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Abstract. In this work we study the existence of positive solutions to the follow-
ing fractional elliptic systems with Hardy-type singular potentials, and coupled by
critical homogeneous nonlinearities

(−∆)su− µ1
u
|x|2s = |u|2∗

s−2u+ ηα
2∗
s
|u|α−2|v|βu+ 1

2Qu(u, v) in Ω,

(−∆)sv − µ2
v
|x|2s = |v|2∗

s−2v + ηβ
2∗
s
|u|α|v|β−2v + 1

2Qv(u, v) in Ω,

u, v > 0 in Ω,

u = v = 0 in RN\Ω,

where (−∆)s denotes the fractional Laplace operator, Ω ⊂ RN is a smooth bounded

domain such that 0 ∈ Ω, µ1, µ2 ∈ [0,ΛN,s), ΛN,s = 22s Γ2( N+2s
4 )

Γ2( N−2s
4 )

is the best constant

of the fractional Hardy inequality and 2∗s = 2N
N−2s is the fractional critical Sobolev

exponent. In order to prove the main result, we establish some refined estimates on
the extremal functions of the fractional Hardy-Sobolev type inequalities and we get
the existence of positive solutions to the systems through variational methods.

1. Introduction and main results

In the last few decades a lot of mathematical efforts have been devoted to elliptic
problems involving critical nonlinearities and Hardy potentials and many important
results were obtained. In the celebrated paper [33], Terracini showed that for µ ∈
(0, µ̄),

U ε
µ(x) =

(
4N(µ̄− µ)/(N − 2)

)N−2
4 ε
√
µ̄−µ(

ε
4
√
µ̄−µ

N−2 |x|
γ′√
µ̄ + |x|

γ√
µ̄
)√µ̄ ,

satisfies equation

−∆u− µ u

|x|2
= |u|2∗−2u in RN , (1.1)
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where ε > 0, µ̄ = (N − 2)2/4, γ′ =
√
µ̄ −
√
µ̄− µ, γ =

√
µ̄ +
√
µ̄− µ. After that,

rely on the results obtained in [33], the research on related perturbative equations
with a singular potential and a critical nonlinearity were extensively studied, see
e.g. [9,11,18] and the references therein. We mention that in the paper [24], Jannelli
dealt with the problem

−∆u− µ u

|x|2
= λu+ |u|2∗−2u, u ∈ H1

0 (Ω), (1.2)

where Ω ⊂ RN is a smooth bounded domain such that 0 ∈ Ω, 0 ≤ µ < µ̄. The
author investigated the relationship between critical dimension and L2

loc integrability
of the Green function associated with the Hardy-Schrödinger operator Lµ,2 = −∆−
µ
|x|2 . In particular, Jannelli showed the existence of nontrivial solutions to (1.2) for

λ ∈ (0, λ1(µ)) and µ ∈ [0, µ̄ − 1], where λ1(µ) is the first eigenvalue of the Hardy-
Schrödinger operator Lµ,2.

Concerning doubly critical elliptic systems with singular potentials, in 2009, Ab-
dellaoui, Felli and Peral [1] studied the following class of systems{

−∆u− λ1
u
|x|2 = |u|2∗−2u+ νh(x)α|u|α−2|v|βu, in RN ,

−∆v − λ2
v
|x|2 = |v|2∗−2v + νh(x)β|u|α|v|β−2v, in RN ,

(1.3)

where λ1, λ2 ∈ (0, (N − 2)2/4), ν is a positive parameter and α, β > 1 are positive
constants such that α + β ≤ 2∗. By variational arguments, the authors obtained the
existence of different types of positive solutions to system (1.3). Later, inspired by
the work in [1], many results were obtained in this regard and we refer the reader to
see, for instance, [12,13,34] for the whole space and [16,25–27] in bounded domains.

Contrary to the local case that has been widely investigated, in recent years, several
studies focus on the elliptic problems involving the fractional Laplace operator and
singular Hardy potential. Recently, Dipierro, Montoro, Peral and Sciunzi [15] studied
the existence and asymptotic behavior of extremals for the fractional Hardy-Sobolev
inequality. Based on the results given in [15], Ghoussoub, Robert, Shakerian and
Zhao [21] investigated the fractional Hardy-Sobolev inequality with weights and as
an application, the authors considered the following boundary value problem involving
the fractional Hardy-Schrödinger operator{

(−∆)su− γ u
|x|2s = λu+ |u|2∗s(α)−2u

|x|α , u ≥ 0 in Ω,

u = 0 in RN\Ω,
(1.4)

where γ ∈ [0,ΛN,s), 0 ≤ α < 2s < N . By introducing the fractional Hardy sin-
gular interior mass of a domain and using very technical and complicated analysis,
the authors obtained the existence of least energy solutions to (1.4) under different
conditions on Hardy term. We remark that when γ = α = 0, problem (1.4) reduces
to the well-known fractional Brezis-Nirenberg problem that has been well studied
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by Servadei and Valdinoci in [29, 30]. Moreover, in the paper [17], Faria, Miyagaki,
Pereira, Squassina and Zhang investigated the following Brezis-Nirenberg problem for
nonlocal systems 

(−∆)su = au+ bv + 2p
p+q

up−1vq in Ω,

(−∆)sv = bu+ cv + 2q
p+q

upvq−1 in Ω,

u, v > 0 in Ω,

u = v = 0 in RN\Ω,

(1.5)

where p + q ≤ 2∗s and a, b, c ∈ R satisfying suitable hypotheses. For more litera-
tures regarding fractional elliptic problems with singular potentials and lower order
perturbations, we refer the readers to [2, 3, 5, 19, 31] and the references therein.

Motivated by the aforementioned works, in this paper we focus our attention on
fractional elliptic system in bounded domains with Hardy potentials. More precisely,
we consider the following class of systems of nonlinear elliptic equations in bounded
domains

(−∆)su− µ1
u
|x|2s = |u|2∗s−2u+ ηα

2∗s
|u|α−2|v|βu+ 1

2
Qu(u, v) in Ω,

(−∆)sv − µ2
v
|x|2s = |v|2∗s−2v + ηβ

2∗s
|u|α|v|β−2v + 1

2
Qv(u, v) in Ω,

u, v > 0 in Ω,

u = v = 0 in RN\Ω,

(1.6)

where s ∈ (0, 1), N > 2s and 2∗s = 2N
N−2s

, Ω is a smooth bounded domain in RN

containing the origin and the fractional Laplace operator (−∆)s is defined on smooth
functions as

(−∆)su(x) := cN,sp.v.

