THE BREZIS-NIRENBERG PROBLEM FOR FRACTIONAL
SYSTEMS WITH HARDY POTENTIALS

YANSHENG SHEN

ABSTRACT. In this work we study the existence of positive solutions to the follow-
ing fractional elliptic systems with Hardy-type singular potentials, and coupled by
critical homogeneous nonlinearities

(—A)*u — pu s = |u 20-2y 4 %|u‘“—2|v|5u + 3Qu(u,v) in Q,

(—A)*0 — pa e = o] 20 + B ful*[o]* =20 + 1 Qu(w,v) in
u, v>0 in Q,
u=v=0 in RN\Q,

where (—A)® denotes the fractional Laplace operator, 2 C RY is a smooth bounded

2/ N+42s
domain such that 0 € Q, p1, u2 € [0,An ), An,s = 225% is the best constant
4
of the fractional Hardy inequality and 27 = N2iV28 is the fractional critical Sobolev

exponent. In order to prove the main result, we establish some refined estimates on
the extremal functions of the fractional Hardy-Sobolev type inequalities and we get
the existence of positive solutions to the systems through variational methods.

1. INTRODUCTION AND MAIN RESULTS

In the last few decades a lot of mathematical efforts have been devoted to elliptic
problems involving critical nonlinearities and Hardy potentials and many important
results were obtained. In the celebrated paper [33], Terracini showed that for u €
(0, ),

N—-2

(4N (= p) /(N —2)) T eVir

Y

Un(z) =

satisfies equation

u *_ .
—Au — MW = |ul* u in RY, (1.1)
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where e > 0, i = (N —2)2/4, ' = /i — /i — i1, ¥ = /li + /11 — . After that,
rely on the results obtained in [33], the research on related perturbative equations
with a singular potential and a critical nonlinearity were extensively studied, see
e.g. [9,11,18] and the references therein. We mention that in the paper [24], Jannelli
dealt with the problem

u .
—Au — MW =M+ |[u]* u, ue Hy(Q), (1.2)

where Q@ C RY is a smooth bounded domain such that 0 € ©, 0 < u < ji. The
author investigated the relationship between critical dimension and L7, integrability
of the Green function associated with the Hardy-Schrodinger operator L, = —A —
I_x\%' In particular, Jannelli showed the existence of nontrivial solutions to (1.2) for
A€ (0, (p) and p € [0,z — 1], where Aj(p) is the first eigenvalue of the Hardy-

Schrodinger operator L, o.

Concerning doubly critical elliptic systems with singular potentials, in 2009, Ab-
dellaoui, Felli and Peral [1] studied the following class of systems
{—Au —Mipp = |ul* “2u + vh(x)a|u|* 2 v|fu, in RY,

. 1.3
—Av = o = [ v+ vh(z)p|u|®|v)?~2v, in RN, (1.3)

where A, Ay € (0,(N — 2)?/4), v is a positive parameter and «, 8 > 1 are positive
constants such that o + § < 2*. By variational arguments, the authors obtained the
existence of different types of positive solutions to system (1.3). Later, inspired by
the work in [1], many results were obtained in this regard and we refer the reader to
see, for instance, [12,13,34] for the whole space and [16,25-27] in bounded domains.

Contrary to the local case that has been widely investigated, in recent years, several
studies focus on the elliptic problems involving the fractional Laplace operator and
singular Hardy potential. Recently, Dipierro, Montoro, Peral and Sciunzi [15] studied
the existence and asymptotic behavior of extremals for the fractional Hardy-Sobolev
inequality. Based on the results given in [15], Ghoussoub, Robert, Shakerian and
Zhao [21] investigated the fractional Hardy-Sobolev inequality with weights and as
an application, the authors considered the following boundary value problem involving
the fractional Hardy-Schrodinger operator

(—A)%—v#:)\u—sz‘iﬁ#, u>0 in Q,
u=0 in RV\Q,

where v € [0,Ans), 0 < a < 2s < N. By introducing the fractional Hardy sin-
gular interior mass of a domain and using very technical and complicated analysis,
the authors obtained the existence of least energy solutions to (1.4) under different
conditions on Hardy term. We remark that when v = a = 0, problem (1.4) reduces
to the well-known fractional Brezis-Nirenberg problem that has been well studied

(1.4)
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by Servadei and Valdinoci in [29,30]. Moreover, in the paper [17], Faria, Miyagaki,
Pereira, Squassina and Zhang investigated the following Brezis-Nirenberg problem for
nonlocal systems

(=A)’u = au+ bv + I%’qupflvq in Q,

(—A)*v = bu+ cv+ I%qqupvq_l in Q,
u, v>0 m Q,

u=v=0 in RV\Q,

(1.5)

where p + ¢ < 2! and a,b,c € R satisfying suitable hypotheses. For more litera-
tures regarding fractional elliptic problems with singular potentials and lower order
perturbations, we refer the readers to [2,3,5,19,31] and the references therein.

