some studies may be cited in this case which are: Murakami and
Minemura (1974) [9]-[10], Estevam (2002) [4], Gamboa (2009) [11], Monte Verde et al. (2017) [12] and others. Most
of these studies used transparent casing to visually observe the pump internal flow patterns. Starting with the original
volute-type centrifugal pumps, they cover several research topics, such as flow pattern recognition, bubble movement
visualization, mapping transition boundaries etc.

Estevam (2002) [4] conducted the first study on flow patterns inside ESP. His study emphasizes the ESP perfor-
mance under certain conditions considering the influence of the amount of air bubbles, which leads to surging and
gas locking. The pump of his experiment had two stages and was under a stratified and dispersed bubble flow, with
the following variables acquired: void fraction between 0 to 15% at the entrance of the pump, liquid and gas flow
rates, inlet and outlet pressure, pump rotation and pump axis torque. The author identified a dimensionless number
as a surging indicator, IS, after applying the two-fluid model. This number relates the drag and centrifugal force with
void fraction at the inlet of the impeller, being an important indicator for the pump performance.

Barrios (2007) [5] developed a model based on bubble diameter to determine surging conditions. The author
proposed an approach based on a mechanistic model, considering one-dimensional based on the balance of forces
acting on bubbles, which are: centrifugal, drag and pressure. This model depends on two important variables. The
first is the bubble diameter which may cause its own stagnation in the impeller channels and the second is the drag
coefficient. The model assumes that for a bubble diameter lower than a critical one, the drag force pushes them
into the diffuser. Larger bubbles remained stationary at admission and coalesced with new bubbles that had the
same diameter, accumulating, which causes coalescence and then surging. In some cases, this model showed a good
agreement with the experimental data.

The actual head developed by the pump is always less than theoretical one. Vieira (2014) [13] performed a
simulation in order to study the pump losses. The velocity fields showed the presence of vortex in the channels of the
impeller at partial flow rates (outside the Best Efficiency Point - BEP), with more intensity for the less viscous case.
At the BEP the vortex were despicable or absent. The largest discrepancies in the numeric simulation were observed
at flow rates distancing from BEP and in lowest flow rates, particularly with pump working with water. Another
discrepancy concluded by its works refers to the friction factor. Comparing this variable for water, the experimental
values were higher than those calculated by the simulations, specially for high flow rates. However, for viscous fluids,
the friction factor was the opposed, their values were less than those given by the numerical simulations. In her study,
the losses were treated numerically, an alternative tool to understand better the phenomena inside the ESP.

Biazussi (2014) [8] performed an experimental study to get the ESP performance operating with two-phase gas-
liquid flows. Three pump models were tested, P23, P47 and P100, all of them having three stages. The study com-
prised the analyses of three main characteristics, which could be related to pump performance, namely: rotational
velocity, which ranged between 1800 and 3500 rpm; suction pressure varying between 100 and 500 kPa; and gas
mass flow rate, kept constant in the experiments. The author concluded that changes in pump rotation affects pump
performance and transition patterns. Increasing the velocity of the impeller also increases the centripetal force acting
on the bubble. The flow rate rises along with it. Thus, two forces are raising together in this situation, the buoyancy
force proportioned by the increase of the flow rate and the centripetal force raised due to changes in angular velocity.
The raises in the flow rate can not overcome growth in the centripetal field, which made the bubble velocity decrease
compared to the former situation.

Although the drift-flux model proposed by Biazussi (2014) [8] presented good results for several flow conditions,
it used correlations from Shoham (2005) [14] to relate the velocity field instead of measuring them. The present
study differs from Biazussi in this point and, besides, the terms related to the acceleration of gravity were replaced
by centripetal acceleration, not being included as a source term in momentum equation. Another difference is in the



4 Penteado et al.
starting point of the formulation for the drift-flux model.

Monte Verde et al. (2017) [12] performed an experimental study of gas-liquid flow inside an ESP impeller. The
authors reported the gas locking and surging conditions to the flow patterns observed inside the impeller, which
were classified by them in Bubble Flow, Agglomerated Bubble Flow, Gas Pocket Flow and Segregated Flow. Their
experiments were performed using a high-speed camera and the same visualization prototype used in this study. It
was observed that for higher rotational speed, the value of the no-slip gas void fraction increases, and the transition
of flow patterns occurs.

Cubas (2017) [15] carried out a study with the gas-liquid mixture in a radial impeller using a high-speed camera.
The images obtained were associated with the instabilities observed in the performance degradation in two-phase
flow operation under surging conditions. Four flow pattern were observed, as suggested by Gamboa (2009) [11] and
Monte Verde (2017) [12]. The gas void fraction was measured using a wire mesh sensor installed at the intake of the
pump. The results of the void fraction presented discrepancy compared to the homogeneous model. Cubas (2017)
[15] concluded that this difference occurs because the homogeneous model does not consider the slip velocity. In
cases where the gas void fraction was higher than BEP, the bubbles had a tendency to flow at the suction blade side.
However, considering most of the cases, the bubbles change their direction in the middle of their way or near the
impeller outlet going directly through the pressure suction side.

Stel et al. (2019) [16] studied the gas-phase behavior numerically and experimentally. The main components
were replaced by transparent components that allow the use of the high-speed camera. The numerical capability
was explored to evaluate bubble trajectory, comparing how it is affected by some variables, such as bubble diameter
and liquid flow rate. A Lagrangian solution was used to calculate the motion of individual bubbles inside the pump,
considering drag, virtual mass, pressure gradient and rotational forces. In his tests, the lift force showed a negligible
effect compared to other forces, so it was not considered. In conclusion, bubble trajectories were sensitive to bubble
diameter. In addition, the virtual mass can be reasonably high in regions of high-velocity gradients.

The flow inside a multistage ESP model is highly influenced by stage-to-stage transition, impeller-diffuser inter-
action, and part-load operation. Several other factors, such as turbulence, high viscosity liquid, and two-phase flow
inside an ESP deserve detailed studies on their own, since all of them are responsible for key influences on pump
performance and until now there is no unique model closed to represent all phenomena.

The aim of the present work is the measurement of velocity and diameter of air bubbles inside the ESP. A high-
speed camera was used and a two-phase flow composed of air and water was investigated. An image processing code
was written to identify the moving bubbles and compute the velocity of them changing while crossing the impeller,
as the diameter as well. With the velocity field of bubbles, a drift-flux model was proposed and a transition criteria
for surging and gas locking conditions was proposed, as well.

The present study relates a drift-flux using blade coordinate system, using Navier-Stokes equation and taking into
account the velocities in r̂ and θ̂ direction. A better comprehension of the phenomena can bring better designs for
ESP, such as improved geometries that deal better with gas-liquid flows in the impeller.

2 | EXPERIMENTAL PROCEDURE

Experiments were performed at the Experimental Laboratoy of Petroleum - LabPetro at the Center for Petroleum
Studies - CEPETRO, inside the University of Campinas (UNICAMP) in Brazil. The prototype construction was based
on a P23 model used in oil production, described in detail by Biazussi (2014) [8]. Monte Verde et al. (2017) [12] built
the prototype doing somemodifications on P23 model in order to visualize the flow inside the pump. It was necessary
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to remove the steel shroud and replace it with an acrylic one, keeping its feature closed. The diffuser was modified
for a voluta, letting the impeller exposed. The intake of the impeller remains the same, without modifications in order
to orient the flow. A detailed description of the prototype already exists in Monte Verde et al. (2017) [12] study,
so only the necessary for the reader is exposed here, which is related to the visualization equipment. For a detailed
description, please see Monte Verde et al. (2017) [12].

The high-speed cameras have been widely used in multiphase flow visualization and analyses, such as liquid-
liquid, gas-liquid, liquid-solid, among others (Penteado et al., 2016 [17]). As an advantage, this method is precisely
and non-intrusive. However, its limitation is related to the necessity of optical access to the process and this rarely
happens in turbomachinery, because the fluid was frequently under high pressure.

A high-speed camera of CMOS (Complementary Metal Oxide Semiconductor) type was placed in front of the
pump to record the two-phase flow in the impeller (Fig. 1). A camera model Phantom VEO 640S, capable of 4
megapixels with a resolution of 2560 px × 1600 px at frequencies up to 1.400 Hz was used. Above these values the
quality gradually decreases. A computer controlled the frequencies and exposure times of the high-speed camera and
stored the acquired images. The images were stored in cine format, which was opened with the software Phantom
CV 2.8 and then converted to avi format. In our tests, we set frequencies to values within 1000 Hz for 600 rpm, 1500
Hz for 900 rpm and 2000 Hz for 1200 rpm. Those values were set up according to the quality of the image obtained
from 1200 rpm, which has its resolution of 1536 px × 1536 px keeping 4 megapixels.

The camera was set up in the same place used byMonte Verde (2017) et al. [12], but using a different illumination.
High-speed cameras demand an efficient illumination, due to higher frequencies acquisition. In other words, it means
that the object should not have shadows in the capture time. Three sources containing 24 LED (Light-Emitting Diode)
lamps each were used to provide a constant illumination. Their input wattage was 84 Watts and delivered 7.700
lumens of brightness each one. For the tests, the number of acquired images were around 7.400 and 15.000 frames,
and a Canon lens f/1.4 of 50mm focal distance was used. The images were recorded in gray-scale format. An example
of movie showing the motion of bubbles is available as Supplementary Material.