∫
RN

u(x)− u(y)

|x− y|N+2s
dy,

where cN,s = 22sπ−
N
2

Γ(N+2s
2

)

|Γ(−s)| and p.v. denotes the principle value of the integral, Qu,

Qv are partial derivatives of the homogeneous C1-function Q(u, v):

Q(u, v) = au2 + 2buv + cv2,

and the parameters satisfy
(H1) η > 0, µ1, µ2 ∈ [0,ΛN,s) with ΛN,s being the best constant of the fractional

Hardy inequality (see (2.4)), α, β > 1 satisfying α+β = 2∗s. Without loss of generality,
along the work, we assume that 0 ≤ µ2 ≤ µ1 < ΛN,s.

(H2) a, c > 0 and there exist constants λ1, λ2 > 0 such that

λ1(u2 + v2) ≤ Q(u, v) ≤ λ2(u2 + v2), ∀ (u, v) ∈ Hs
0(Ω)×Hs

0(Ω).
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To state our main results, we need to introduce some notations. For any µ ∈
[0,ΛN,s) and µ1, µ2 ∈ [0,ΛN,s), we define

Sµ := inf
u∈Ḣs(RN )\{0}

∫
RN |(−∆)

s
2u|2dx− µ

∫
RN

u2

|x|2sdx

(
∫
RN |u|2

∗
sdx)

2
2∗s

, (1.7)

S(µ1, µ2) := inf
(u,v)∈Ḣs(RN )×Ḣs(RN )\{(0,0)}

∫
RN E(u, v)dx

(
∫
RN F (u, v)dx)

2
2∗s

, (1.8)

where Ḣs(RN) denotes the homogeneous fractional Sobolev space, E(u, v) = |(−∆)
s
2u|2+

|(−∆)
s
2v|2 − µ1

u2

|x|2s − µ2
v2

|x|2s and F (u, v) = |u|2∗s + |v|2∗s + η|u|α|v|β. Moreover, under

the assumption (H1), we let

f(τ) :=
1 +

ΛN,s−µ2

ΛN,s−µ1
τ 2

F (1, τ)
2

2∗s

, τ ≥ 0, f(τmin) := min
τ≥0

f(τ) > 0,

η1 :=
N(ΛN,s − µ2)

(N − 2s)(ΛN,s − µ1)
, η2 := inf

τ>0

(
τ−β
(
(1 +

ΛN,s − µ2

ΛN,s − µ1

τ 2)
2∗s
2 − (1 + τ 2∗s)

))
.

By (H1) we have f ∈ C1(R+,R+), f(0) = 1 and limτ→+∞ f(τ) =
ΛN,s−µ2

ΛN,s−µ1
≥ 1,

therefore minτ≥0 f(τ) ≤ 1 must be achieved at some finite τmin ∈ [0,∞).

Notice that by testing (1.8) with (u, 0), where u being the extremal for Sµ1 , it
is easy to obtain that S(µ1, µ2) ≤ Sµ1 . For this, the first objective of this paper
is to investigate the relationship between Sµ1 and S(µ1, µ2). Following the ideas
used in [27], we show that the strict inequality S(µ1, µ2) < Sµ1 holds under suitable
hypotheses, which is crucial to verify the minimization problem (1.8) being achieved.

Theorem 1.1. Suppose that (H1) holds and one of the following conditions is sat-
isfied: (i) f(τmin) < 1; (ii) β < 2; (iii) β = 2, η > η1; (iv) η > η2. Then
0 < S(µ1, µ2) < Sµ1.

Theorem 1.2. Suppose that (H1) holds and S(µ1, µ2) < Sµ1. Let uεµ(x) (ε > 0)
denote the minimizers for (1.7) satisfying (2.5), then there exists constant η∗ ≥
0, ti, li > 0 (i = 1, 2), such that S(µ1, µ2) has positive minimizers of the form
{(tiuεµ1

, liu
ε
µ2

)} (i = 1, 2) for all η > η∗.

By the previous results, we study the existence of positive solutions to (1.6) and
the existence result for (1.6) is given by:

Theorem 1.3. Suppose that (H1) and (H2) hold, S(µ1, µ2) < Sµ1, η > η∗, µ1 ≤ µ∗,
λ2 < Λ(µ1), N ≥ 4s. Then (1.6) has a positive solution (u, v) ∈ Hs

0(Ω)×Hs
0(Ω).

As far as we know, there is no work concerned with problem (1.6) in bounded
domains. To study problem (1.6), we will follow the arguments used in [8, 30], that
is, we will use the Mountain Pass Theorem [4] to prove the existence of positive
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solutions to (1.6). Comparing to the systems of elliptic equations without Hardy
potentials or containing a single Hardy potential (see e.g. [17, 23]), the two possible
different Hardy terms µ1

1
|x|2s and µ2

1
|x|2s appeared in (1.6) make it more difficult to

verify the action functional satisfies the (PS)c condition. To overcome this difficulty,
we shall exploit the asymptotic properties of the positive extremals of the fractional
Hardy-Sobolev inequality obtained in [15] to establish the desired estimates and we
prove that the Mountain Pass critical level of the action functional lies below the
threshold of application of the (PS)c condition.

This paper is organized as follows. In Section 2, we describe the appropriate func-
tional setting for the study of problem (1.6), and we introduce the asymptotic behavior
of the extremals of the fractional Hardy-Sobolev inequality. Then we devote Section
3 to the proofs of Theorems 1.1 and 1.2. In Section 4, we establish some refined
estimates on the extremal functions of the fractional Hardy-Sobolev type inequalities
and the proof of our main result in this paper is completed.
Notation. In this paper, we will use the same C to denote various generic positive
constant, and we shall use o(1) to denote quantities that tend to 0 as n tends to ∞.

2. Preliminaries and functional setting

In this section, we recall some known results for readers’ convenience and later use.
We begin introducing the fractional Sobolev space

Hs(RN) = {u ∈ L2(RN) : [u]s <∞},
endowed with norm

‖u‖Hs = (‖u‖2
L2(RN ) + [u]2s)

1
2 ,

where

[u]s =
(cN,s

2

∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dxdy

) 1
2

=
(∫

RN
|(−∆)

s
2u|2dx

) 1
2
,

is the Gagliardo semi-norm of a measurable function u : RN → R. Now, let Ω be a
smooth bounded domain in RN and we consider the closed subspace

Hs
0(Ω) := {u ∈ Hs(RN) : u = 0 a.e. in RN\Ω }.

We refer to [30] for more details on Hs
0(Ω) and by the fractional Hardy inequality

(see (2.4)), we employ the following equivalent norm by setting

‖ · ‖µ =
(cN,s

2

∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dxdy − µ

∫
Ω

u2

|x|2s
dx
) 1

2
, (2.1)

for µ ∈ [0,ΛN,s). We also recall that (Hs
0(Ω), ‖ · ‖µ) is a Hilbert space and the

embedding Hs
0(Ω) ↪→ Lr(Ω) is continuous for r ∈ [1, 2∗s] and compact for r ∈ [1, 2∗s).