Motivated by the aforementioned works, in this paper we focus our attention on
fractional elliptic system in bounded domains with Hardy potentials. More precisely,
we consider the following class of systems of nonlinear elliptic equations in bounded
domains

(—A)u— s = Ju

%2y 4 B2 [ufo 2o u + LQu(u,0) in 2,
S

(A0 = o = [0 20+ Blulol 0+ §Qu(uv) in 2,

(1.6)
u, v>0 n €,
| u=v=0 in RM\Q,
where s € (0,1), N > 2s and 2} = NziVZS, Q) is a smooth bounded domain in R¥

containing the origin and the fractional Laplace operator (—A)® is defined on smooth

functions as
] , u(r) — u(y)
(—A)°u(z) = ey sp.v. /RN —’:E e dy,

N+2s
where ¢y, = 22 % F|(r(fs)|) and p.v. denotes the principle value of the integral, Q,,

Q. are partial derivatives of the homogeneous C'-function Q(u,v):
Q(u,v) = au® + 2buv + cv?,

and the parameters satisfy

(H1) n > 0, p1, pu2 € [0,Ans) with Ay being the best constant of the fractional
Hardy inequality (see (2.4)), a, 8 > 1 satisfying o+ = 2. Without loss of generality,
along the work, we assume that 0 < po < p3 < Ans.

(Hz) a, ¢ > 0 and there exist constants A;, Ao > 0 such that

M(u? +0?) < Qu,v) < Ma(u? +0?), Y (u,v) € HJ(Q) x H(Q).
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To state our main results, we need to introduce some notations. For any u €
[07AN,S) and M, 2 € [07 AN,S)7 we define
. Jor [(=8)3uPde — o [on pida
S, = inf >
ueHs(RV)\{0} (fan [ul>dz)>
: E(u,v)dz
S(p, p2) = . inf fRN 2
(u,w)eH (RN )x Hs(RN)\{(0,0)} (fRN F(u,v)dx)?

where H*(R") denotes the homogeneous fractional Sobolev space, F(u,v) = |(=A)zu|>+
[(—A)30] — 2 — potee and F(u,v) = [ul* + v

(1.7)

(1.8)

%+ n|u|®|v]®. Moreover, under

the assumption (H;), we let

A —
1+ N,s—H2 __2

.
f(r) = —2eT 2> 0, f(Tyn) = min f(7) > 0,
F(1,7)%= 720
N(ANS—MQ) . _ Ans — po 25 x
= : := inf All+ =25 — (1 Z))).
n (N - 28)(/\]\[78 - /,L1)7 2 71'20 <T <( + AN,S - MlT ) ’ ( T )))
By (H1) we have f € CHR*,R"), f(0) = 1 and lim,_, o f(r) = T2 > 1,

therefore min,>q f(7) < 1 must be achieved at some finite 7, € [0, 00).

Notice that by testing (1.8) with (u,0), where u being the extremal for S, it
is easy to obtain that S(u1,p2) < S,,. For this, the first objective of this paper
is to investigate the relationship between S,, and S(u1,p2). Following the ideas
used in [27], we show that the strict inequality S(u1, p2) < S, holds under suitable
hypotheses, which is crucial to verify the minimization problem (1.8) being achieved.

Theorem 1.1. Suppose that (H1) holds and one of the following conditions is sat-
isfied: (1) f(Tmin) < 1; (i) B < 2; (@d) B = 2, n > m; (iv) n > na. Then
0< S(M1>ﬂ2> < S;Ufl'

Theorem 1.2. Suppose that () holds and S(py, p2) < Sy, Let u,(z) (¢ > 0)
denote the minimizers for (1.7) satisfying (2.5), then there exists constant n* >
0, ti,l; > 0 (1 = 1,2), such that S(pi, pe) has positive minimizers of the form
{(tiug,, Liug,)} (i = 1,2) for alln > n*.

By the previous results, we study the existence of positive solutions to (1.6) and
the existence result for (1.6) is given by:

Theorem 1.3. Suppose that (H1) and (Hs2) hold, S(p1, p2) < Su, 1> 0%, 1 < p¥,
Ay < A(u1), N > 4s. Then (1.6) has a positive solution (u,v) € H5(2) x HE().

As far as we know, there is no work concerned with problem (1.6) in bounded
domains. To study problem (1.6), we will follow the arguments used in [8,30], that
is, we will use the Mountain Pass Theorem [4] to prove the existence of positive
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solutions to (1.6). Comparing to the systems of elliptic equations without Hardy
potentials or containing a single Hardy potential (see e.g. [17,23]), the two possible
different Hardy terms m# and ugﬁ appeared in (1.6) make it more difficult to

verify the action functional satisfies the (PS). condition. To overcome this difficulty,
we shall exploit the asymptotic properties of the positive extremals of the fractional
Hardy-Sobolev inequality obtained in [15] to establish the desired estimates and we
prove that the Mountain Pass critical level of the action functional lies below the
threshold of application of the (P.S). condition.