Figure 2 indicates the experimental campaign realized. The experiments related to single-phase flow (SPF) are
placed to compare the single-phase with two-phase pump performance. Although some of these tests did not use
the high-speed camera, they were done to verify the pump performance, comparing the data with the experiments
from the literature, such as Gamboa (2009) [11] and Monte Verde (2016) [18]. The four patterns observed by them
occurred in the present study.

The two-phase flow experiments were conducted using tap water and compressed air as working fluids. The airmass flow rate was kept constant. Sixteen tests were performed using the high-speed camera in 600, 900 (one wasrepeated with different mass flow rates), and 1200 rpm. The first tests were performed with 0.0125 kg/h gas massflow rate. We observed that, when increasing the gas flow rate to 0.0250 kg/h the quality also increases.
TABLE 1 Test matrix for the experimental campaign.

Rotation Water mass flow rate Air mass flow rate

600 rpm 710 to 3310 kg/h 0.025 kg/h
900 rpm 833 to 5273 kg/h 0.025 kg/h
900 rpm 1200 to 5240 kg/h 0.012 kg/h
1200 rpm 798 to 7141 kg/h 0.025 kg/h

Therefore, the next twelve experiments were done with 0.0250 kg/h. Rotations above 1200 rpm cause the
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CMOS camera

LED lights

Impeller

Diffuser

F IGURE 1 Main components in the experimental setup: Pump impeller and diffuser, LED lights and CMOS
Camera.

impeller to break the bubbles so much that they seem like a cloud. In this condition, they have so many shadows
(in our case, it represents noise) that detecting any bubble displacement was not possible. The suction pressure was
set up in 150 kPa. Table 1 shows the test matrix. A description of the image post-processing is shown in the next
subsection.

2.1 | Post-processing of images

Numerical scripts wrote by the authors processed the images acquired in the course of this study. The code written
must capture the displacements of the bubbles and then find their velocities. Image post-processing was divided in
two main steps. First, the code identifies the regions where bubbles were moving. In the second stage of the code,
bubble displacements were acquired. The steps of the first part of the code are:
1. Image rotation.
2. Region of Interest (ROI).
3. Adaptive histogram.

4. Strel filter.
5. Image subtraction.
6. Wiener filter.
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F IGURE 2 Pressure Increment x Flow rate Graph of the Experimental Campaing for single-phase flows (SPF) and
two-phase flows.

7. Laplacian filter.
8. Binarization.
9. Median filter.

10. Eccentricity filter.
11. Cell formation.
12. Pairing.

The camera remained frozen when capturing the images, which means that the code needs to rotate the image
to capture only the displacement of the bubble. The frequency represents how much the impeller rotates from one
frame to another. With this information, the image needs to be rotate at:

I =
ω

60

360

f r
(1)

where ω is the rotation of the impeller in r pm and f r is the acquisition frequency of the camera in H z . The result of
I in Eq. 1 corresponds to 3.6◦ degrees of rotation from the first image captured to the following one. For all the tests
the acquisition frequency is adjusted for the camera to take a shot every 0.24 seconds. This is the sampling interval.
The next step was the creation of a Region of Interest (ROI).

Figure 3(a) represents the image acquired from the tests for q l = 4.511m3/h and qg = 0.025 k g/h, and the borders
in blue separate the unnecessary pixels. In image post-processing this represents the mask (Oppenheim and Schafer,
2014 [19]). With the mask representing the region of interest (ROI) the pixels outside it are replaced by the value 0,
which means that it appears as black. The cropped image is shown in Figure 3(b) .
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(a) (b)

F IGURE 3 Image of gas-liquid flow inside the Impeller: (a) Real Frame and ROI (blue borders); (b) Cropped image
showing only the impeller channels.

The creation of the ROI is an essential process because the scripts applied in the sequence have the guarantee
that displacements of bubbles receive the next filters without the noise of unnecessary pixels. The next scripts count
with techniques used in spatial processing.

The intensities of a pixel can be changed according to the neighboring pixels’ intensities by a technique called
spatial filtering. An image is a two-dimensional function, f (x , y ) where x and y are spatial coordinates and the am-
plitude of f at any pair of coordinates (x , y ) is called the intensity of the image at that point. In our case, the output
(processed) image is g (x , y ) , and T is an operator on f defined over a specified neighborhood of point (x , y ) . The
spatial domain processes are denoted by Eq. 2.

g (x , y ) = T [f (x , y ) ] (2)

The original image f (x , y ) receives the treatment of an operator, T [ ·], such as the median filter. After that, the
new image is g (x , y ) . The intensity values acquired in gray-scale correspond to values between 0 (black) or 255 (white).
In signal processing, noise is characterized as any information that blurs the object, an undesirable aspect such as small
changes in illumination that may occur in our case. The script uses adaptive histogram equalization (AHE) to improve
the contrast in images (Gonzalez and Woods, 2008 [20]). Its function redistributes the lightness values of the image.
Therefore it improves edge definitions in each region of an image.

Seven channels are noted in Fig. 3(b). The external observation, which can be done by the operator who is
making the code, have more quality in the analysis if the image window is amplified. This means that a reduced
window improve the details of images, working as a zoom or amplification lens. Figure 4 and 5 explains better to the
reader what this means as they are showing only a channel of the impeller. Further details are provided by Fig. 16 in
Appendix B.

Morphological operations as dilation and erosion were executed in Matlab. The strel filter is a morphological
operation that uses a disk-shaped structuring element in the present study. Typically, the structured element selected
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should be the most similar to bubble shape and have the nearest size to improve the effectiveness of this operation.

The next operation is the image subtraction, a similar process that was conducted by Penteado and Franklin (2016)
[17]. Two consecutive images were necessary to execute this script, which indicates the possible displacements that
occurs. This script goes a little further in the code steps, so that it executes the Wiener, Laplacian and Binarization
process to then return the values acquired. That is the reason why Fig. 4 is already showing the bubble’s centroids.
The red circles indicates the current frame, the blue squares, the next frame, and the green markings indicate the
location of possible displacement as a result of the script.

Thus Fig. 4(a) shows the process without the use of image subtraction. The centroids had already been calculated
in two consecutive images and plotted. Fig. 4(b) shows the filter acting and removing some centroids where no
displacement occurred. The centroids removed were shown by a blue arrow in Fig. 4(a).

F IGURE 4 Analysis of bubble displacement, Red circles indicate the current frame, the blue squares, the next
frame, and the green markings indicate the location of possible displacement: (a) Bubbles Centroids - each
symbol/color represents a bubble displacement; (b) Subtraction of no-movement centroids applied.

Wiener deconvolution is a process to deblur the images, reducing their noise. Small changes may occur in illumi-
nation due to the rotation of the impeller. Right at the center of it, the pump’s axis does some shadow, and even with
the best effort to try a better positioning for illumination, a small portion of shadow remains in some areas; therefore,
Wiener deconvolution decreased this effect.

The Laplacian filter was employed after the Wiener deconvolution. It is a linear spatial filter used to emphasize
image contrast. It allows to enhance bubble contours. Considering this situation, two types of spatial masks to enhance
edges were tested and the one that showed the best result is given by the matrix showed in Eq. 3.

Spatial mask:

1 1 1
1 −8 1
1 1 1

 Laplacian: g (x , y ) = f (x , y ) + c
[
+2f (x , y )

] (3)

The Laplacian of an image f (x , y ) , denoted +2f (x , y ) , is defined by Equation 3. This expression was implemented
at all points in the image, convolving with the spatial mask that considers diagonal elements. The enhanced image is
given by g (x , y ) , and c is 1 if the center coefficient of the mass is positive, or −1 if it is negative (Gonzalez andWoods,
2008 [20]). Figure 5(a) and (b) show the comparison between an original image and the enhanced one. To apply this
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filter, the image class was changed, letting intensity numbers in the range from 0 to 1, which corresponds to 255.
Values near 0 were considered black, even negative values.

F IGURE 5 Application of Filters to an Image: (a) Original Image; (b) Image with Laplacian filter applied.

The borders of bubbles in Figure 5 were prominent in the comparison, which increases the efficiency when bina-
rizing the frames. The Binarization process has a threshold value between 0 and 255, changing the color of divided
pixels into black, 0 or white, 1 (Sonka et al., 2014 [21]). A median filter was applied, reducing noise. Each output pixel
contains the median value in a 3-by-3 neighborhood around the corresponding pixel in the input image, symmetrically
extending the image at the boundaries.

The resulting matrix contains values of pixel intensities of 0 and 1. The black values inside the mask indicate the
bubbles, where the values corresponding to 1 are white. This matrix is submitted to a filter called "area filter", inside
the same script. It consists of removing regions with an area smaller than a threshold value (5 px2 in our experiments),
i.e., values lower than this were changed from 0 to 1 inside the binarized matrix.