In this paper, we work in the Hilbert space given by the product

W = Hs
0(Ω)×Hs

0(Ω),
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endowed with the norm

‖(u, v)‖2
W = ‖u‖2

µ1
+ ‖v‖2

µ2
.

Associated with problem (1.6), we consider the energy functional

J(u, v) =
1

2

∫
RN

(E(u, v)−Q(u, v))dx− 1

2∗s

∫
Ω

F (u, v)dx,

then J ∈ C1(W,R) and its critical points correspond to solutions of (1.6).
We say (u, v) ∈ W is a weak solution of (1.6) if for every (ϕ, ψ) ∈ W , one has

cN,s
2

∫
R2N

(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|N+2s
dxdy − µ1

∫
Ω

uϕ

|x|2s
dx

+
cN,s

2

∫
R2N

(v(x)− v(y))(ψ(x)− ψ(y))

|x− y|N+2s
dxdy − µ2

∫
Ω

vψ

|x|2s
dx

=
1

2

∫
Ω

(Qu(u, v)ϕ+Qv(u, v)ψ)dx+
1

2∗s

∫
Ω

(Fu(u, v)ϕ+ Fv(u, v)ψ)dx.

To continue, we introduce the asymptotic properties of the positive extremals for
the fractional Hardy-Sobolev inequality. We first recall the fractional Sobolev in-
equality [14], which asserts that for N > 2s, there exists a constant S > 0 such
that

S‖u‖2
L2∗s (RN )

≤ cN,s
2

∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dxdy, u ∈ Ḣs(RN). (2.2)

The best Sobolev constant S is attained at the function

uε(x) =
Cε

N−2s
2

(ε2 + |x|2)
N−2s

2

, ε > 0. (2.3)

On the other hand, the classical fractional Hardy inequality (see [20,22]) states that

ΛN,s

∫
RN

u2

|x|2s
dx ≤ cN,s

2

∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dxdy, u ∈ Ḣs(RN), (2.4)

and the best Hardy constant ΛN,s never achieved in Ḣs(RN). Rely on (2.2) and (2.4),
for µ ∈ [0,ΛN,s), Dipierro et al. [15] established the existence of positive minimizers
for (1.7). As a consequence, up to a constant, the minimizers for (1.7) lead to the
variational solutions to the problem

(−∆)su− µ u

|x|2s
= u2∗s−1 in RN . (2.5)

In what follows, we will denote by uεµ(x) = ε−
N−2s

2 uµ(x
ε
) (ε > 0) the positive varia-

tional solutions to (2.5), then test (2.5) with uεµ(x) and using (1.7) we derive that

cN,s
2

∫
R2N

|uεµ(x)− uεµ(y)|2

|x− y|N+2s
dxdy − µ

∫
RN

|uεµ(x)|2

|x|2s
dx =

∫
RN
|uεµ(x)|2∗sdx = S

N
2s
µ . (2.6)
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Furthermore, it is worthy to point out that the authors [15] gave a control of the
extremal for Sµ with µ ∈ (0,ΛN,s). More precisely, there exists positive constants c1

and c2, such that

c1(
|x|1−ηµ(1 + |x|2ηµ)

)N−2s
2

≤ uµ(x) ≤ c2(
|x|1−ηµ(1 + |x|2ηµ)

)N−2s
2

, x ∈ RN\{0}, (2.7)

where ηµ = 1− 2αµ
N−2s

and αµ ∈ (0, N−2s
2

) is a suitable parameter whose explicit value
will be determined as the unique solution to equation

22sΓ(β+2s
2

)Γ(N−2s
2

)

Γ(N−β−2s
2

)Γ(β
2
)

= ΨN,s(β) = µ, µ ∈ (0,ΛN,s).

Γ is the Gamma function and the function β 7→ ΨN,s(β) satisfies the following known
properties.

Lemma 2.1. (see [20, 21]) The following properties hold:
1. ΨN,s(β) > 0 for all β ∈ (0, N − 2s).
2. The graph of ΨN,s in (0, N − 2s) is symmetric with respect to N−2s

2
, that is,

ΨN,s(β) = ΨN,s(N − β − 2s) for all β ∈ (0, N − 2s).
3. ΨN,s is strictly increasing and surjective in (0, N−2s

2
), and strictly decreasing in

(N−2s
2
, N − 2s).

4. ΨN,s(
N−2s

2
) = ΛN,s.

5. limβ→0 ΨN,s(β) = limβ→N−2s ΨN,s(β) = 0.

In what follows, for simplicity, we define

a(µ) = (1− ηµ)δ, b(µ) = (1 + ηµ)δ, (2.8)

where µ ∈ (0,ΛN,s) and δ = N−2s
2

. We now extend a(µ), b(µ) to the interval [0,ΛN,s)
by defining

a(0) = 0, b(0) = N − 2s,

which is consistent with (2.3) and Lemma 2.1. Therefore, for µ ∈ [0,ΛN,s), we have

0 ≤ a(µ) < δ < b(µ) ≤ N − 2s. (2.9)

It is worth noticing that from the definition of b(µ), we know that b(µ) is strictly
decreasing on [0,ΛN,s). Thus, if N ≥ 4s, there exists a unique µ∗ ∈ [0,ΛN,s) such
that

2b(µ) > N ⇔ µ < µ∗, 2b(µ) = N ⇔ µ = µ∗. (2.10)

By (2.8), we can rewrite (2.7) as the following form

c1(
|x|

a(µ)
δ + |x|

b(µ)
δ

)δ ≤ uµ(x) ≤ c2(
|x|

a(µ)
δ + |x|

b(µ)
δ

)δ , x ∈ RN\{0}. (2.11)
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Remark 2.2. For µ ∈ [0,ΛN,s), we define

Λ(µ) = inf
u∈Hs

0(Ω)\{0}

∫
RN |(−∆)

s
2u|2dx− µ

∫
Ω

u2

|x|2sdx∫
Ω
|u|2dx

.

By applying Hölder’s inequality and the fractional Hardy-Sobolev inequality, we get
that Λ(µ) is well defined and positive on Hs

0(Ω).

3. Extremals of S(µ1, µ2)

In this section, we study the existence of extremals for S(µ1, µ2) under suitable
conditions which will be crucially used in the proof of our main result. To do this, we
first prove Theorem 1.1, which guarantees the strict inequality S(µ1, µ2) < Sµ1 holds.