This paper is organized as follows. In Section 2, we describe the appropriate func-
tional setting for the study of problem (1.6), and we introduce the asymptotic behavior
of the extremals of the fractional Hardy-Sobolev inequality. Then we devote Section
3 to the proofs of Theorems 1.1 and 1.2. In Section 4, we establish some refined
estimates on the extremal functions of the fractional Hardy-Sobolev type inequalities
and the proof of our main result in this paper is completed.

Notation. In this paper, we will use the same C to denote various generic positive
constant, and we shall use o(1) to denote quantities that tend to 0 as n tends to oco.

2. PRELIMINARIES AND FUNCTIONAL SETTING

In this section, we recall some known results for readers’ convenience and later use.
We begin introducing the fractional Sobolev space

HRY) = {u € L*(R") : [u], < o0},

endowed with norm

1
lullzrs = (llllZo @) + [l9)?,

where
1 1

= (0 [ S ) = ([ sy’

is the Gagliardo semi-norm of a measurable function u : RY — R. Now, let Q2 be a
smooth bounded domain in R and we consider the closed subspace

H Q) ={uec H'RY) :u=0 ae. in R\Q }.

We refer to [30] for more details on H§(2) and by the fractional Hardy inequality
(see (2.4)), we employ the following equivalent norm by setting

CN,s lu(z) — u(y)|2 / u’
= ; N dedy — d ) , 2.1
b= (55 L, e dsty = [ s 2

for p € [0,Ays). We also recall that (H(€),] - ||,) is a Hilbert space and the
embedding H(Q2) < L"(Q) is continuous for r € [1,2%] and compact for r € [1,2%).
In this paper, we work in the Hilbert space given by the product

W = Hg(€) x Hg(9),

[SIE
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endowed with the norm
1w, o)y = [lully, + VI,
Associated with problem (1.6), we consider the energy functional
1 1
Hwo) =5 [ (Bwo) = Quods - 5 [ Fluvs
2 RN 2; QO

then J € C'(W,R) and its critical points correspond to solutions of (1.6).
We say (u,v) € W is a weak solution of (1.6) if for every (¢, 1) € W, one has

@ﬁ/ wmww@m¢m—w@»m@_m/"wmx

92 |z — y|N+2s B
CN,s (v(z) —v(y)(W(z) — ¥(y)) v
+ 5 /RQN o — g dxdy—m/Q |x|25dx
1

1
=5 /Q(Qu(ua v) + Qy(u, v)Y)dx + % /Q(Fu(u,v)gp + Fy(u, 0)0)da.

To continue, we introduce the asymptotic properties of the positive extremals for
the fractional Hardy-Sobolev inequality. We first recall the fractional Sobolev in-
equality [14], which asserts that for N > 2s, there exists a constant S > 0 such
that

2 CN,s |U(ZL') - u(y)|2 s N

Sl ey < 5 [ ey, we HRY). @2

The best Sobolev constant S is attained at the function

Ol
us(z) = c ~-, €>0. (2.3)
(2 + |z[*) =
On the other hand, the classical fractional Hardy inequality (see [20,22]) states that
u? N lu(z) — u(y)|? :

A de < Ne [ B TOIN gogy w e B (RY), 2.4
wo [t < 5 L e s, we . (24

and the best Hardy constant Ay, never achieved in H*(RY). Rely on (2.2) and (2.4),
for 1 € [0, Ans), Dipierro et al. [15] established the existence of positive minimizers
for (1.7). As a consequence, up to a constant, the minimizers for (1.7) lead to the
variational solutions to the problem

(=A)u = Tz —u%7 i RV (2.5)
ZI/’ S

In what follows, we will denote by wu; () = €~ R u, (%) (¢ > 0) the positive varia-
tional solutions to (2.5), then test (2.5) with ug(x) and using (1.7) we derive that

exa [ (@) — i (y) ./ e ()2 /
’ dady — do= [ |uf
2.4w w1 [ )

%dy = SENS. (2.6)
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Furthermore, it is worthy to point out that the authors [15] gave a control of the
extremal for S, with u € (0, Ay ;). More precisely, there exists positive constants ¢;
and cg, such that

&1 C2

v < un() < v ¢ € RM\{0}, (2.7)
(Jft = (1 + |[2e)) ([t (1 + |[2e))
where 1, =1 — 1\?2;3 and «a, € (0, % ;23) is a suitable parameter whose explicit value

will be determined as the unique solution to equation

(25

D23

2s

=Uns(B) =p, 1€ (0,Any)

I' is the Gamma function and the function g — Wy () satisfies the following known
properties.

Lemma 2.1. (see [20,21]) The following properties hold:

1. Uns(B) >0 forall B € (0, N — 2s).

2. The graph of Uy in (0, N — 2s) is symmetric with respect to N;%, that 1is,
Uns(B) =Uns(N =5 —2s) forall § € (0, N — 2s).