Furthermore, a binarized image has regions formed by the bubbles. Some parameters are acquired, such as area,
perimeter, hydraulic diameter, eccentricity, and others. The variable "eccentricity" is useful for comparing with the
bubble’s circumferential shape, and it is used in a filter known as eccentricity filter. High values are not expected,
thus they were excluded from the analysis. The threshold of .95 was arbitrarily chosen, so that values above it were
removed.

Finally, the information acquired from the first part of the code was saved in a cell array inside Matlab. In our
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case, four variables were saved: diameters, bubble position, size of the matrix, and the sum of the bubble’s area in the
impeller channel. The next section reports the code calibration, which certifies the data acquired.

2.1.1 | Bubble trajectories: code calibration

Many variables may change bubble velocity in the impeller of an ESP, such as the rotational velocity, characteristics
of the flow, among others. By this reason, the present impeller does not have a parameter for bubble velocity, thus,
the trajectories of air bubbles were acquired manually from image post processing and the results were shown in Fig.
6. The process to acquire them was conducted analyzing image by image and writing the position of the bubbles in
that time. This process demands an extensive time for each bubble to be followed, about four hours.

First, it is necessary to find a bubble that starts its trajectory from the impeller’s entrance. Then the position
is written and the velocity is acquired. In Fig. 6(a) it is possible to see some bubble trajectories in red, crossing the
channels of the impeller, represented by the mask in blue. The axis of the figures was plotted using the pixel scale,
and it is not converted to meters. As already discussed by other authors, the bubble trajectories are random and do
not follow a unique pattern (Monte Verde et al., 2017 [12]).

F IGURE 6 (a) Examples of bubble trajectories in the impeller channel - (b) Velocity fluctuation of a bubble with
0.5 mm diameter through the impeller channel.

Each experiment was calibrated at the beginning to make sure that the camera did not change its position, even
slightly. Most of the images captured in this study showed a relation where 1 millimeter is equivalent to 11.8 pixels,
rounded to 12 - supposing a bubble moving at 1.00 m/s or 12 pixels between two frames acquired at 1500 fps. If the
velocity of the bubble changes to 13 pixels between an image pair, it accelerates to 1.08 m/s . The higher fluctuations
of velocity can be considered uncertain when capturing the bubble centroids.

vMAM =
vi−1 + vi + vi+1

3
(4)
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Therefore the velocity is considerably affected by small changes in pixel position. A single pixel error in the tracking

process can propagate and become larger errors when calculating the velocities and accelerations. This effect may
be reduced by applying the moving average method (MAM), represented by Eq. 4. The higher velocity fluctuations
were attenuated when MAM was used. Fig. 6(b) shows the velocity captured without and with MAM (smoothed),
represented by the red and blue lines, respectively.

2.2 | Experimental Results

The Cell data acquired from the first part of the code is addressed in this section. One must open in another script
to reduce the memory and storage for all those images processed in Matlab. It is vital to organize the data in the
current and next frames. These matrices must have the same index because the same bubble needs to be tracked
throughout the impeller channel. This is known as pairing process. In other words, pairing can be known as a bubble
in the current frame being analyzed as the same bubble in the next frame after a specific time given by the image
frequency acquisition.

(a) ( )b

F IGURE 7 Pairing process results for bubble: (a) Pair of bubbles centroids and (b) velocity vectors.

The pairing process demands a comparison between both matrices. When the code is searching for a pair from
a specific index of the current frame (or matrix) and this pairing process fails, this means two possibilities: that the
bubble goes out of the impeller or that the "bubble" is not a bubble, but a noise, and can be discarded. The possible
pairs were only accepted after this script, which is related to the position expected from that bubble. Index by index
of the current frame is done repeatedly for the sequence of images.

After that, the subtraction between the matrices was done, and the displacements were acquired. Figure 7(a)
shows the centroids from the current frame at time t1, represented by red circles. The centroids from the next frame
at time t2 are represented by blue squares.

In possession of the displacements and the acquisition frequency f r , the velocities were obtained. For an example,
the data showed in Figure 7(a) can be represented as velocity vectors of air bubbles in a pair of images, as showed
in Figure 7(b). The direction of the vector and its module are indicators for the paring process. These values should
have a parameter to be compared, which was made in next section, Bubble trajectories: code calibration. Besides the
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velocities, the code also computes the bubble’s area in the impeller, allowing the possibility to calculate the gas void
fraction.

F IGURE 8 Experiments in the pressure x flow rate chart, and histograms indicating the diameter from points 5
to 8 - 900 rpm and 0.025 kg/h changing liquid flow rate.

The value of gas void fraction, αexp , is calculated using the hydraulic diameter of each bubble. The bubble’s
volume was approximated using the sphere’s volume, once the images acquired were at a 2D format. The sum of
the bubbles’ volume divided by the channel volume is equal to alpha. This data showed a high variation along the
timestep (or fps) which indicates that bubbles sometimes appear in swarms inside the impeller channels. Due to this,
the volume expected for the bubble changes with time, as they are approached using the sphere’s volume. The mean
values of gas void fraction αexp calculated by the code for each experiment were compared by the ones calculated
using the model and they are discussed in section General discussion.

The main objective of the code is to treat a great number of data, which is unpractical to do manually due to the
time demanded. Sixteen tests were made, dividing each in seven because of the number of impeller blades. Each
channel has 1874 images analyzed and their results were reunited in a single file to get an average result. More than
that, a probability distribution function (PDF) was created for velocities and diameters of the air bubbles for each test.
The results are shown in Fig.8). The distribution that fitted the data was a nonparametric representation (Hinkelmann
and Kempthorne, 1994 [22]).
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F IGURE 9 Snapshots of the gas-liquid flow inside the ESP (refer to Fig.8 for flow conditions): (a) Point 5 (b) Point
6 (c) Point 7 (d) Point 8 - 900 rpm and 0.025 kg/h at different liquid flow rates.

In Fig. 8, the chart on the top indicates Pressure increment by Water flow rate, which gives an idea of how much
gas is inside the impeller. When the water flow rate decreases, more gas can be observed in the experiments. The
points in Fig. 8 were represented in Table 2 and their images are shown in Fig. 9. The motion in these experiments
can be seen as Supplementary Material. Besides, a table on the left, below Fig. 8 indicates the results of the PDFs
done for the diameters of the air bubbles and their respective points.

As expected, bubble diameter increases when the liquid flow rate decreases. The quantity of bubbles multiplies,
raising the swarm effect inside the impeller channel. This swarm increases the coalescence of bubbles as they are
closer. The images in Fig. 9 indicate this phenomenon. The coalescence increases the size of the bubbles and their
deviation because a bigger bubble population exists inside the impeller channel. Point 8 is near the pump inflection
curve, which is the beginning of the unstable condition known as surging.
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TABLE 2 Impeller rotation ω, mass gas flow rate ¤m , diameter d , pressure increment ∆P , radial velocity vr ,circumferential velocity vθ , standard deviation of radial velocity δvr and standard deviation of δvθ .

Exp. ω ¤m d ∆P vr vθ δvr δvθ

[r pm ] [k g/h] [mm] [P a] [mm/s ] [mm/s ] [mm/s ] [mm/s ]
1

600 0.025
1.4 1007 759 876 217 223

2 1.4 2280 682 857 242 261
3 1.6 3006 606 864 211 240
4 1.6 3886 534 821 238 269
5

900 0.025
0.6 541 1021 1425 245 298

6 0.6 4579 969 1346 257 276
7 0.7 7260 868 1283 303 324
8 0.8 9318 825 1172 332 350
9

900 0.012
0.6 419 1028 1447 292 336

10 0.6 4168 980 1342 286 301
11 0.7 8078 862 1296 312 388
12 0.9 9025 769 1211 271 315
13

1200 0.025
0.4 262 1527 1806 318 346

14 0.4 5246 1497 1759 341 355
15 0.5 11341 1395 1668 319 329
16 0.6 16589 1291 1425 295 329

Table 2 shows the mean values for standard deviation of radial and circumferential velocities for bubbles in each
test run. The table also presents the rotational velocityω, mass gas flow rate ¤m , bubble diameter d , pressure increment
∆P , radial velocity vr , circumferential velocity vθ , standard deviation of radial velocity δvr and standard deviation of
circumferential velocity δvθ .

All the velocities increased along with the rotation velocity, which is expected because more energy has been
added to the fluid. The standard deviation also increased. The diameter of the bubble act in an opposite way, the
increase in energy provokes an increase in bubbles break-up, thus reducing their diameters. The different values of the
gas flow rate do not bring a considerable difference in the velocities. Perhaps the gas flow rate should present a higher
difference between them to show considerable changes in velocities. Further experiments should be conducted to
test this. Considering the pressure values, when it rises for the same value of pump rotation, the velocities decrease.
Besides, in this Table, the lower values for pressure indicate high values for the water flow rate.

The velocity data acquired in the experiments and present in Table 2 were used to close the Drift-flux model,
described in sectionModel description.
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3 | MODEL DESCRIPTION

The geometry of a rotodynamic machines consists of a set of rotor blades attached to a hub and operating within a
static casing. The impeller was modeled using the concept of a radial cascade (Brennen, 2011 [23]), represented in
Fig. 10. This figure used three blades to better represent the notation used for the pump impeller.