Proof of Theorem 1.1. (i) Since 0 ≤ µ2 ≤ µ1 < ΛN,s and f(τmin) < 1, for all (u, v) ∈
Ḣs(RN)× Ḣs(RN), by the fractional Hardy inequality (2.4) we have that

‖u‖2
µ1

+ ‖v‖2
µ2

=

∫
RN
|(−∆)

s
2u|2dx− µ1

∫
RN

u2

|x|2s
dx+

∫
RN
|(−∆)

s
2v|2dx− µ2

∫
RN

v2

|x|2s
dx

= ‖u‖2
µ1

+ ‖v‖2
µ1

+ (µ1 − µ2)

∫
RN

v2

|x|2s
dx

≤ ‖u‖2
µ1

+ ‖v‖2
µ1

+
µ1 − µ2

ΛN,s

∫
RN
|(−∆)

s
2v|2dx

≤ ‖u‖2
µ1

+ ‖v‖2
µ1

+
µ1 − µ2

ΛN,s − µ1

‖v‖2
µ1

= ‖u‖2
µ1

+
ΛN,s − µ2

ΛN,s − µ1

‖v‖2
µ1
. (3.1)

Testing (1.8) with (uµ1 , τminuµ1), by (3.1) we have that

S(µ1, µ2) ≤ f(τmin)
‖uµ1‖2

µ1( ∫
RN |uµ1|2

∗
sdx
) 2

2∗s

= f(τmin)Sµ1 < Sµ1 .

On the other hand, by (1.8), (H1) and arguing as in Theorem 1.1 of [23], we get that

S(µ1, µ2) ≥ S(µ1, µ1) = Sµ1 infτ≥0
1+τ2

F (1,τ)
2

2∗s
> 0.

(ii) From the definition of f(τ), it follows that

f ′(τ) =
2τβ−1

(
2∗s

ΛN,s−µ2

ΛN,s−µ1
τ 2−β +

ΛN,s−µ2

ΛN,s−µ1
ηατ 2 − 2∗sτ

α − ηβ
)

2∗s
(
F (1, τ)

) 2
2∗s

+1
.

If β < 2, η > 0, since f(0) = 1, f ′(τ) < 0 as τ → 0+, we have f(τmin) < 1 and thus
0 < S(µ1, µ2) < Sµ1 by the argument of (i).

(iii) If β = 2, η > η1, since f ′(τ) < 0 as τ → 0+, we conclude that f(τmin) < 1 and
0 < S(µ1, µ2) < Sµ1 .
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(iv) If η > η2, the definition of η2 implies that there exists τ1 > 0 such that

η > τ−β1

(
(1 +

ΛN,s − µ2

ΛN,s − µ1

τ 2
1 )

2∗s
2 − (1 + τ

2∗s
1 )
)
,

then we have f(τmin) ≤ f(τ1) < 1 and thus 0 < S(µ1, µ2) < Sµ1 . �

With Theorem 1.1, we can verify the existence of extremals for S(µ1, µ2).

Proof of Theorem 1.2. Since 0 < S(µ1, µ2) < Sµ1 ≤ Sµ2 , we have that

t′ :=
(S(µ1, µ2)

Sµ1

) 1
2
·N
2s < t′′ :=

(S(µ1, µ2)

Sµ1

) 1
2∗s
·N
2s < 1,

l′ :=
(S(µ1, µ2)

Sµ2

) 1
2
·N
2s < l′′ :=

(S(µ1, µ2)

Sµ2

) 1
2∗s
·N
2s < 1.

For all t, l ≥ 0, we consider the equations t2S
N
2s
µ1 + l2S

N
2s
µ2 = S(µ1, µ2)

N
2s ,

t2
∗
sS

N
2s
µ1 + l2

∗
sS

N
2s
µ2 + ηtαlβ

∫
RN |u

ε
µ1
|α|uεµ2

|βdx = S(µ1, µ2)
N
2s ,

(3.2)

that is, 
t2(

S(µ1,µ2)
Sµ1

)N
2s

+ l2(
S(µ1,µ2)
Sµ2

)N
2s

= 1,

t2
∗
s(

S(µ1,µ2)
Sµ1

)N
2s

+ l2
∗
s(

S(µ1,µ2)
Sµ2

)N
2s

+ ηtαlβ

S(µ1,µ2)
N
2s∫

RN |u
ε
µ1
|α|uεµ2

|βdx

= 1.
(3.3)

Take t∗ ∈ (0, t′) ⊂ (0, 1) and l∗ ∈ (0, l′) ⊂ (0, 1) such that (t∗, l∗) satisfies the first
equation in (3.3). Since 1 < 2 < 2∗s, there exists η̄ > 0 such that

|t∗|2∗s(
S(µ1,µ2)
Sµ1

)N
2s

+
|l∗|2∗s(

S(µ1,µ2)
Sµ2

)N
2s

+
η̄|t∗|α|l∗|β

S(µ1,µ2)
N
2s∫

RN |uεµ1
|α|uεµ2

|βdx

= 1, (3.4)

which implies that for all η > η̄, there exists l∗∗ ∈ (0, l∗) such that

|t∗|2∗s(
S(µ1,µ2)
Sµ1

)N
2s

+
|l∗∗|2∗s(

S(µ1,µ2)
Sµ2

)N
2s

+
η|t∗|α|l∗∗|β

S(µ1,µ2)
N
2s∫

RN |uεµ1
|α|uεµ2

|βdx

= 1. (3.5)

Since (t′, 0), (0, l′), (t∗, l∗) satisfy the first equation in (3.3), (t′′, 0), (0, l′′), (t∗, l∗∗)
satisfy the second one in (3.3) and t′′ > t′, l′′ > l′, l∗∗ < l∗, (3.3)-(3.5) yield that
for all η > η̄, the two continuous curves in (3.2) and (3.3) must have at least two
intersection points (ti, li) ∈ (0, t′)× (0, l′), i = 1, 2. Define

η∗ = inf{η̄ | η̄ > 0 is defined as in (3.4)} ≥ 0.
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Then for all η > η∗, by (1.7), (1.8), (2.6) and (3.2), there exist (ti, li) ∈ (0, t′) ×
(0, l′), i = 1, 2, such that {(tiuεµ1

, liu
ε
µ2

)} are minimizers of S(µ1, µ2). �

4. Proof of Theorem 1.3

The purpose of this section is to prove our main result, for this we need the following
two auxiliary estimates, which will be crucially used in the sequel. We first establish
the general estimates for ϕuεµ, where we will borrow some ideas from [21].

Let us fix ρ > 0 small enough such that B4ρ ⊂ Ω and let ϕ ∈ C∞0 (RN) be a cutting-
off function such that 0 ≤ ϕ ≤ 1 in RN , ϕ = 1 in Bρ and ϕ = 0 in Bc

2ρ = RN\B2ρ,
where Bρ = Bρ(0) is the ball centered at origin with radius ρ. Set vεµ(x) = ϕ(x)uεµ(x),
µ ∈ [0,ΛN,s). Then we get the following results.

