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u0,.) = uy,v(0,.)=vy in L,

%=O,@=0 in Xr,
on on
where Q =]0, 1[X]O0, 1[, Q7 =]0, T[xXQ and X5 =]0, T[X0L, (T" > 0),n is an outward
Ix12
normal to domain € and u, v is the image to be processed, G (x) = — exp Ui
V2ro

x€R,0>0and Vu, =u * VG,.

In this study we are going to proof that there is a global weak solution to the ptoblem
(1), we truncate the system and show that it can be solved by using Schauder fixed
point theorem in Banach spaces. Finally by making some estimations, we prove that

the solution of the truncated system converge to the solution of the problem.
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1 | INTRODUCION

Image processing is a method to perform some operations on images, in order to get an enhanced image or to extract
some useful information from it; recentlly, this topic has become a big challenging problem and a very active field of computer
applications and researches®. Over the last few years, some wonderful results were observed and has used a reaction-diffusion
models, which can describe many natural phenomena in a wide rage of disciplines. One of the most recently and active topic
in this field has been the restortion of image, that is a technique in which we enhance the data (raw images) sensors placed on
different artifacts of the life for various specified applications; the most common problem posed in this topic is how to eliminate
the noise from the data image, the answer of this question is given in 19871 by Perona-Malik, in his nonlinear diffusion model;
also called anisotropic diffusion model, it is one of the first attempts in which they include local information to reduce noise
and enhance constrast while preserving the edge; but the basic model of Perona-Malik is ill-posed in the sense of Hadamard.
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To overcome this problem, in 19922, Catté, Lions, Morel and coll suggested introducing the regularization in space and time
directly into the continuous equation in order to obtain a related well-posed model. They prove the existence, uniqueness and
regularity for the related model and demonstrate exprimentally that the related model gives similar results to the Perona-Malik
model™. The study of morfu in 2006 was based on the contrast enhancement and noise filtering. His model was ruled by the
Fisher equation. The model proposed by Morfu is:

S — div(g(|Vul)Vu) = f(u) in O,
u(0, x) = ug(x) in L, 2)
Ju

= =0onX
do 0 T>

where Q is the domaine of the image, T' > 0, u, is the original image to be processed and f(s) = s(s —a)(1 —s) with0 < a < 1.
The major inconveniences of this model are two, the first is the sensitivity to noise and the second is that no results of existence
and consistency is proved. From this, the idea of Alaa and the others in 20142 combined the regularization procedure in catté?
with Morful® model. They suggested to modify the model proposed by Morful? by appling a gaussian filter on the gradient of
the noisy image during the calculation of coefficient of anisotropic diffusion; this study is devoted to a generalization of their
work in the case of f is nonzero. The proposed model is:

% _ div(g(|Vu,|)Vu) = f(t.x,u) in Oy,
u(0, x) = uy(x) in Q, 3

Ju
P 0 on ET’

where Q =]0, 1[X]0, 1[ denotes picture domain with boundary d€2, with Neumann boundary conditions, u(t, x) is the solution
of this PDE (restored image) and u, is the original image to be processed, O =]0, T[XQ and X, =]0, T[x0Q2 where T is a
fixed reel number (T > 0), ¢ > 0, G, is the gaussian filter where:

2
! exp(—ﬁ), x € R%.
4o

G,(x)=
2ro

i=2 dw 1/2
Vo| = —)?)
Vol <i= (ax,.) )

1

They consider the gradient norm of w as:

Vw,, is the smoothed version of gradient norme where :
Vo,=V(wx* G,) =w* VG,

The diffusivity g is smooth decreasing function defined by
g(0) =1, lim g(s) =0, “)
S— 00

one of the diffusivities Perona and Malik proposed is:

go)= —4

512
1+0o ( 7 )

where v > 0, d > 0 and A is a threshold (contrast) parameter that separates forward and backward diffusion'!¢.

The previous study shows how differential equations can be employed to restore a digital image, in which they give a demonstra-

tion of the consistency of proposed model. They used a new technique recently introduced by Pierre'l3 for study of semi-linear

isotropic systems. In 2016%, Bassam Al-Hamzah and Naji Yabari proposed a new reaction-diffusion model in image processing,

which they proved the existence of global solution for the nonlinear reaction-diffusion model. this study deals with the equation:

L div(g(|Vu, )Vu) = £(t.x,u, Vu) in Q.
u(0, x) = up(x) > 0 in Q, )

du
—=0onX
Jdv T>

XZ
where Q =10, 1[x]0, 1[, Q; =]0,T[xQ and £, =]0,T[xdQ, where (T > 0), G,(x) = \/%exp_(%), x € R, 6 > 0and