3. Uy is strictly increasing and surjective in (0,
(B2, N — 2s).

4. \I[N75(N528) = AN75.

5. limlg_m \I/N,s(ﬁ) = hmﬁ—>N—2s qjN,s(ﬂ) =0.
In what follows, for simplicity, we define
a(p) = (L =mnu)o,  b(p) = (1 +m,)0, (2.8)

where 1 € (0,Ay,) and 6 = £52. We now extend a(y), b(i) to the interval [0, Ay,)
by defining

N-—2s
2

), and strictly decreasing in

a(0) =0, b(0) =N —2s,
which is consistent with (2.3) and Lemma 2.1. Therefore, for i € [0, Ans), we have
0<a(p) <d<blu) <N —2s. (2.9)

It is worth noticing that from the definition of b(u), we know that b(u) is strictly
decreasing on [0,Ays). Thus, if N > 4s, there exists a unique p* € [0, Ay ;) such
that

2b(p) > N < p<pu*y, 2b(p) =N pu=p". (2.10)

By (2.8), we can rewrite (2.7) as the following form

a uu(@ <

Ca
<
(1ol ¥+ [2*4)° (1o ¥ + )"

z € RM\{0}. (2.11)
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Remark 2.2. For p1 € [0,Ay ), we define

. Jan [(=4) )2ul*de — ,qu |w\25
A(p) = inf 5
ue Hy (2)\{0} o, lul?da

By applying Holder’s inequality and the fractional Hardy-Sobolev inequality, we get
that A(u) is well defined and positive on H(€2).
3. EXTREMALS OF S(pu1, pi2)

In this section, we study the existence of extremals for S(ug, pe) under suitable
conditions which will be crucially used in the proof of our main result. To do this, we
first prove Theorem 1.1, which guarantees the strict inequality S(s1, p12) < Sy, holds.

Proof of Theorem 1.1. (i) Since 0 < pg < 1 < An s and f(7min) < 1, for all (u,v) €
Hs(RN) x H5(RY), by the fractional Hardy inequality (2.4) we have that

2 2
2 2 SIL: 22 L.
ul|z +||v]|Z, = —A)2u|“dr — —dx + —A)2v|*dx — / dx
s, + N0l /RN|< )il ’““/R o /RNK Jrolde =pe | T

= [[ulll, + [lvl5, + (1 — pr2) v
= 1l Ul H1 — 2 RN |$‘25 z

M1 — M2 2
<l + ol + 222 [ (=)o

N,s

M1 — M2 2
- v
el

— [Jul%, —“2|| 12, (3.1)

,8

< llully, + vl +

Testing (1.8) with (um,Tmmum), by (3.1) we have that

[ty |17,
S(1, p2) < f (Tmin) L 2z f(Tmin>Su1 < Sy -
( 2§dm) 2%

On the other hand, by (1.8), (#1) and arguing as in Theorem 1.1 of [23], we get that

Sk, p12) 2 S(pr, ) = Sy infrz0 =5 > 0.
F(1,7)%s
(ii) From the definition of f(7), it follows that

f/( ) 28— 1(2*AN: Z? 28 + An, Q,Z?UOWQ _ 2:7.04 _ nﬁ)
T) = .
2 (F(l,T))Z?H
If <2, n>0,since f(0) =1, f/(1) < 0as 7 — 07, we have f(7un) < 1 and thus
0 < S(p1, p2) < Sy, by the argument of (i).
(iii) If B =2, n > my, since f'(7) < 0 as 7 — 07, we conclude that f(7yin) < 1 and
0 < S(p, p2) < Sy
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(iv) If n > 1y, the definition of 7, implies that there exists 7y > 0 such that

_ Ans—p .
p> (0 T2 E (1),
N,s M1
then we have f(7min) < f(71) < 1 and thus 0 < S(u1, p2) < Sy, - O

With Theorem 1.1, we can verify the existence of extremals for S(p1, u12).

Proof of Theorem 1.2. Since 0 < S(pu, p2) < Sy, < Sy, we have that

! S(ps )\ 35 S(p, p2)\ -
¢ (DAL H2)ysas g (2 Ry ges
( Sy ) ( Sy, )
d S(pas )\ 35 S(p, p2)\ -
= 22 | 2 ],
( Shia ) ( Spy )

For all ¢,] > 0, we consider the equations

252 +l2 QS—S(M,M)%,

(3.2)
t235’ﬁf + 1% ﬁ; + el [on |u, |*|us, |Pde = S, pi2) 2 ,
that is,
t2 ?
+ ~1
(S(upuz))% (S(upuz))% ’
Suy Sug 3.3
t2s 12s nt&lﬁ _ ( . )
(S(M17H2)> 2s (S(M uz)) 2s S(py.p9)2s
Spy Spg T 14§y 19 ufy 1P da

Take t* € (0,¢') C (0,1) and I* € (0,1I') C (0,1) such that (¢*,1*) satisfies the first
equation in (3.3). Since 1 < 2 < 2%, there exists 77 > 0 such that