Lemma 4.1. Assume that s ∈ (0, 1) and N > 2s, µ ∈ [0,ΛN,s). Then the following
estimates hold true:

‖vεµ‖2
µ = S

N
2s
µ +O(ε2(b(µ)−δ)), (4.1)∫

Ω

|vεµ|2
∗
sdx = S

N
2s
µ +O

(
ε2∗s ·(b(µ)−δ)), (4.2)

and

‖vεµ‖2
L2(Ω) ≥


Cε2s, if N

b(µ)
< 2,

Cε2s| ln ε|, if N
b(µ)

= 2,

Cε2(b(µ)−δ), if 2 < N
b(µ)

,

(4.3)

as ε→ 0, for some positive constant C independent of ε.

Proof. From now on, for simplicity, we will omit the constant
cN,s

2
. By the definition

of vεµ together with (2.5) and (2.6), we get

‖vεµ‖2
µ =

∫
R2N

|vεµ(x)− vεµ(y)|2

|x− y|N+2s
dxdy − µ

∫
Ω

|vεµ(x)|2

|x|2s
dx

=

∫
R2N

(ϕ(x)uεµ(x)− ϕ(y)uεµ(y))2

|x− y|N+2s
dxdy − µ

∫
Ω

|ϕ(x)uεµ(x)|2

|x|2s
dx

=

∫
R2N

ϕ2(x)(uεµ(x))2 − ϕ2(x)uεµ(x)uεµ(y) + ϕ2(y)(uεµ(y))2 − ϕ2(y)uεµ(x)uεµ(y)

|x− y|N+2s
dxdy

+

∫
R2N

ϕ2(x)uεµ(x)uεµ(y) + ϕ2(y)uεµ(x)uεµ(y)− 2ϕ(x)ϕ(y)uεµ(x)uεµ(y)

|x− y|N+2s
dxdy

− µ
∫

Ω

|ϕ(x)uεµ(x)|2

|x|2s
dx



THE BREZIS-NIRENBERG PROBLEM FOR FRACTIONAL SYSTEMS WITH HARDY POTENTIALS11

=

∫
R2N

(uεµ(x)− uεµ(y))(ϕ2(x)uεµ(x)− ϕ2(y)uεµ(y))

|x− y|N+2s
dxdy

+

∫
R2N

(ϕ(x)− ϕ(y))2uεµ(x)uεµ(y)

|x− y|N+2s
dxdy − µ

∫
Ω

ϕ2(x)(uεµ(x))2

|x|2s
dx

=µ

∫
Ω

ϕ2(x)(uεµ(x))2

|x|2s
dx+

∫
Ω

ϕ2(x)|uεµ(x)|2∗sdx

+

∫
R2N

(ϕ(x)− ϕ(y))2uεµ(x)uεµ(y)

|x− y|N+2s
dxdy − µ

∫
Ω

ϕ2(x)(uεµ(x))2

|x|2s
dx

=

∫
R2N

(ϕ(x)− ϕ(y))2uεµ(x)uεµ(y)

|x− y|N+2s
dxdy +

∫
Ω

ϕ2(x)|uεµ(x)|2∗sdx

=

∫
RN
|uεµ(x)|2∗sdx+ I1 + I2

=S
N
2s
µ + I1 + I2, (4.4)

where

I1 =

∫
R2N

(ϕ(x)− ϕ(y))2uεµ(x)uεµ(y)

|x− y|N+2s
dxdy,

I2 =

∫
RN

(ϕ2(x)− 1)|uεµ(x)|2∗sdx.

To estimate I1, we use the decomposition

RN × RN = (B2ρ ×B2ρ) ∪ (B2ρ ×Bc
2ρ) ∪ (Bc

2ρ ×B2ρ) ∪ (Bc
2ρ ×Bc

2ρ).

By the definition of ϕ, it is easy to see that∫
Bc2ρ×Bc2ρ

(ϕ(x)− ϕ(y))2uεµ(x)uεµ(y)

|x− y|N+2s
dxdy = 0.

Note that
∫
RN
|ϕ(x)−ϕ(y)|2
|x−y|N+2s dy ∈ L∞(RN), then by (2.11) and the fact that b(µ) ∈

(N−2s
2
, N − 2s], for (x, y) ∈ B2ρ ×Bc

2ρ, we obtain∫
B2ρ

∫
Bc2ρ

(ϕ(x)− ϕ(y))2uεµ(x)uεµ(y)

|x− y|N+2s
dxdy

≤Cε2b(µ)−2δρ−b(µ)

∫
|x|≤2ρ

1

|x|b(µ)
dx

∫
RN

|ϕ(x)− ϕ(y)|2

|x− y|N+2s
dy

≤Cε2(b(µ)−δ).
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Similarly, for (x, y) ∈ Bc
2ρ ×B2ρ, one can prove that∫

Bc2ρ

∫
B2ρ

(ϕ(x)− ϕ(y))2uεµ(x)uεµ(y)

|x− y|N+2s
dxdy ≤ Cε2(b(µ)−δ).

For (x, y) ∈ B2ρ ×B2ρ, by the definition of ϕ and (2.11), we have∫
B2ρ

∫
B2ρ

(ϕ(x)− ϕ(y))2uεµ(x)uεµ(y)

|x− y|N+2s
dxdy

=

∫
|x|≤ρ

∫
ρ≤|y|≤2ρ

(ϕ(x)− ϕ(y))2uεµ(x)uεµ(y)

|x− y|N+2s
dxdy

+

∫
ρ≤|x|≤2ρ

∫
|y|≤2ρ

(ϕ(x)− ϕ(y))2uεµ(x)uεµ(y)

|x− y|N+2s
dxdy

≤Cε2b(µ)−2δ

∫
|x|≤ρ

1

|x|b(µ)
dx+ Cε2b(µ)−2δ

∫
|y|≤2ρ

1

|y|b(µ)
dy

≤Cε2(b(µ)−δ).

Collecting the estimates above, we obtain that

I1 =

∫
R2N

(ϕ(x)− ϕ(y))2uεµ(x)uεµ(y)

|x− y|N+2s
dxdy ≤ Cε2(b(µ)−δ). (4.5)

Now, we estimate I2. By the definition of ϕ and (2.11), we deduce that

|I2| = |
∫
RN

(ϕ2(x)− 1)|uεµ(x)|2∗sdx|

≤ 2

∫
|x|≥ρ
|uεµ(x)|2∗sdx

≤ 2ε2∗s(b(µ)−δ)
∫
|x|≥ρ

1

|x|2∗s ·b(µ)
dx

≤ Cε2∗s(b(µ)−δ)

≤ Cε2(b(µ)−δ).