BLADE

rb

ro

ri

LEADING
EDGE
CIRCLE

TRAILING
EDGE
CIRCLE

β(r)

rP/A

P
ɵ

n

j( )r

v

F IGURE 10 Radial cascade of the impeller (Brennen, 2011 [23]).

The angle β (r ) is related to the blade angle associated to θ̂-direction. The velocity represented by the letter
v is the velocity of a flow particle P in non-inertial frame of reference. A detailed description of the kinematics of
the movement is in Appendix C, in the section Kinematics for rotor dynamics. The angle ϕ is the angle of velocity
®v associated to θ̂-direction. The inner/entrance and outer/exit radius are defined as ri and ro , respectively, and the
subscript b refers to the blade.

The development of the drift-flux model formulation in this study uses the mass and momentum equations and
they are developed considering a specific set of operations of an electric submersible pump (ESP), including a two-
phase gas-liquid flow where subscript 1 and 2 were used for the liquid and gas phases, respectively. The letter k was
used to represent the phases in the equations. To start the calculations some hypothesis were assumed:

• Incompressible flow;
• No mass transfer between the phases;
• Constant local properties (thermal conductivity, spe-

cific heat, no fluid thermal expansion);
• Viscosity is function of the temperature only;

• Steady state;
• Neglecting superficial and interfacial tension;
• Assuming no variation in z-direction;
• Neglecting hydrofoil thickness.

The real structure has blades whose set form a hydrofoil distorted with its camber mean line following a logarith-
mic spiral. The polar coordinate system was changed to blade coordinate system (ŝ and n̂), and this development is
expressed in Appendix C, in the section Blade coordinate system. The rotation matrix is used to transform the coordi-
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nates between the system.

Further, radial pumps can be approximated as a channel that has a variable cross-section, meaning that the cross-
sectional area at the entrance is different from the exit. Besides, the channel has a curvature and its structure is
axisymmetric, thus the description was done by just one channel. Considering the hypothesis already exposed, the
model begins with differential equations written in polar coordinates. Before the reader starts the next sections, it
is recommended to see Appendix C. - Math tools, where the entire explanation for coordinate system change and the
initial steps for turbomachinery are described.

3.1 | Continuity Equation

Considering the assumed hypothesis the continuity equation for each phase can be written as in Eq.5.
1

r

∂

∂r
(αk ρk rvk r ) +

1

r

∂

∂θ
(αk ρkvk θ ) = 0 (5)

The volumetric flux of each phase, jk , is given by (Ishii and Hibiki, 2010 [24]):
jk = αk vk (6)

Considering the premises:

• Incompressible flow, which means Mach � 1.
• The velocity variation through the impeller in r direction from Eq. 6 was written in its weak form for azimuth

direction. It was integrated in θ direction and no-slip condition was considered. Terms jk θ (θ1 (r )) and jk θ (θ2 (r ))
are null.

• The terms in θ were modeled as an average value letting the variables in function of radius. The average value in
θ was calculated using the Leibniz’s rule.

• In order to obtain the average operator, the equation was multiplied by 1/∆θ.
• Defining (1 − λ) = Q1/Qm , and λ = Q2/Qm and the mixture flow rate as Qm = Q1 + Q2 (Ishii and Hibiki, 2010

[24]).
• The bar above or the brackets used in the expression means an average value.
• The volumetric flux or superficial velocity is jk r (r ) = Qk /A (r ) . The mixture volumetric flux is defined as jm (r ) =

Qm/(2 π r h)

The entire development for Eq. 5 is shown in Appendix A, in section 5. Considering the velocity triangle for
turbomachinery, a relation between jk r (r ) and jk θ (r ) can be obtained which is vk θ (r ) = −vk r cot β . This is showed in
Eq. 7. So:

jk r (r ) = αk (r ) vk r (r )

jk θ (r ) = αk (r ) vk θ (r ) = −αk (r ) vk r cot β = −jk r (r ) cot β (7)
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The radial and azimuth slip are given by, respectively (Ishii and Hibiki, 2010 [24]):

vsr (r ) = v2r (r ) − v1r (r ) =
j2r
α2
− j1r
α1

= jm (r )
[ λ2
α2 (r )

− λ1
α1 (r )

] (8)
vsθ (r ) = v2θ (r ) − v1θ (r ) =

j2θ
α2
− j1θ
α1

= −jm (r )
[ λ2
α2 (r )

− λ1
α1 (r )

] cot β (9)

The system coordinates were developed in Appendix A, in section 5. Appendix C, section 5 developed the ve-
locity components for turbomachinery. Due to the velocity field premises stated, the slip on normal direction to ŝ ,
represented by n̂ is null. The velocity field was simplified with this hypothesis. So:

vs,s (r ) = vsr (r )
/ sin β or vsr (r ) = vs,s sin β (10)

Hence, estimating vsr it is possible to find vs,s which is desired. The polar coordinate system can be change to the
blade coordinate system, so the velocity vector is represented by: ®v = vs ŝ + vn n̂ . So the velocities in direction ŝ and
n̂ , vs and vn are, respectively:

vs = vr sin β − (−vr cot β ) cos β = vr ( sin2 β + cos2 β
sin β

)
=

vrsin β (11)
vn = vr cos β + (−vr cot β ) sin β = vr cos β − vr cos βsin β sin β = 0 (12)

Therefore, as the slip had the same projections and the same components, the result of Eq. 11 and 12 must be
equal for slip, i.e.: vs,s = vsr /sin β and vs,n = 0. These results are important in the development of this model because
with the simplifications already made, these results show that there is only slip in the main direction of the flow, which
is in ŝ . Besides, the slip in n̂ clearly is equal to zero, as expected. The volumetric flux is jk = α ®vk (Eq. 6) and the same
projections of ®v are applied to ®j , so:

vs,s = v2s − v1s =
j2s
α2
− j1s
α1

=
(1 − α) j2s − α j1s

α (1 − α)

j2s = α (j1s + j2s ) + α (1 − α) vs,s or v2s = jm,s + v2j (13)

where the Drift-flux velocity v2j is equal to α (1 − α) vs,s and vs,s is the relative velocity or slip velocity. Applying the
mean operator in Eq. 13:

〈j2s 〉 = 〈α jms 〉 + 〈α (1 − α) vs,s 〉

where C0 is the distribution parameter given by:
C0 =

〈α jms 〉
〈α 〉 〈jms 〉

and so 〈j2s 〉 = C0 〈α 〉 〈jms 〉 + 〈α (1 − α) vs,s 〉 (14)

The term v2s is obtained by the radial and azimuthal velocities v2r and v2θ , respectively, measured experimentally
from the image treatment. In posses of the gas void fraction, they can be related to j2s . Besides, these velocities are
shown in section Experimental Results and used to calibrate the Drift-flux model. The mixture volumetric flux jms is
acquired from experimental data and this is equals to j1s + j2s .
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3.2 | Momentum Equation

The momentum equation in radial and azimuth direction were written considering the premises:

• The same hypothesis used for continuity equation were considered here.
• The velocity field has its dependence only to radius, so any ∂/∂θ of any velocity is null.
• The gravity acceleration for this case is neglected.
• The momentum received by one phase is equal to the one given by the other, but they have opposite directions,

i. e. ®M2 = − ®M1.
• Fictitious forces are given through fictitious accelerations which already have been calculated. The subscript

k is present indicating that they are applied for both phases. Sk = −αk ρk ®Ak f where ®Ak f = Ak f r + Ak f θ =(
2 ®Ω × ®vP + ®Ω × ®Ω × ®rP /A

) .
• Both phases have the same pressure: p1 = p2.

So in polar coordinates the momentum equation are:
• Radial direction (polar) r̂ :

αk ρk

(
vk r

∂

∂r
vk r −

v 2
k θ

r

)
= −αk

∂pk
∂r
−Mk r − αk ρk ®Ak r + + · ®®τ (15)

• Azimuth direction (polar) θ̂:

αk ρk

(
vk r

∂

∂r
vk θ +

vk r vk θ
r

)
= −αk

1

r

∂pk
∂θ
−Mk θ − αk ρk ®Ak θ + + · ®®τ (16)

where + · ®®τ indicates the viscous stress tensor.
The pressure gradient and the momentum transfer between the phases need to be estimated using the simplified

velocity field assumed. The field pressure ∆P can be obtained integrating in r direction. As already showed the slip
occurs only in ŝ-direction which can be estimated with momentum transfer rate in r̂ direction.
• Radial pressure gradient:

The momentum equation for phases 1 and 2, described by Eq. 15, are added respectively for each phase. As a
result, the interfacial momentum transfer are canceled because both have the same module but different directions:
M1r = −M2r .