1 2* I* 2% —t*al*ﬁ

| N | N || ]Iv _1 (3.4)
(M)? (M)? S(p1,p2) 2

Suy Spg Jen Jug 1% us, P da

which implies that for all n > 7, there exists [** € (0,[*) such that

- B ey

N N +
(S(m,uz))z (S(mm))% S(p1, ;1,2)28

Sy Shg Jan [ug, [9us, |Pdz
Since (¢,0), (0,1"), (t*,1*) satisfy the first equation in (3.3), (¢”,0), (0,1"), (t*, ")
satisfy the second one in (3.3) and " > ¢/, I" > I', I"* < I*, (3.3)-(3.5) yield that
for all n > 7, the two continuous curves in (3.2) and (3.3) must have at least two
intersection points (t;,1;) € (0,¢') x (0,1'), i =1,2. Define

=inf{7 | 7 > 0is defined asin (3.4)} > 0.

2 |l**

~1. (3.5)
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Then for all n > n*, by (1.7), (1. ) (2.6) and (3.2), there exist (¢;,1;) € (0,t') x
(0,1), i = 1,2, such that {(tlum, °,)} are minimizers of S(u1, p2). O

4. PROOF OF THEOREM 1.3

The purpose of this section is to prove our main result, for this we need the following
two auxiliary estimates, which will be crucially used in the sequel. We first establish
the general estimates for pu;,, where we will borrow some ideas from [21].

Let us fix p > 0 small enough such that By, C  and let ¢ € C5°(R") be a cutting-
off function such that 0 < ¢ < 1in RY, o =11in B, and ¢ = 0 in B3, = RN\ By,
where B, = B,(0) is the ball centered at origin with radius p. Set v;,(z) = p(z)ug, (),

€ [0,Ans). Then we get the following results.

Lemma 4.1. Assume that s € (0,1) and N > 2s, p € [0,Ays). Then the following
estimates hold true:

les 2 = S5 + 0209, (4.1)

* ﬂ *
i dr = S + 0(625'(1’(“)’5)), (4.2)

and

2s ; N
05, Zf W<2

0572y = § Ce*|Inel, if F]\L) =2, (4.3)
2(b(p)—9) ; N
Ce2t™D, if 2 < gy,

as € — 0, for some positive constant C' independent of €.

Proof. From now on, for simplicity, we will omit the constant c];’s. By the definition
of v5, together with (2.5) and (2.6), we get

gz = [ el =l ”
Uu peo R2N ‘iL‘ ‘N+2S

B (p(@)u(z) — p(y)uj,(y) B (@ .
_/R2N \x y‘N+2s d dy / ‘x’23 d
/ 0’ () (ug,(2))* — o (2)ug(2)ug,(y) + 0* (W) (w,(¥)? — ¢ (Y)ug (2)ug(y)

’]Z’ _ y’NJrQs

+/ i ? () (@)us,(y) + ©* (W) ug(2)ug (y) — 20(x)o(y)ug, (2)ug (y)

’m_y’NJrQs
x)ué (x)|?
[ [,
Q |z[2
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/ () — u () (9*(2)ug, () — 9 (Y)uz(v))

|I‘—y|N+25 dl’dy

(p(x) = o(y))ug(2)us, (y) B 0% (@) (ug, (2))? .
e A e o
o [ CONG [ ppugioias
(p(x) = o(y))ug (@)us,(y) B 0% (@) (ug, (2))? .
e R
[ (el@) = oY) g (@) (y) 2V ()2
_/RQN o g dxdy—l—/g@ (z)|u;, (z)]>d
- /N () + I, + I
=S+ 1, + I, (4.4)

where

[1:/ (o(z) = oY) (x)ug(y)

‘iL' _ y‘N+2s dxdy,

L= [ (@) - D).

To estimate I;, we use the decomposition

RY x RY = (By, X Bsy,) U (Ba, x BS,) U (B5, x By,) U (B, x Bs)).
By the definition of ¢, it is easy to see that

/ (p(x) = p(y))?us, (x)us,(y)

‘iL‘ _ y‘N+25

dxdy = 0.

Note that [y %dy € L>®(RY), then by (2.11) and the fact that b(u) €

(852, N — 2], for (z,y) € By, X B2p, we obtain

_ 2
P / f,( w [ =,
lz|<2p |z [P gy |z —y|Nt

<C€ (W)=90)
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Similarly, for (z,y) € B5, x ng, one can prove that

2,,€ 5
/ / v(y)) uu(x)uu(y)dxdy < C2b)=9)
Bs,

|fL’ _ |N+2s

For (z,y) € By, % ng, by the definition of ¢ and (2.11), we have

2,,€ 5
[ [ i,
Ba, J Ba, |x— | N2
_ 2,€ €
_ / / so(y))Nué(:ﬂ)uu(y) dudy
ja1<p J p<lyl<2p | — |
2, € €
/ / (y))Nqu(fE)uu(y) dedy
p<|z|<2p |y|<2p |z — gy
1