(4.6)

Therefore, combining (4.4), (4.5) and (4.6), we get (4.1). Then, we estimate
∫

Ω
|vεµ|2

∗
sdx.

By the definition of ϕ and (2.11), we have

|
∫

Ω

|vεµ|2
∗
sdx−

∫
RN
|uεµ|2

∗
sdx| ≤

∫
RN
|ϕ2∗s − 1||uεµ|2

∗
sdx

≤
∫
|x|≥ρ
|uεµ|2

∗
sdx
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≤ Cε2∗s ·(b(µ)−δ),

which implies that ∫
Ω

|vεµ|2
∗
sdx = S

N
2s
µ +O(ε2∗s ·(b(µ)−δ)).

Finally, by the definition of ϕ and (2.11), we have∫
Ω

|vεµ|2dx =

∫
|x|≤2ρ

|ϕ(x)uεµ(x)|2dx

≥
∫
|x|≤ρ
|uεµ(x)|2dx

≥ CεN−2δ

∫
|x|≤ ρ

ε

1(
|x|

a(µ)
δ + |x|

b(µ)
δ

)2δ
dx

≥ CεN−2δ

∫
1≤|x|≤ ρ

ε

1(
|x|

a(µ)
δ + |x|

b(µ)
δ

)2δ
dx

≥ CεN−2δ

∫
1≤|x|≤ ρ

ε

1

|x|2b(µ)
dx

= CεN−2δ

∫ ρ
ε

1

rN−2b(µ)−1dr

=


CεN−2δ − Cε2(b(µ)−δ), if N < 2b(µ),

CεN−2δ| ln ε|, if N = 2b(µ),

Cε2(b(µ)−δ) − CεN−2δ, if N > 2b(µ),

≥


Cε2s, if N

b(µ)
< 2,

Cε2s| ln ε|, if N
b(µ)

= 2,

Cε2(b(µ)−δ), if N
b(µ)

> 2.

�

Lemma 4.2. Assume that (H1) holds and η > η∗, α1, β1 > 0, σ := α1 + β1 < 2∗s. Let
(t0u

ε
µ1
, l0u

ε
µ2

) be a positive minimizer of S(µ1, µ2) obtained as in Theorem 1.2. Then
the following estimates hold as ε→ 0:

‖(t0vεµ1
, l0v

ε
µ2

)‖2
W ≤ S(µ1, µ2)

N
2s + Cε2(b(µ1)−δ), (4.7)∫

Ω

F (t0v
ε
µ1
, l0v

ε
µ2

)dx ≥ S(µ1, µ2)
N
2s − Cε2∗s ·(b(µ1)−δ), (4.8)
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∫
Ω

|vεµ1
|α1 |vεµ2

|β1dx ≥


CεN−σδ, if α1b(µ1) + β1b(µ2) > N,

CεN−σδ| ln ε|, if α1b(µ1) + β1b(µ2) = N,

Cεα1b(µ1)+β1b(µ2)−σδ, if α1b(µ1) + β1b(µ2) < N.

(4.9)

Proof. (i) Since b(µ) is decreasing on [0,ΛN,s) and (t0, l0) satisfies (3.2), by (3.2) and
(4.1), we have

‖(t0vεµ1
, l0v

ε
µ2

)‖2
W = t20‖vεµ1

‖2
µ1

+ l20‖vεµ2
‖2
µ2

≤ t20S
N
2s
µ1 + l20S

N
2s
µ2 + Cε2(b(µ1)−δ) + Cε2(b(µ2)−δ)

≤ S(µ1, µ2)
N
2s + Cε2(b(µ1)−δ).

(ii) By (3.2) and (4.2), we get∫
Ω

F (t0v
ε
µ1
, l0v

ε
µ2

)dx =t
2∗s
0

∫
Ω

|vεµ1
|2∗sdx+ l

2∗s
0

∫
Ω

|vεµ2
|2∗sdx+ ηtα0 l

β
0

∫
Ω

|vεµ1
|α|vεµ2

|βdx

≥t2
∗
s

0 S
N
2s
µ1 + l

2∗s
0 S

N
2s
µ2 + ηtα0 l

β
0

∫
Ω

|vεµ1
|α|vεµ2

|βdx

− Cε2∗s ·(b(µ1)−δ) − Cε2∗s ·(b(µ2)−δ)

=t
2∗s
0 S

N
2s
µ1 + l

2∗s
0 S

N
2s
µ2 + ηtα0 l

β
0

∫
RN
|uεµ1
|α|uεµ2

|βdx

− ηtα0 l
β
0

∫
RN

(1− ϕ2∗s)|uεµ1
|α|uεµ2

|βdx− Cε2∗s ·(b(µ1)−δ) − Cε2∗s ·(b(µ2)−δ)

≥S(µ1, µ2)
N
2s − C

∫
|x|≥ρ
|uεµ1
|α|uεµ2

|βdx− Cε2∗s ·(b(µ1)−δ).

On the other hand, by (2.11), it follows that∫
|x|≥ρ
|uεµ1
|α|uεµ2

|βdx ≤ Cεα(b(µ1)−δ) · εβ(b(µ2)−δ)
∫
|x|≥ρ
|x|−(αb(µ1)+βb(µ2))dx

≤Cε2∗s ·(b(µ1)−δ)
∫
|x|≥ρ
|x|−(αb(µ1)+βb(µ2))dx

≤Cε2∗s ·(b(µ1)−δ),

which yields the inequality∫
Ω

F (t0v
ε
µ1
, l0v

ε
µ2

)dx ≥ S(µ1, µ2)
N
2s − Cε2∗s ·(b(µ1)−δ).
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(iii) Using the similar argument as obtaining the estimate (4.3), we conclude that∫
Ω

|vεµ1
|α1|vεµ2

|β1dx ≥
∫
|x|≤ρ
|uεµ1

(x)|α1|uεµ2
(x)|β1dx

=

∫
|x|≤ ρ

ε

εN−σδ|uµ1(x)|α1|uµ2(x)|β1dx

≥ CεN−σδ
∫

1≤|x|≤ ρ
ε

|uµ1(x)|α1|uµ2(x)|β1dx

≥ CεN−σδ
∫

1≤|x|≤ ρ
ε

|x|−(α1b(µ1)+β1b(µ2))dx

≥ CεN−σδ
∫ ρ

ε

1

rN−1 · r−(α1b(µ1)+β1b(µ2))dr

≥


CεN−σδ, if α1b(µ1) + β1b(µ2) > N,

CεN−σδ| ln ε|, if α1b(µ1) + β1b(µ2) = N,

Cεα1b(µ1)+β1b(µ2)−σδ, if α1b(µ1) + β1b(µ2) < N.