α1 ρ1

(
v1r

∂

∂r
v1r −

v 21θ
r

)
+ α2 ρ2

(
v2r

∂

∂r
v2r −

v 22θ
r

)
= −(α1 + α2)

∂p

∂r
− (α1 ρ1 + α2 ρ2) Ak f r + + · ®®τ (17)

The development of Eq. 17 is shown in Appendix A, in section Radial Pressure Gradient. The result is Eq. 18:

− ∂p
∂r

= ρ̃m
[ (1 + cot2 β )

4 π2 h2

]
Q 2
m

(
−1
r 3

)
+ ρm

( cot β
π h

)
ω Qm

(
1

r

)
− ρm ω2 r − + · ®®τ (18)

where the density of mixture ρm , ρm and ˜ρm are:
◦ Homogeneous model: ρm = ρ1 λ1 + ρ2 λ2
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◦ Conventional: = ρm = ρ1 α1 + ρ2 α2

◦ ˜ρm = ρ1 λ1
λ1
α1
+ ρ2 λ2

λ2
α2

• Viscous Stress Tensor Modeling

The term+·®®τ is related to surface forces due to the stresses on the sides of the control surface. In polar coordinates
considering radial and azimuthal direction, the Gauss theorem in limited form is applied in the stress tensor.∫

Ak (z ,t )
+ · ®®τ dA = ∂

∂r

∫
Ak (r ,t )

®®τ · ®nr dA +
∮
ξ (r ,t )+ξk (r ,t )

®nk · ®®τ
dξ

®nk · ®nk ξ
(19)

where vector ®nk is normal to interface pointed outside of face k . Unitary vector ®nk ξ is normal to ξ in the plane Ak .
The term ξk is the contact of the interface to the wall. ξ is the interface of the fluids.

For simplification, the channel of the impeller was considered as a duct and the cross-section area is represented
by the hydraulic diameter. The mixture flow is considered homogeneous and thus density and viscosity are calculate
with this premise.

Eq. 19 is developed in Appendix A, section Viscous Stress Tensor Modeling. The resulting terms in radial direction
are used in Eq. 18. Summarizing the results for the first term on the right hand side of Eq. 19 for radial and azimuthal
direction are, respectively from Appendix A:∫

Ak (r ,t )

∂

∂r

(
®®τ · ®nr

)
dA

���
r
= 4 µ

λk
αk

Qm
2 π h

1

r 3
(91)∫

Ak (r ,t )

∂

∂r

(
®®τ · ®nr

)
dA

���
θ
= −4 µ λk

αk

Qm
2 π h

1

r 3
cot β (92)

The last term on the right hand side of Eq. 19 for radial and azimuthal direction becomes:

r̂ : = f
8
ρm

jm (r )2sin β 2
( 1
h
+

Zb
2 π r

)
θ̂ : = − f

4
ρm

jm (r )2sin β cot β ( 1
h
+

Zb
2 π r

) (102)
The terms are dependent on the friction factor, mixture flow rate, and geometry of the impeller.
• Radial pressure

In order to expand the model for use in other pumps, dimensionless numbers were used. So, Eq. 18 is developed
in Appendix A, in section Radial and viscous term. Some terms can be grouped in G1, G2, G3 and G4. They have all
geometric constants, the only exception is the friction factor, f . So, summarizing:

• Dimensionless group for two-phase head: CH = ∆P /(ρm ω2 r 2o )

• Dimensionless group for two-phase flow rate: CQ = Qm/(ω r 3o )

These two terms CQ and CH are very common to represent the ESP performance (Estevam, 2002 [4]; Gamboa,
2009 [11]; Monte Verde et al., 2017 [12]).

The first geometric coefficient G1 have Factor 1which is always higher than one because ro > ri . Factor 2 follows
the same logic, ro > h, so it is higher than one. Thus, the result of the geometric constant G1 is higher than zero.
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Another important term is the Factor 3 which is a result of the viscous stress tensor when it is integrated in relation
to r . This term is positive because it is related to the subtraction between radius, so it is higher than zero. The terms
G2, G3 and G4, as shown below, are higher than zero. The term G2 is related to fluid properties, such as the viscosity
that has been divided by the mixture density ρm , resulting in a value almost zero. When the viscosity increases due
to changes in the fluid properties (temperature, heavy oils, among others), this term increases.
• Geometric coefficients:
◦ Factor 1: ro/ri = f1 → > 1

◦ Factor 2: ro/h = f2 → > 1

◦ Factor 3:
[
1
h

(
1
ri
− 1
ro

)
+
Zb
4π

(
1
r 2
i

− 1
r 2o

)]
= f3 → > 0

◦ Geometric constant 1:G1 =
[
(1+cot2 β )

8 π2

]
f 22 (f

2
1 − 1) → > 0

◦ Geometric constant 2:G2 =
[ ( cot β

π

)
f2 ln f1] + µ

ρm

λk
αk

1
ω π h ro

[ (
ro
ri

)2
− 1

]
→ > 0

◦ Geometric constant 3:G3 = 1
2

[
1 −

(
1
f1

)2 ]
→ > 0

◦ Geometric constant 4:G4 =
r 4o

4 π2 h2
1sin β f3 → > 0

The dimensionless Eq. 20 was acquired dividing Eq. 18 by ρm ω2 r 2o . After that, the resultant equation was
simplified as it was used with air and water (or gas/liquid) and the difference between their densities is higher, so the
term ρm/ρm ≈ α1/λ1 and ˜ρm/ρm ≈ λ1/α1 were simplified. The complete passages between equations were written in
the supplementary material, in Appendix A in the item Radial pressure and the result is showed in Table 3.
TABLE 3 Model dimensionless equation.

Variable Equation

CH = B3 G3 − B2 CQ + B1 C 2Q (20)
B1 =

( λ1
α1
G1 −

α1
λ1
G4

f

4

)
B2 = G2

B3 =
1

2

(
α1
λ1

)
The coefficients of Eq. 20 is adjusted in accordancewith the experimental data acquired. Figure 11 shows the plot

for experimental data of CH x CQ . In the chart, the symbol x in red indicates the point where the surging is occurring,
the symbol indicated by the blue circles is a stable region for the pump operation. The geometric interpretation
follows a quadratic equation: the term (α1/λ1 G4 f /4) > (λ1/α1 G1) meaning that B1 is negative and the parabola
opens downward. Besides, the y-intercept is located at the point (0, B3).

The gas void fraction αk is a variable difficult to measure. It was calculated using the drift-flux model described
in the next sections. The experimental data used in Fig. 11(a) has an R-squared equal to 0.95 which indicates a good
fidelity with reality. The coefficients for the adjusted model, black line in Fig. 11(a), are: B1 = −214.48, B2 = 22.41 and
B3 = −0.27.

The friction factor f can be calculated with the coefficient B1. When f is calculated using the model, it is referred
as fmodel . For comparison, as the study comprises the friction factor calculated inside an impeller and all complications
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F IGURE 11 (a) Adjusted model plotted in relation to dimensionless numbers, CH and CQ - (b) Friction factor:
model x Vieira (2014) [13].

that it brings to the study, Vieira (2014) [13] calculated it using some correlations. The friction factor was calculated
using the correlations showed in Appendix A, in section Friction Factor Comparison, and it was denoted as fr βω . So,
fr βω is equal to:

fr βω = F̄r · F̄β · F̄ω · f̄ → fr βω = 0.2079 (21)

where F̄r = 1.2420, F̄β = 1.1614, F̄ω = 1.4619 and f̄ = 0.0986. They were related to the corrections done for turbulent
flow, channel curvature and pump rotation, respectively. The value of f̄ is calculated by the Churchill correlation
(Churchill, 1977 [25]). Considering these corrections made for the centrifugal pump, the result of friction factor is
fr βω = 0.2079 , representing 210% higher than the one predicted for a pipe flow.

The mean value of f̄ corresponds to the value a little higher than the expected value using the Moody dia-
gram shown in Fig. 17. For the present problem the two-phase mixture Reynolds number is calculated by Re =

ρm jms Dh/µm . The friction factor expected for an average Reynolds (Re) of 13375 is between 0.025 to 0.080 as
showed by the red line in the Moody diagram in Fig. 17 in Appendix B.

The friction factor calculated using the model fmodel is compared with Vieira, 2014 [13], and it is shown in Fig.
11(b) represented by the blue circles. It is observed that there is no variation of the friction factor calculated by Vieira
even with the increase of the flow rate (CQ ). However for values near the BEP the friction factors are of the same
magnitude.

In a real situation, the flow conditions inside an ESP vary when the flow rate changes. Some studies related
that when the ratio between Q/QBEP is higher than one, the flow direction tends to point to the suction blade
side, increasing the shock losses in this region. Besides, the vortices form in the pressure blade side, in the counter-
clockwise direction. On the other hand, when the ratio Q/QBEP is lower than one, the flow direction tends to shock
with the pressure blade side. In this situation, the vortices form in the suction blade side, rotating in a clockwise
direction (Feng et al., 2010 [1]).

Therefore, the friction factor calculated using the model tends to reduce as the flow rate CQ approximates to the
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BEP, which is in agreement with the literature because the losses reduce. However, the value of fmodel moving away
from the BEP increase so much that reaches values not expected from friction factor, such as 2.44 at CQ = 0.089.
This value is overrated because all losses are included in the fmodel , such as shock losses, recirculating flows, among
others. This is a result of one premise adopted: flow parallel to the blade.