<) 2‘5/ dm+052b (W)= 2‘;/ ——dy
lz|<p |x| ly|<2p [y [P

<O20)-9),

Collecting the estimates above, we obtain that

I — / (p(#) — p(y))up(@)u(y)

’.’E _ y’N+2S

drdy < Ce2t=29), (4.5)
Now, we estimate I. By the definition of ¢ and (2.11), we deduce that

L] = |/ ) — 1) o () P de]

< 2/ |z, () % da
lz|>p

4.6
< 9210 D) / %dm (4:6)

< C2bw)—9)

Therefore, combining (4.4), (4.5) and (4.6), we get (4.1). Then, we estimate [,
By the definition of ¢ and (2.11), we have

e 12* c12* 2
sdr — ub |*sdx| <
H /]RN’ a |_/]RN’SD

< g
< / |,
[z]>p

€12%
AR

% dx
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< C€2:-(b(u)*5)7
which implies that
%y = SE + O H0-0),

I
Q

Finally, by the definition of ¢ and (2.11), we have

[ leiPas = [ fowpiso) s
Q |z[<2p

_ N /‘5 PN =26()~1 g,
1

((OeN-25 _ 052(1)(#)—5)’ if N< 2b(,u),
= CeN"Ine|, if N =2b(n),
C'e2b(p)=8) _ CgN—%, if N> 2b(u),

\
(25 N

Ce**, if b < 2,
Ce*|nel, if 55 =2

W=D, if A

v

\

O

Lemma 4.2. Assume that (H) holds and n > n*, aq, 51 >0, 0 := a; + 1 < 2. Let
(tous,,, lous,) be a positive minimizer of S(uy, pi2) obtained as in Theorem 1.2. Then

© Y
the féllowing estimates hold as ¢ — 0:
H (tOU;U ZOU/ELQ) HI2/V < S(/’l’la /*LZ)% + 082(1)(“1)76)7 (47)

/ F(tovs,, IS, )dz > S(ju, o) 3 — O ) =0), (4.8)
Q

H1?
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CeN= if arb(pu) + Bib(pz) > N,
[ e 2 § 0o mel, if aaba) + bl = N, (19
0
Cebli)thiblk)=o0 4 f aib(pr) + fib(pa) < N.

Proof. (i) Since b(p) is decreasing on [0, Ay ) and (¢, o) satisfies (3.2), by (3.2) and
(4.1), we have

(s, L)l = tollv, 112, +l2|| A
<t0 +l2 +C’€ (b(p1)— 5)+05 (b(p2)—96)
< S, p2) 2 + C20070),

(ii) By (3.2) and (4.2), we get
/ F(tgvs,,, lovs, )dz =ty / EARTEES / v, [%dz + ntgly / 05, [*|v, |7 da
Q Q Q Q
9% N 9% N o a
>2S5 + sk + gl / o5 1205, P de
— 02 bu)=8) _ 2 )—0)
o N 9 N o
=to*Siii +1o° ﬁ;+ntol€/ Jus, | s, | da
RN

B / (1— %)
RN

zswl,méﬁ—c/ S, |°us, [P — CE20=9),

[z]>p

us,, ]O‘\ufm\ﬁd:v — 0% 0lm)=0) _ g2 (b(p2)=9)

On the other hand, by (2.11), it follows that

/| [, |, Pd < et | ((uz)—é)/ | 0B H862) g
z|>p

|z[>p

<O () =) / () +3b002) g
lz|=p
<2 0m)-0),

which yields the inequality

[ P, ot ) > G, ) - 00009
Q
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(iii) Using the similar argument as obtaining the estimate (4.3), we conclude that
JCAR ALY AR IS
Q lz[<p
— [ @) o) da
lz|<2
> € [ @) ()
1<|z|<2

> C€NU5/ ‘x|f(a1b(u1)+5lb(#2))dx
1<]z|<2

P

> CgN—mS /E T’N_l . r—(alb(ﬂl)+ﬁlb(ﬂ2))d7~
1

CeN=70if anb(p) + Bib(us) > N,
> { CeN"ne|, if aib(pa) + Bib(pz) = N,
Ceerblim)+Biblu2) =00 =4 £ o b(py) + Brb(pg) < N.

l

Using the previous lemmas we are able to prove the main result of this paper, that
is, Theorem 1.3. The method we use here is the Mountain Pass Theorem and we
point out that under the assumptions in Theorem 1.3 and Remark 2.2, it is easy to
check that the functional J satisfies the geometric features required by the Mountain
Pass Theorem and we omit it here. Now, we show the energy functional J verifies
the Palais-Smale condition at any level ¢, provided ¢ < ¢*. The technique is the
concentration compactness result for the fractional Laplacian obtained in e.g. [6,35],
see also [28, Remark 1.6] for more details.

