loading page

QUASILINEAR PARABOLIC PROBLEMS IN THE LEBESGUE-SOBOLEV SPACE WITH VARIABLE EXPONENT AND L1 DATA
  • MESSAOUD MAOUNI,
  • fairouz souilah,
  • Kamel Slimani
MESSAOUD MAOUNI
20 August 1955 University of Skikda
Author Profile
fairouz souilah
20 August 1955 University of Skikda

Corresponding Author:fairouz.souilah@yahoo.fr

Author Profile
Kamel Slimani
20 August 1955 University of Skikda
Author Profile

Abstract

This paper is devoted to studying the existence of of renormalized solution for an initial boundary problem of a quasilinear parabolic problem with variable exponent and $ L ^{1} $-data of the type \begin{equation*} \left\{ \begin{array}{ll} (b(u))_{t}-\text{div}(\left\vert \nabla u\right\vert ^{p(x)-2}\nabla u)+\lambda \left\vert u\right\vert ^{p(x)-2}u=f(x,t,u) \text{ } & \text{in}\hspace{0.5cm}Q=\Omega \times ]0,T[, \\ u=0 & \text{on}\hspace{0.5cm}\Sigma =\partial \Omega \times ]0,T[, \\ b(u)(t=0)=b(u_{0}) & \text{in}\hspace{0.5cm}\Omega , \\ & \end{array}% \right. \end{equation*}% where $ \lambda>0$ and $ T $ is positive constant. The results of the problem discussed can be applied to a variety of different fields in applied mathematics for example in elastic mechanics, image processing and electro-rheological fluid dynamics, etc.