Deeply studies should be realized for the friction factor inside an ESP operating under two-phase flow conditions.
The phenomenon sustains many variables that may impact the calculus of friction factor, such as the Reynolds number.

3.3 | Momentum Transfer Between Phases

In this section, the rate of momentum transfer per unit volume of liquid phase to the gas phase is estimated in radial
direction. It will be used to get the radial slip which will be projected tangentially to the blades. Therefore, different
fromwhat was done in the former section, where the goal was the pressure gradient, the next step wants to eliminate
this term. To achieve this, the equations of momentum for both phases will be subtracted in radial direction and the
term M2r will be estimated. The equations in radial direction for phases 1 and 2 are discussed in the next steps.
• Radial direction (polar) r̂ :

αk ρk

(
vk r

∂

∂r
vk r +

vk θ
r

∂

∂θ
vk r −

v 2
k θ

r

)
= −αk

∂

∂r
pk + αk ρk gr −Mk r + Sk r + + · ®®τ (22)

The pressure is considered equal for both phases (p1 = p2), the gravity was neglected by hypothesis and, the
velocity field was simplified, depending on the radius variation, which means that ∂ /∂θ = 0. The momentum trans-
ferred by one phase is received by the other, this means that M1r = −M2r . The development after applying these
simplifications is in Appendix A, in the sectionMomentum Transfer Between Phases. The resultant equation is:

M2r

α1α2
= ∆̃ρ

[ (1 + cot2 β )
4π2 h2

]
Q 2
m

(
−1
r 3

)
+ ∆ρ

( cot β
π h

)
ω Qm

(
1

r

)
− ∆ρ ω2 r − 〈+ · ®®τ 〉 (23)

The terms involved with density are:

◦ ∆ρ = ρ1 − ρ2 ◦ ∆ρ = ρ1

(
λ1
α1

)
− ρ2

(
λ2
α2

)
◦ ∆̃ρ = ρ1

(
λ1
α1

)2
− ρ2

(
λ2
α2

)2 (24)

In the classic models, generally the drag is considered because the relative velocity appears from this term. This
force is predominant in stationary and developed flows, such as ducts in steady state without convective terms. This
is not the case in this study where the impeller has a strong convective acceleration. Therefore, the pseudo forces are
important and should all be considered, including Basset and virtual mass forces. The interfacial term is defined using
the Zuber model (Zuber, 1964 [26], Ishii and Hibiki, 2010 [24]). Thus, M2r is given by:

M2r = −
α2
Bb

(∑
®FR bubbl es

)
and

∑
®FR bubbl es = ®FD + ®FV + ®FB (25)

where α2 is the gas fraction, Bb is the mean volume of a bubble, and ∑ ®FR bubbl es is the mean resultant force in one
bubble. The mean volume of a bubble will be approximated by the volume of a sphere, given by: Bb = 4πr 3b /3, where
rb is the bubble radius. The drag force is ®FD , the virtual mass force is ®FV and Basset force is ®FB .
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The forces for a bubble with an average diameter in the flow with radius rb are discussed in Appendix A, in the

section Momentum Transfer Between Phases. Each term showed were developed in the same section. The results are
shown here. Therefore each force provide the terms (Ishii and Hibiki, 2010):

◦ ®MD
2r = α ρ1 CA ®vsr | | ®vs | | where CA =

3CD
8 rb

◦ MV
2 = α ρ1 CV (v2 · +v2 − v1 · +v1)

◦ ®M B
2 = α ρ1 CB

(
®v2 · +®v2 − ®v1 · +®v1

)
and CB =

9
rb

√
µm t
π ρ1

where the term CD indicates the drag coefficient and the density considered inside the drag force is related to the
continuous phase. The term CV is the virtual mass coefficient and it is approximate to 1/2. At last, the term CB

indicates the Basset coefficient. So, considering all these terms:

M2r = α ρ1 CA sin β vs,s | | ®vs | | + α ρ1 (CB + CV ) [ (
λ2
α2

)2
−

(
λ1
α1

)2 ] [ (1 + cot2 β )
4 π2 h2

]
Q 2
m

(
−1
r 3

)
(26)

Finally, Eq. 23 and 26 are placed together and the entire development is done in Appendix A, in section Develop-
ment of interfacial terms. The slip velocity was isolated in the main direction of the flow (ŝ ), vs,s resulting in Eq. 162.
The coefficients ∆C∞ and C∞

A
are considered for an isolate bubble and they are indicated with superscript ∞. They

are:
∆C∞ =

CB + CV
1 − α C∞A =

CA
1 − α

Therefore the format of the model is rewritten from Eq. 162:
−vs,s 2 = −A1 Q 2

m + A2 ωQm − A3 ω2 (27)

where vs,s , Qm and ω are, respectively, the slip velocity in the ŝ-direction, mixture flow rate and rotational speed. The
terms in Eq. 27 are showed in Table 4.
TABLE 4 Variables in Eq. 27.

Variable Equation

A1 =
1

4C∞
A
π2 h2

{[ ∆̃ρ
ρ1
−∆C∞ Lambdas

] ( csc2 β
sin β

) 1

r 2
i
r 2o
− ρm
ρ1

f

4

[( 1

sin2 β
) f3
∆r

]}
Lambdas =

[ (
λ2
α2

)2
−

(
λ1
α1

)2 ]
A2 =

∆ρ

ρ1

( cot β
sin β

) ln(ro/ri )
C∞
A
π h ∆r

+ 2
µ

ρ1

1

C∞
A

1

π h sin β
λk
αk

( r̄

r 2o r
2
i

) 1
ω

A3 =
1

C∞
A

sin β
(∆ρ
ρ1

)
r̄

C∞A =
( 3CD
8rb

) 1

1 − α

∆C∞ = C∞B + C∞V =
( 9
rb

√
µm t

π ρ1
+
1

2

) 1

1 − α

The coefficients Ak ,k={1,2,3} depend on λ, α , ∆C∞ and C∞
A
. In the bubble flow pattern there is a chance that the
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terms ∆C∞ and C∞

A
can be practically constant and λ/α ∼ 1. This means that those coefficients do not depend mostly

on λ/α so do not change so much compared to the others. So, the drift-flux model becomes:
v2s =

( λ2
α2

) [( Qm
2 π h

) ln (ro/ri )
(ro − ri )

1

sin β
]
= C0

( Qm
2 π h

) ln (ro/ri )
(ro − ri )

1

sin β + (1 − α)vs,s (28)

• Dimensionless:

To generalize the model, it has to be dimensionless. So, Eq. 27 was divided by (∆ρ/ρ1) ω2 r 2o . The Froude number
for two-phase flow F rT P ,s for the slip under a centrifugal field and the mixture Froude number F rm are given by:

F r 2T P ,s =
ρ1 vs,s

2

∆ρ ω2 r 2o
and F rm =

√
ρ1
∆ρ

( Qm
2 π ro h

)/
ωro

Using both Froude numbers in Eq. 27, the dimensionless model format is rewritten as:
F r 2T P ,s = A

′
1 F r

2
m − A

′
2F rm + A

′
3 (29)

where A′
k ,k={1,2,3} = f (λ, α ,C

∞
A
,∆C∞)

◦ A
′
1 =

1

C∞
A

{[ ∆̃ρ
ρ1
− ∆C∞ Lambdas

] ( csc2 β
sin β

) 1

r 2
i
r 2o
− ρm
ρ1

f

4

[( r 2osin2 β
) f3
∆r

]}
◦ A

′
2 =2

( ∆ρ√
∆ρ ρ1

) ( cot β
sin β

) ln(ro/ri )
C∞
A
(ro − ri )

◦ A
′
3 =

r̄

r 2o C
∞
A

sin β (30)

Figure 12 shows the result of Eq. 29. The mixture Froude number and the two-phase Froude number increase
together until the mixture Froude number equals 0.035. From this point, the two-phase Froude number begins to
decrease, and the mixture Froude number, to increase. In the experiments, this is the region where the energy deliv-
ered to the fluid is decreasing due to many bubbles present in the flow, forming a swarm in the impeller channel. This
was predicted by Gamboa (2009) [11] and Monte Verde et al. (2017) [12], who proposed that the flow pattern in this
region is the gas pocket pattern. In a situation where the slip velocity is close to zero, vs → 0, the proposed model
becomes the homogeneous model.

Unfortunately, the data obtained by the image post-processing did not reach this region because the gas phase
was distorted, not showing as bubbles. The gas velocity was not measured in this region. However, this region is
influenced by four variables, A′

k
in Eq. 29. The coefficients are calculated using the method of non linear least square,

providing R 2 equals to 0.99. The fit used the experimental data to calculate the coefficients. The term C∞
A

is present
in A′2 and A′3 and is the easiest to acquire. On the other hand, the term A

′
1 is influenced by λ, α and ∆C∞. These

four variables are discussed in the section Model results. The coefficients in Eq. 29 are: A′1 = 6.971, A′2 = 0.501 and
A
′
3 = 0.114.

The mean value of mixture volumetric flux in r̂ and ŝ direction are:
jmr =

( Qm
2 π h

) ln (ro/ri )
(ro − ri )

and jms = jmr
1

sin β (31)
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F IGURE 12 Adjusted model using Dimensionless numbers: F rT P ,s x F rm .