�

Using the previous lemmas we are able to prove the main result of this paper, that
is, Theorem 1.3. The method we use here is the Mountain Pass Theorem and we
point out that under the assumptions in Theorem 1.3 and Remark 2.2, it is easy to
check that the functional J satisfies the geometric features required by the Mountain
Pass Theorem and we omit it here. Now, we show the energy functional J verifies
the Palais-Smale condition at any level c, provided c < c∗. The technique is the
concentration compactness result for the fractional Laplacian obtained in e.g. [6,35],
see also [28, Remark I.6] for more details.

For this, we define the fractional gradient of a function u ∈ Hs
0(Ω) as

|Dsu(x)|2 =

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dy.

In the sequel, we shall use the notation |Dsu| denotes the fractional gradient of a
function u, then |Dsu| ∈ L2(RN) and it is well defined a.e. in RN .

Lemma 4.3. Suppose that (H1), (H2) hold. Then the functional J satisfies the (PS)c
condition for all c < c∗ := s

N
S(µ1, µ2)

N
2s .

Proof. Suppose the sequence {(un, vn)} ⊂ W satisfies J(un, vn) → c < c∗ and
J ′(un, vn) → 0. Standard argument shows that {(un, vn)} is bounded in W . Up
to a subsequence if necessary, for some (u, v) ∈ W , we have

(un, vn) ⇀ (u, v) weakly in W,
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(un, vn) ⇀ (u, v) weakly in (L2(Ω), |x|−2s)2,

(un, vn) ⇀ (u, v) weakly in (L2∗s(Ω))2,

(un, vn)→ (u, v) a.e. in Ω,

(un, vn)→ (u, v) strongly in (L2(Ω))2.

By the concentration compactness principle (see e.g. [6, 10, 35]) and up to a subse-
quence, there exists an at most countable set T , a set of points xj ∈ Ω\{0}, nonneg-
ative real numbers σj, νj, j ∈ T , and σ0, ν0, µ0, such that the following convergences
hold in sense of measures:

|Dsun|2 + |Dsvn|2 → dσ ≥ |Dsu|2 + |Dsv|2 + σ0δx0 +
∑
j∈T

σjδxj ,

µ1|un|2 + µ2|vn|2

|x|2s
→ dµ =

µ1|u|2 + µ2|v|2

|x|2s
+ µ0δx0 ,

F (un, vn)→ dν = F (u, v) + ν0δx0 +
∑
j∈T

νjδxj ,

where δx is the Dirac mass at x. By (1.8) and following a similar way as in [6] (see
also [10, Lemma 4.5]), we have

σ0 − µ0 ≥ S(µ1, µ2)ν
2

2∗s
0 , (4.10)

σj ≥ S(0, 0)ν
2

2∗s
j , j ∈ T . (4.11)

Now we consider the possibility of concentration at the origin x0. For ε > 0, let
φ ∈ C∞0 (RN) be a nonincreasing cut-off function verifying φ = 1 in B1(0), φ = 0 in
Bc

2(0). Let φε(x) = φ(x
ε
), clearly |∇φε| ≤ C

ε
. Since (φεun, φεvn) is bounded in W , we

have that
〈J ′(un, vn), (φεun, φεvn)〉 → 0 as n→∞.

Then

0 =

∫
R2N

(un(x)− un(y))(φε(x)un(x)− φε(y)un(y))

|x− y|N+2s
dxdy − µ1

∫
RN

|un|2

|x|2s
φεdx

+

∫
R2N

(vn(x)− vn(y))(φε(x)vn(x)− φε(y)vn(y))

|x− y|N+2s
dxdy − µ2

∫
RN

|vn|2

|x|2s
φεdx

−
∫

Ω

Q(un, vn)φεdx−
∫

Ω

F (un, vn)φεdx+ o(1)

=

∫
RN

∫
RN

|un(x)− un(y)|2φε(x)

|x− y|N+2s
dxdy − µ1

∫
RN

|un|2

|x|2s
φεdx

+

∫
RN

∫
RN

(un(x)− un(y))(φε(x)− φε(y))un(y)

|x− y|N+2s
dxdy
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+

∫
RN

∫
RN

|vn(x)− vn(y)|2φε(x)

|x− y|N+2s
dxdy − µ2

∫
RN

|vn|2

|x|2s
φεdx

+

∫
RN

∫
RN

(vn(x)− vn(y))(φε(x)− φε(y))vn(y)

|x− y|N+2s
dxdy

−
∫

Ω

Q(un, vn)φεdx−
∫

Ω

F (un, vn)φεdx+ o(1), (4.12)

as n→∞. Using Hölder’s inequality and the fact that un, vn are bounded in Hs
0(Ω),

we get ∫
RN

∫
RN

un(y)(un(x)− un(y))(φε(x)− φε(y))

|x− y|N+2s
dxdy

≤ C
(∫

RN

∫
RN

|un(y)|2|φε(x)− φε(y)|2

|x− y|N+2s
dxdy

) 1
2
,∫

RN

∫
RN

vn(y)(vn(x)− vn(y))(φε(x)− φε(y))

|x− y|N+2s
dxdy

≤ C
(∫

RN

∫
RN

|vn(y)|2|φε(x)− φε(y)|2

|x− y|N+2s
dxdy

) 1
2
.

From [6,35], it holds

lim
ε→0

lim
n→∞

∫
RN

∫
RN

|un(y)|2|φε(x)− φε(y)|2

|x− y|N+2s
dxdy = 0, (4.13)

lim
ε→0

lim
n→∞

∫
RN

∫
RN

|vn(y)|2|φε(x)− φε(y)|2

|x− y|N+2s
dxdy = 0. (4.14)

On the other hand, by the definition of φε, it is easy to prove that

lim
ε→0

lim
n→∞

∫
Ω

µ1|un|2 + µ2|vn|2

|x|2s
φεdx = lim

ε→0

∫
Ω

φεdµ = µ0, (4.15)

lim
ε→0

lim
n→∞

∫
Ω

Q(un, vn)φεdx = 0, (4.16)

lim
ε→0

lim
n→∞

∫
Ω

F (un, vn)φεdx = lim
ε→0

∫
Ω

φεdν = ν0. (4.17)

Then, by (4.12)-(4.17), we obtain

0 = lim
ε→0

lim
n→∞
〈J ′(un, vn), (φεun, φεvn)〉 ≥ σ0 − µ0 − ν0. (4.18)

Combining (4.10) and (4.18), it follows that S(µ1, µ2)ν
2

2∗s
0 ≤ ν0, which implies that

ν0 = 0, or ν0 ≥ S(µ1, µ2)
N
2s . (4.19)
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Next we consider the possibility of concentration at xj, j ∈ T . Take ε > 0 small
enough and ψε ∈ C∞0 (RN) such that ψε = 1 in Bε(xj), ψε = 0 in Bc

2ε(xj) and
|∇ψε| ≤ C

ε
. Note that

lim
ε→0

lim
n→∞

∫
Ω

µ1|un|2 + µ2|vn|2

|x|2s
ψεdx = lim

ε→0

∫
Ω

ψεdµ = 0.