For this, we define the fractional gradient of a function u € H§(2) as

L M =1

In the sequel, we shall use the notation |D®u| denotes the fractional gradient of a
function u, then |D*u| € L*(RY) and it is well defined a.e. in RY.

Lemma 4.3. Suppose that (H1), (H2) hold. Then the functional J satisfies the (PS).
condition for all c < c* := 3:5(pu, [i2) 25

Proof. Suppose the sequence {(u,,v,)} C W satisfies J(u,,v,) — ¢ < ¢* and
J' (un,v,) — 0. Standard argument shows that {(u,,v,)} is bounded in W. Up
to a subsequence if necessary, for some (u,v) € W, we have

(Un, vy) = (u,v) weakly in W,
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(tn, vn) = (u,v)  weakly in (L*(Q), |z]7*)?,
(tn, vn) = (u,v)  weakly in (L*(Q))?,
(U, vn) = (u,v) a.e.in Q,

)

strongly in (L*(Q))?.

By the concentration compactness principle (see e.g. [6,10,35]) and up to a subse-
quence, there exists an at most countable set T, a set of points z; € Q\{0}, nonneg-
ative real numbers o;,v;, 5 € T, and oy, v, o, such that the following convergences
hold in sense of measures:

| D*u,|? + | D0, |* — do > |D*ul?* + | D*v|* + 0404, + Zajéxj,

(Un, vy) = (u,v

JET
U |* + 2], |? ul?® + polvl?
pa |t |* + pio] ‘—)du:m" piz|v] + o0y,
|$|2S |$|2s
F(up,v,) = dv = F(u,v) + 10y, + Z Vjba,,
JeET

where 0, is the Dirac mass at x. By (1.8) and following a similar way as in [6] (see
also [10, Lemma 4.5]), we have

2

— Ho > S(ul,m)%ﬁ, (4.10)

;> S0,0p7, jeT. (4.11)
Now we consider the possiblhty of Concentratlon at the origin zy. For ¢ > 0, let
¢ € C°(RY) be a nonincreasing cut-off function verifying ¢ = 1 in B;(0), ¢ = 0 in
B§(0). Let ¢.(z) = ¢(2), clearly |V¢.| < €. Since (@:un, d-v,) is bounded in W, we
have that
(J (Un, vp), (Petin, d-vy)) — 0 as n — oo.
Then
oo [ () =G = )y, [V
R2N

\x—y\N”S N ’.26‘28 ¢5dx

[ ) 0 ONEl) =0l g, [ L g

|z — y| Ve B

—/Q(un,vn)qﬁgdw—/QF(un,vn)gbgdx—i—o(l)

|, (1) — U ( )|2¢5(:E) / |un|2
dxdy — —.d
// |x— R A N e

U (1) = un(y)) (e () — D=(y))un(y)
+/RN /RN dxdy

‘iL‘ _ y‘N+25
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|on () — v ( )|2¢€(q;) B |Un‘2
/RN /RN ]x _ ’N+2 dxdy — po /RN s o-dx
Un (2 (1)) (0=(x) — B (y))vn(y)
/RN /]RN |x — y|N+2s dxdy

—/Q(un,vn)gbedx—/F(un,vn)d)sdx—i-o(l), (4.12)
Q Q

as n — oo. Using Hélder’s inequality and the fact that w,, v, are bounded in H{(€2),

we get
/ / tn () (tn(7) — (@) (0:(2) = 6:0)) ;.

|t (y)[?| @< () — dc(y)|? 2

<O /RN /RN PR d.rdy) ,
V(1) (Un () — v (y))(¢c(2) — 0:(y))

L] P dsdy

o)1) ~ 6, N
< .
O R

From [6,35], it holds

2
lim lim / / [1n ()19 () — Ge(y) dady = 0, (4.13)
e0n—oo JpN JrN |5L’ — |N+23
2
lim lim / / [vnly ‘ |¢€ D) =W gy =0, (4.14)
e—=0n—o0 Jpn JpN y|N+25
On the other hand, by the definition of qzﬁs, it is easy to prove that
2 2
lim lim [ Faltnl” & polval gbadx:lim/gbsdu:uo, (4.15)
e=0n—o0 Jqo ‘;L"Qs =0 Jo
lim lim /Q(un,vn)qbedx =0, (4.16)
e=>0n—o0 Jo
lim lim [ F(up,v,)p.dx = lim/ Odv = 1. (4.17)
e—0 n—oo Q e—0 Q
Then, by (4.12)-(4.17), we obtain
0 = lim lim (J'(uy, vy), (Gctin, p-vn)) > 00 — o — Vo- (4.18)

e—0n—o0

2

Combining (4.10) and (4.18), it follows that S(u1, pu2)vg* < v, which implies that
=0, or vy> S(ul,m)%. (4.19)
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Next we consider the possibility of concentration at z;,7 € 7. Take ¢ > 0 small
enough and ¢. € CP(RY) such that . = 1 in B.(x;), . = 0 in BS.(z;) and
[Vipe| < €. Note that