Eq. 13 was multiplied by the term √
ρ1/∆ρ · 1/ω ro and the terms in Eq. 31 were used. After that, we may define:

F r2,s =

√
ρ1
∆ρ
· v2s
ω ro

and C
′
0 = C0

[ ro ln(ro/ri )sin β (ro − ri )
]

These terms F r2,s , C ′0, F rT P ,s and F rm are used in Eq. 13 and results in:
F r2,s = C

′
0F rm + (1 − α) F rT P ,s (32)

Using Eq. 29 in Eq. 32 and considering the liquid phase faster than the gas phase (v1 > v2), the term v 2s,s should
be negative. Due to this, as this term is squared, Eq. 32 is corrected changing the signal of the drift-flux velocity in its
dimensionless form. Considering this, Eq. 32 becomes:

F r2,s = C
′
0F rm − (1 − α)

√
A
′
1 F r

2
m − A

′
2 F rm + A

′
3 (33)

The coefficients presented in Eq. 33 were calculated using the non-linear least square method, which provides
R 2 equals to 0.86. The terms A′

k
are under a square root, which means that this expression suffers about the loss of

the signal’s information. This is one of the factors that influence the value of R 2 if we compare it with Eq. 29, which
tends to be lesser. The distribution coefficient of C0 is equal to 1.23.
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3.4 | Transition Criteria for Surging and Gas Locking

The transition criteria propose a method to predict the surging and gas locking conditions. First, the forces on the
bubble are discussed in appendix A, in section Development of Bubble Forces to predict the bubble direction in the
impeller channel, even its stagnation. So, summarizing the forces in Table 5.
TABLE 5 Forces considered in bubble.

Force Equation

Drag F D2s =
1

2
Ap CD ρ1 vs,s

2

Basset and Added Mass FVB2r = −ρ1 Bb ∆C Lambdas csc2 β [ −r̄
r 2
i
r 2o
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2π h

)2
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2ω
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2 π h
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∆r
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2∆r
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2ω
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2 π h
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Q 2
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1

∆r

[ 1
2

(r 2
i
− r 2o )

r 2
i
r 2o

]
+ ρm

( cot β
π h

)
ω
Qm
∆r

ln ro
ri

Buoyancy
−ρm ω2

(r 2o − r 2i )
2∆r

− µ λk
αk

Qm
π h

1

∆r

(
r 2o − r 2i
r 2
i
r 2o

)
− f
4

ρmsin β
( Qm
2 π h

)2 f3
∆r

}
F E
θ
= −Bb

{
ρ̃m 2 cot β ( Qm

2πh

)2 [( r̄

r 2
i
r 2o
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+ 2 ρm ω

( Qm
2 π h

) ln(ro/ri )
∆r

−2 µ λk
αk

Qm
π h

cot β
(
r̄

r 2
i
r 2o

)
+
f

4
ρm

cot β
sin β

( Qm
2 π h

)2 f3
∆r

}
The subscripts r and θ indicates the forces in polar coordinates. In possess of these forces, the criteria conditions

are established in the following section.

3.4.1 | Criteria Conditions

The criteria used here are an extension of those proposed for ducts and applied for centrifugal pumps by some authors
(Murakami and Minemura, 1974 [9], Estevam, 2002 [4], Barrios, 2007 [5], among others). Visually, the surging occurs
when the bubbles start to coalesce.

From the Transition Criteria, the bubble is expected to follow a path in the suction side when the sum of the forces
in the n̂ direction is positive, or it can go to the pressure side when the opposite happens. This might take place when
the resulting force in the normal n̂ direction begins to be higher than the resulting force in the longitudinal direction,
which is ŝ .

The criteria are expected to indicate the region where the surging and gas locking begins. As the water flow rate
begins to decrease, the gas ratio increases, thus the bubble swarms appear in the impeller channel, characterizing the
flow pattern as gas pocket. Once the ratio of gas still increases and reaches a segregated flow pattern, the gas locking
is established, ceasing the pump operation.

Therefore the criteria starts with the idea that the beginning of the surging or gas locking occurs when forces in
both directions (n̂ ŝ ) are equal in modulus.

∑
| ®FR bubbl es,s | =

∑
| ®FR bubbl es,n | (34)
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Next, Eq. 34 will be developed for Conditions 1 and 2.
Condition 1

The first condition tested is the point where the longitudinal force in ŝ is equal to the transversal force in n̂ . This
corresponds to the threshold condition, as the forces are equal in modulus. This condition considers Fs = Fn . So, from
Eq. 34:

®F D2s + ®F
VB
2s + ®F E2s + ®F

F
2s +

®FVB2n + ®F E2n + ®F
F
2n = 0 (35)

The development of Eq. 35 is presented in Appendix A, in section Development of Transition Criteria. The result is
Eq. 36.

CH = D1C
2
Q + D2CQ +

(
D3F r

2
T P ,s + D4

) (36)

where D ′
k ,k={1,2,3,4} = f (λ,CD ,∆C )
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ρ1
ρm

∆C Lambdas G1 +
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cot β
4π2
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h
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)2
− 1

]
G5 +

f

4
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cot β
sin β G5

( r 4o
4 π2 h2

)
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π
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ρ2
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cot β ( ro
h
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π

−
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h
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π
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µ

ρm
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cot β
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1
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− 1

]
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) CD ∆r

(sin β + cos β )
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ρm

◦ D4 =
ρ2
ρm

1

2

[
1 −

( ri
ro

)2] (37)

Condition 2

The second condition is almost the same as the first. However, as the forces are equal in modulus, here is the
point where longitudinal force in ŝ is equal to the transversal force in n̂ by the other way. This means that Fs = −Fn .
So, from Eq. 34:

®F D2s + ®F
VB
2s + ®F E2s + ®F

F
2s − ®F

VB
2n − ®F

E
2n − ®F

F
2n = 0 (38)

The development of Eq. 38 is presented in Appendix A, in the sectionDevelopment of Transition Criteria. The result
is Eq. 39.

CH = E1C
2
Q + E2CQ +

(
E3F r

2
T P ,s + D4

) (39)

where E ′
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−
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− 1

]
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1

2

(Ap
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) CD ∆r

(sin β − cos β )
∆ρ

ρm
(40)

Figure 13 shows the chartwith both conditions plotted. The red curve indicates the condition 1 and the blue curve,
condition 2. When the blue curve encounters the experimental curve (experimental points or black line - model), this
indicates the point where surging begins.
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F IGURE 13 Pump curve and Transition criteria - Condition 1 (red line) and Condition 2 (blue line).

The coalescence raises changing the balance on bubble forces resulting in the phenomenon knowing as surging.
This is what happens in condition two. As the ratio of gas keeps increasing in the impeller channels, the coalescence
increases and the bubble movement reduces until it stops, leading into gas-locking condition. This region is shown by
the encounter of both curves (red and blue ones). At this point, the resultant of forces is equal to zero.

The gas locking occurs when the mixture flow rate Qm decreases until the pump was unable to transfer energy
to the fluid, so the pressure increment is null. When this occurs, the forces acting on bubbles stabilizes, rendering the
air being unable to move. Thus it promotes the gas locking in the pump.

4 | MODEL RESULTS AND DISCUSSION

The results of the distribution parameter C0, the Basset and Added Mass coefficients, the bubble shape and general
discussion about the model are showed in this section.
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4.1 | Distribution Parameter

Wallis (1969) [27] pointed out that for a vertical dispersed flow, the distribution parameter lies between 1.0 and 1.5
being more likely 1.2. However, for a horizontal and near-horizontal flow, as the bubbles tend to accumulate at the
top of the pipe, it is commonly assumed that they move at the average mixture velocity, hence the flow distribution
parameter is equal to one.

Clark and Flemmer (1985) [28] performed an experimental study to improve the understanding of upward/downward
vertical flows. Their average values for C0 in upward flowwas 1.07 and in downward flow, 1.17. The authors proposed
a correlation to obtain the distribution parameter as a function of void fraction for each flow direction, which are:

C0 = 0.934 (1 + 1.42α) → Upward vertical flow

C0 = 1.521 (1 − 3.67α) → Downward vertical flow (41)

Takashi and Ishii (2002) [29] proposed a relation using the density of the phases, considering the effect of bubble
size on the phase distribution, since the presence of bubbles govern the distribution of the void fraction. Indirectly,
the authors associates the Sauter mean diameter, dSm , with the void fraction. In addition, Eq. 42 have its coefficient
(−22) approximated by the least-squares method.

C0 =
(
1.2 − 0.2

√
ρ2/ρ1

) [
1 − exp (−22〈dSm 〉/d )

] (42)

The distribution parameter suggests that the dominant factor to determine it would be the void fraction. For
extreme cases, such as concentrated void profile and sharp liquid velocity profiles around the tube center, the distri-
bution parameter may exceed 1.2, as reported by Goda et al. (2003) [30].

Secondary flows and vortices occur in the impeller. The phases may behave as co-current or counter-current flow.
The operational parameters may influence the flow direction at the impeller inlet, which may lead to increased shock
losses. These are things that affect the distribution parameter. Therefore, the value of C0 found by Eq. 33, equal to
1.23, seems reasonable with the observed ones in turbulent flow in the tubes.