Arguing as in (4.18), we get

0 = lim
ε→0

lim
n→∞
〈J ′(un, vn), (ψεun, ψεvn)〉 ≥ σj − νj. (4.20)

From (4.11) and (4.20) we have that S(0, 0)ν
2

2∗s
j ≤ νj, which implies that

νj = 0, or νj ≥ S(0, 0)
N
2s ≥ S(µ1, µ2)

N
2s , (4.21)

therefore the set T is finite.
Suppose that there exists νk, k ∈ {0} ∪ T , such that νk 6= 0. It follows that

c = J(un, vn)− 1

2
〈J ′(un, vn), (un, vn)〉+ o(1)

=
s

N

∫
Ω

F (un, vn)dx+ o(1)

=
s

N

( ∫
Ω

F (u, v)dx+ ν0 +
∑
j∈T

νj
)

By (4.19)-(4.21) and the assumption c < c∗, we get a contradiction and we deduce that
ν0 = νj = 0, ∀j ∈ T . Up to a subsequence, (un, vn)→ (u, v) strongly in (L2∗s(Ω))2. By
the weak-to-weak continuous property of the fractional Laplace operator [10, Lemma
2.2] and the Brezis-Lieb lemma [7], it is now enough to get that

lim
n→∞

(‖un − u‖2
µ1

+ ‖vn − v‖2
µ2

)

= lim
n→∞
〈J ′(un, vn)− J ′(u, v), (un − u, vn − v)〉

= lim
n→∞
〈J ′(un, vn), (un − u, vn − v)〉 = 0,

thus (un, vn)→ (u, v) strongly in W . �

Lemma 4.4. Under the assumptions of Theorem 1.3, there exists ε > 0 small enough
such that

sup
τ≥0

J(τt0v
ε
µ1
, τ l0v

ε
µ2

) < c∗ =
s

N
S(µ1, µ2)

N
2s .

Proof. For all τ ≥ 0, by (H1) and (H2), we have that

J(τt0v
ε
µ1
, τ l0v

ε
µ2

) =
τ 2

2

{
‖(t0vεµ1

, l0v
ε
µ2

)‖2
W −

∫
Ω

Q(t0v
ε
µ1
, l0v

ε
µ2

)dx
}
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− τ 2∗s

2∗s

∫
Ω

F (t0v
ε
µ1
, l0v

ε
µ2

)dx.

For all B1, B2 > 0, there holds that

max
τ≥0

(
τ 2

2
B1 −

τ 2∗s

2∗s
B2) =

s

N
(B1B

− 2
2∗s

2 )
2∗s

2∗s−2 . (4.22)

By the hypothesis 0 ≤ µ2 ≤ µ1 ≤ µ∗, it follows from (2.10) that

N ≤ 2b(µ1) ≤ 2b(µ2) (4.23)

and

2(b(µ1)− δ) = 2b(µ1)− 2δ ≥ N − (N − 2s) = 2s. (4.24)

Therefore, from (4.22)-(4.24) and Lemmas 4.1 and 4.2, for ε > 0 small enough, we
get that

sup
τ≥0

J(τt0v
ε
µ1
, τ l0v

ε
µ2

) ≤ s

N

(‖(t0vεµ1
, l0v

ε
µ2

)‖2
W −

∫
Ω
Q(t0v

ε
µ1
, l0v

ε
µ2

)dx( ∫
Ω
F (t0vεµ1

, l0vεµ2
)dx
) 2

2∗s

)N
2s

≤ s

N

(S(µ1, µ2)
N
2s + Cε2(b(µ1)−δ) −

∫
Ω
Q(t0v

ε
µ1
, l0v

ε
µ2

)dx(
S(µ1, µ2)

N
2s − Cε2∗s ·(b(µ1)−δ)

) 2
2∗s

)N
2s

≤ s

N

(S(µ1, µ2)
N
2s + Cε2(b(µ1)−δ) − C

∫
Ω
|vεµ1
|2dx

S(µ1, µ2)
N
2s
· 2
2∗s − Cε2(b(µ1)−δ)

)N
2s

≤ s

N
S(µ1, µ2)

N
2s

(1 + Cε2(b(µ1)−δ) − C
∫

Ω
|vεµ1
|2dx

1− Cε2(b(µ1)−δ)

)N
2s

=
s

N
S(µ1, µ2)

N
2s

(
1 +

Cε2(b(µ1)−δ) − C
∫

Ω
|vεµ1
|2dx

1− Cε2(b(µ1)−δ)

)N
2s

≤ s

N
S(µ1, µ2)

N
2s

(
1 + Cε2(b(µ1)−δ) − C

∫
Ω

|vεµ1
|2dx

)
=

s

N
S(µ1, µ2)

N
2s + Cε2(b(µ1)−δ) − C

∫
Ω

|vεµ1
|2dx

<
s

N
S(µ1, µ2)

N
2s ,

this concludes the proof. �

Proof of Theorem 1.3. Under the assumptions of Theorem 1.3, a standard argument
of the Mountain Pass Theorem [4] shows that there exists a sequence {(un, vn)} ⊂ W
such that J(un, vn)→ c and J ′(un, vn)→ 0 as n→∞, where

0 < c ≤ sup
τ∈[0,1]

J(τt0v
ε
µ1
, τ l0v

ε
µ2

).
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Lemma 4.4 implies that c < c∗ and by Lemma 4.3, there exists a subsequence of
{(un, vn)} (still denoted by {(un, vn)}) such that (un, vn) → (u, v) strongly in W .
Therefore (u, v) is a critical point of J corresponds to a nontrivial solution to problem
(1.6). Set u+ = max{u, 0}, v+ = max{v, 0}, replacing u and v in the terms on the
right hand side of equations in (1.6) by u+ and v+ respectively and repeating the
above process, we obtain the existence of a nontrivial weak solution (u, v) 6= (0, 0)
to (1.6). Then, using Lemma 2.5 in [10], we have that (u, v) 6= (0, 0) is nonnegative.
From (1.6), (H2) and definition of Q, we deduce that u, v 6= 0 and by the Maximum
Principle [32], we get that u, v > 0 in Ω. This finishes the proof of Theorem 1.3.

�
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