. . ,u1|un|2 +#2|Un|2
lim lim
e—0n—oo Q |x|25

Vedr = lim/ Yedp = 0.
e=0 Jq

Arguing as in (4.18), we get
0 = lim Hm (J'(tn, vp), (Yetin, Yevy)) > 05 — vj. (4.20)

e—0n—o0
2

From (4.11) and (4.20) we have that S(0, O)V]-Zz < v;, which implies that

v; =0, or v;>S(0,0)% > S(uy, p2)?, (4.21)

therefore the set T is finite.
Suppose that there exists v, k € {0} U T, such that v # 0. It follows that

¢ = J(tup,v,) — %(J’(un,vn), (Un, vp)) + 0(1)

- %/ﬂF(un,vn)da: +o(1)

— %(/QF(u,v)dx + 1y + Zuj)
JET
By (4.19)-(4.21) and the assumption ¢ < ¢*, we get a contradiction and we deduce that
vo =v; =0,Vj € T. Up to asubsequence, (u,,v,) — (u,v) strongly in (L% (2))?. By
the weak-to-weak continuous property of the fractional Laplace operator [10, Lemma
2.2] and the Brezis-Lieb lemma [7], it is now enough to get that

. 2 2
lim (|fun — ally, + lon = vll7,)

= lim (J'(un, vn) — J'(u,v), (uy — u, v, —v))
n—oo

et llm <J/(Un,vn>, (UTL - u, Un - U)> — 07
n—oo

thus (uy,,v,) — (u,v) strongly in W. O

Lemma 4.4. Under the assumptions of Theorem 1.3, there exists € > 0 small enough
such that

«_ S N
S:;Ig J(TtOUZI,TZOU,iz) <c = NS(M,M)%‘

Proof. For all 7 > 0, by (H1) and (#H2), we have that

7_2

J(TtOUZI,TZOUfL2) :?{H(tovil,lov;)m‘, — /QQ(tov/il,lovaQ)dx}
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2

_ 3 /QF(tOUM,lovzz)dx.

For all By, By > 0, there holds that

2 7% s -2 2
ITnggc(EBl % By) = N<BIB2 RO RN (4.22)
By the hypothesis 0 < ps < 3 < p*, it follows from (2.10) that
N < 2b(p1) < 2b(p2) (4.23)
and
2(b(p1) —6) = 2b(pg) — 20 > N — (N — 2s) = 2s. (4.24)

Therefore, from (4.22)-(4.24) and Lemmas 4.1 and 4.2, for ¢ > 0 small enough, we
get that

tovs , love )13 — zfv,lv6 dr %
SupJ(TtoUm,TloUZg) < i(H( 0%1> %0 M2)HW fQ 0%y %0 MQ) )2
720 N (fQ zfovm,lgv‘5 )da:) H
< i(S(MhMQ)% + Ce?tlm)=0) f Q tOUM,ZOUZQ)dl")zNS
A ({1, po) 3 — C2i00m)=0)) &
< i(S(Ml,MQ)éV + CeXbm)=0) — ¢ [0 |vf“|2dx>§£
N S, ) % — C220(m)=5)
S & N 1+ C&z(b(’“)"s) = C [q |v5, Pda 5
< Sl )= ( CgZ(b(Ml —3) )
s N 062(b )= C’f |v 2dx 2
=9 2s <1 Q ,u1 )
N (M17M2)2 + 052
s
< NS(M,M)% (1 —I—C€2(b(“1) / |Uu1| dx
= %S(M17N2>% + 062(11(#1)75) - C/ ’UZ1’2dx
Q
S N
<=5 2s
N (M17M2)2 )
this concludes the proof. O

Proof of Theorem 1.3. Under the assumptions of Theorem 1.3, a standard argument
of the Mountain Pass Theorem [4] shows that there exists a sequence {(un,v,)} C W
such that J(up,v,) — ¢ and J'(uy, v,) — 0 as n — oo, where

0<c¢< sup J(tov]

7'l0'UZ2 )
7€[0,1]

p1?
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Lemma 4.4 implies that ¢ < ¢* and by Lemma 4.3, there exists a subsequence of
{(un,v,)} (still denoted by {(un,vy,)}) such that (u,,v,) — (u,v) strongly in W.
Therefore (u,v) is a critical point of J corresponds to a nontrivial solution to problem
(1.6). Set ut = max{u,0},v" = max{v,0}, replacing v and v in the terms on the
right hand side of equations in (1.6) by ut and v™ respectively and repeating the
above process, we obtain the existence of a nontrivial weak solution (u,v) # (0,0)
to (1.6). Then, using Lemma 2.5 in [10], we have that (u,v) # (0,0) is nonnegative.
From (1.6), (H2) and definition of @, we deduce that u,v # 0 and by the Maximum
Principle [32], we get that w,v > 0 in Q. This finishes the proof of Theorem 1.3.

O
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