4.2 | Analysis of forces acting on the bubbles

The motion of bubbles in laminar or turbulent flows is much more complex than that of rigid solid particles. The
interface between bubbles and liquid is not rigid due to the internal flow inside the bubbles. This condition implies
a relative velocity at the surface. Therefore the drag coefficient is reduced compared to solid particles. The drag
coefficient CD is given as a function of the particle Reynolds number ReP (Ishii and Hibiki, 2010 [24]):

ReP =
ρ1 db |v1 − v2 |

µ1
=
ρ1 db |vs |

µ1
(43)

The drag coefficient may be altered by numerous physical effects, such as turbulence of the surrounding flow,
surface roughness of the particle, particle shape, wall effects, compressibility of the fluids, rarefaction effects and
particle concentration effects. All these effects can, in general, only be accounted for by empirical correction factors
derived from detailed experiments. The Appendix B in supplementary material has a discussion about the drag for
the bubble, which in our case is approximately 0.37 as expected for the bubbles in filtered water.

The bubble’ shape has its impact in the drag coefficient. Thus, it was discussed in function of Eötvos number, Eo ,
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Morton number,M , and Reynolds number, Re . It is possible to observe that not all the bubble are spherical, a portion
is wobbling. This discussion was showed in Appendix B.

The coefficient ∆C∞ was calculated with the term A
′
1. This coefficient is studied apart, but it relates Basset and

added mass, thus the conclusions presented here consider both terms together.
The addedmass coefficient for an individual particle is expected to depend on the void fraction of the surrounding

medium. Zuber (1964) [26] first addressed this issue using a cell method and found that the added mass for spher-
ical bubbles increased with the gas volume fraction, α . Odar and Hamilton (1964) [31] proposed the calculation of
coefficients for Basset and added mass as functions of the acceleration number, Ac .

CV = 2.1 − 0.132

A2c + 0.12
CB = 0.48 +

0.52

(Ac + 1)3
(44)

where: Ac =
| ®v1 − ®v2 |2

dB |d | ®v1 − ®v2 |/d t |

For low values of Ac , CV was found to tend towards the value of 1.05 while the value of 0.5 was recovered for
a high Ac . However, this value is not so easy to be achieved once other forces are present on bubbles, such as drag,
which can affect the calculation if they are not well modeled.

The studies by Michaelides and Roig (2011) [32] showed that the added mass coefficient should be constant,
equal to 1, and that the Basset coefficient should be expressed as dependent on the Strouhal number. The analysis
showed that the function of the history term is better correlated with the Reynolds and Strouhal numbers rather than
the acceleration number that was used originally by Odar and Hamilton (1964) [31]. The Strouhal number describes
the behavior of oscillatory flows. In this context the fluid time scale is the reciprocal value of the characteristic fluid
oscillations.

CB = 2.0 − 1.0533
[
1 − exp

(
− 0.14ReP Sr 0.82

)2.5] (45)

The general expression of Basset force depends on the vorticity diffusion process. The well-known Basset’s
expression is found in the limit of unsteady Stokes flow for a rigid sphere. In the case of a bubble, while vorticity
comes from a no-slip condition at a rigid surface, the bubble tends to vanish the shear stress in its curved surface, and
thus vorticity tends to be non-zero. This means that, when a particle experiences a sudden change in velocity, a sheet
of infinite vorticity is generated at its surface. This effect is even more complicated for bubbles (Magnaudet, 1997
[33]).

The term ∆C was calculated by the model, considering the void fraction, and it was equal to 1.24. Calculating the
same term ∆C using the expression from the literature results in a value of 1.19, which presents a difference of 4%.
Again, this term is related to both forces: added mass and Basset.It is in good agreement with the values from the
literature, since the sum of their results is near 1. The drift-flux model and the slip model developed by Eqs. 33 and
29, respectively, are in good agreement with literature values, as they are compared with experiments made in tubes.

4.3 | General discussion

In this section, the experimental and modeling results were discussed. The experimental values calculated using the
post-processing of images were shown in Table 6. Summarizing some important information:



32 Penteado et al.
TABLE 6 Impeller rotation ω, mass gas flow rate ¤m , pressure increment ∆P , mixture volumetric flux in ŝ direction
jms , bubble velocity v2 and gas void fraction α .

ω ¤m ∆P jms v2 α αexp

[r pm ] [k g/h] [P a] [mm/s ] [mm/s ] 10−3[-] 10−3[-]
1

600 0.025
1007 922 1159 4 4

2 2280 808 1095 5 6
3 3006 715 1056 5 6
4 3886 603 979 6 7
5

900 0.025
541 1469 1736 3 4

6 4579 1255 1659 4 5
7 7260 1052 1549 4 5
8 9318 857 1433 4 7
9

900 0.012
419 1460 1748 2 2

10 4168 1266 1691 2 2
11 8078 1027 1557 2 3
12 9025 863 1434 2 4
13

1200 0.025
262 1990 2365 2 2

14 5246 1807 2310 2 2
15 11341 1534 2174 2 2
16 16589 1181 1923 3 3

• ri , ro , β and h are geometric constants measured from the impeller.
• Qm , λ and ∆p are known from the experiments.
• P̄ and T̄ are the mean pressure and mean temperature, respectively. With them it is possible to calculate ρ1, ρ2,

µ1 and µ2.
• v2,s is measured from the image processing. The in situ velocities of bubbles are an average on the impeller’s

space in ŝ direction.

The experimental data can be compared with the model following the next steps:

1. As demonstrated before, jms is calculated using Eq. 31.
2. α is estimated once v2,s was measured from experimental data (α = λ jms/v2,s ).
3. With α acquired, it is possible to calculate: {ρm , ρm , ρ̃m ∆ρ,∆ρ, ∆̃ρ }.

Table 6 shows the mean values for bubbles characteristics in each experiment. Besides, the table presents the
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rotational velocity ω, mass gas flow rate ¤m , pressure increment ∆P , mixture volumetric flux in ŝ direction jms , bubble
velocity v2 and gas void fraction α given by the model and from the experimental data αexp .

The calculated values of void fraction were compared with those given by the image processing technique, show-
ing close values. However, as the number of bubbles increases, the difference between them increases. The swarm
effect provoked by this significantly changes the calculus of gas void fraction. Besides, the height of the gas is not
known; this is another source of uncertainty in the calculus. The highest condition of the amount of gas inside the
impeller happens when the flow pattern is in segregated flow.

5 | CONCLUSIONS

This paper presented an experimental investigation of the two-phase flow, properly water and air, inside an electric
submersible pump (ESP) impeller. The air is added at the intake of the pump tube entrance. The visualization prototype
was designed byMonte Verde et al. [12], and the same experimental apparatus was used. The air bubbles were filmed
with a high-speed camera as they cross the pump’s impeller. The velocities and the diameters were computed from
acquired images with numerical scripts written in the course of this work.

The instantaneous fields of gas bubbles velocities were obtained by a sequence of scripts, which for example, have
the capability to enhance the edge of the bubbles. The post-processing was able to capture the bubble’s centroids
in the first part of the code. In the second part, the bubble’s velocities were calculated. As the impeller rotated, two
kinds of velocities were possible to calculate, the radial and circumferential. The velocities were calculated for 600
r pm , 900 r pm and 1200 r pm. When the tests were performed at 1500 r pm , the bubbles were very small, which
made their treatment impossible. However, the dimensionless analysis and similarity laws were useful to expand the
knowledge obtained by the experimental data collected.

The code developed was verified manually to ensure its functional operation. Its capability to measure a high
amount of experimental data allowed the use of statistics for bubble’s behavior. The threshold number is an important
parameter inside the code that is arbitrarily set by the user.

A drift-flux model for the two-phase gas-liquid flow inside the impeller was developed. The model was based
on blade coordinate system, ŝ and n̂ correlated with azimuth and radius coordinates, θ̂ and r̂ . The concept of radial
cascade was used by Brennen (2011) [23]. The equations of Mass and Momentum were developed and experimental
data provided by the post-processing of imageswas used to validate themodel. The viscous stress tensorwasmodeled
through an analogy with the flow inside a rectangular duct. A closure relationship for the momentum transfer was
also used.

The proposed friction factor encompasses all losses expected to happen inside the impeller. The closure of the
model showed that the proposed friction factor increases with increasing the pump flow rate as expected, as it goes
far from the Best Efficiency Point. However, for flow rate points near the QBEP , the friction factor is comparable to
the one proposed by Vieira (2014) [13].

From the drift-flux model, parameters such as C0 were discussed in section 4.1. Besides, the interphase momen-
tum transfer was analyzed and the forces acting in a bubble were described. The parameters such as drag coefficient,
virtual mass and Basset coefficient values showed good agreement with the ones observed in the literature. With
these parameters, it was possible to analyze the forces acting on the bubble and propose, based on the literature,
transition criteria for surging and gas locking phenomena showing good agreement with the experimental data.

The further improvement of the modeling may lead to better design of geometries for pump impellers under
gas-liquid flows conditions, for example.
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