Vu, =Vu+G,) =uxVG,.
In fact these results f (¢, x,u, Vu) are a generalization of the work f = 0 presented by Catté?, and the work f = f(¢, x,u)
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presented by Alaa?. In the same year, Lecheheb and all interested in the study of the existence of weak solutions of boundary
value problem for the nonlinear System of Convection-Diffusion-Reaction. In 2018Y Aaraba, Alaa, and Khalfi provided the
existence of global solution to a generic reaction-diffusion system with application to image restoration and anhancement. This
study is a generalization of the work presented by[,~, ] in the case of reaction-diffusion equations. They gave an example of
the application demonstrated on a novel bio-inspired image restoration model’. In the same year, Alaa and Zirhem", proposed a
new model of nonlinear and anisotropic reaction diffusion system applied to image restoration and to contrast enhancement, this
Model is based on a system of partial differential equations of type Fitzhugh-Nagumo, where they compared the performance
of their alghorithm with that of classical Fizhugh- Nagumo model. In 2020%, A. Ouaoua, A. Khaldi and M. Maouni give a new
study of the stabilization to the solution for a Kirchhoff type reaction-diffusion equation.

The aim of this work is to give a generalisation of the work presented by[%,%,1%], in the case of reaction diffusion equations. We

prove the existence of global weak solution to a generic reaction-diffusion nonlinear parabolic system. Our work is given by:

%—diu(g(|V(uU)|)Vu)=f(t,x,u,u,Vu), in Oy,

% —d,Av=p(t,x,u,v,Vu) in Qp,

< (6)
u,.) =uy,v0,.)=v, in Q,

@zo,@=0 in X,
Lon on

where Q is smooth bounded domain in R” and T € [0, oo[, Q1 =]0, T[X€2 and X, =]0, T[X0€2 where 0L denotes the boundary
of Q, the initial conditions u, v, are only assumed to be square integrable, # is an outward normal to domain Q. Let ¢ > 0,
Vu, be a regularization by convolution of Vu. It is defined as Vu, = V(G * u) and the diffusivity g check the same properties
provided by Alaa?, which is given in the equation @) .
The nonlinear functions f,p : Op X RXR X RN — R mesurable for (t,x) and locally lipshitz continous for « and v, 3r > 0 for
almost (¢, x) € Qp such that

|f(t, x,u,0,q9) = f(t,x,i,0,q))| < ky(O[|lu—a| +lqg—qlll

|p(t, x,u, 0, q) — p(t, x,u, 0, q,)| < k(Nllv—"70| + |lg — g,ll],
for all 0 < [ul, |al, llqll, llg,]| < rand O < |vl, [D], llqll, llg,]l < r.
In addition the nonlinearities satisfy the following main properties:

(H,)- the positivity property:
For almost (¢, x) € O

f(t,x,0,5,Vs)) >0, and p(t,x,5,,0,Vsy) >0, Vs;>0,i=1,2.
(HZ) - V(u’ U’ll) € R X R X [RN’ l/lf(t, X, U, 0, ql) S 0 and Uf(t7 X, U, U, ql) S 07

—V(u,v,q,) € RXRXRN up(t,x,u,v,q,) <0and vp(t, x,u,v,q,) <0,

(Ll + U)(f +p)(t’ X, u, v, ql’ 612) S O

. Furthermore,
Sup (lf(tvx’l]’IZsVl2)|+ |p(t9xsllvl2’Vll)|)E LI(QT), for R:2r>0

Irl+s|<R
In this work we give a proof of the global weak solution of the problem (IJ), we truncate the system ans show that there is a

solution by using Schauder fixed point theorem in Banach spaces. Finally by making some estimations we prove that the solution
of the truncated system converge to the solution of the proposed problem.

Now we will recall some functional spaces that willbe used throughout this paper. For all k € N, H*(Q) is the set of functions
u defined in Q such as u and its order D™u derivatives where |m| = Zj‘ =I'm ; < k are in L*(Q). H*(Q) is Hilbert space for the

norm :
2
||”||Hk(g)= ( Z /|D”’u|2dx> . (7
|m|§kQ
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We denote by (H'(Q))' the dual of H'(Q).
LP(0, T, H*(Q)) is the set of functions u such that, for all every ¢ € (0, T, u() belongs to H*(Q) with the norm

1
Null oo e @) = </ ||u(t)||Hk(Q) > , 1<p<oo, keN. ®

L>(0,T, L>(Q)) is the set of functions u such that, for all every ¢ € (0, T'), u(?) belongs to L?(Q) with the norm

2
lull Loo,7, 12000 = < sup ||u(t)||iZ(g)> . ©
0<t<T

L=(0,T,C*(Q)) is the set of funcions u such that, for all every ¢ € (0, T'), u(¢) belongs to C*(Q) with the norm

||u||Loo(0’T’Coo(Q)) = inf{c, ||M(t)||coo(g) < C in (O, T)} (10)
We have that

G, O oo, e = Nl oo mr @y + 10N e, Hr @), 1 <P <00, keN. 11
Il us U)”Leo(o,T,LZ(g))Z = ”u”]_w(o,T,Ll(g)) + ”U”Loo(o,r,u(g))- (12)
1, Ol Lo, 1,c0@)) = Nl Loor,c@) + 10N Lo 0.7.00)- (13)

2 | THE THEORETICAL STUDY

First, we clearly state our definition of weak solution to the reaction-diffusion system, we define the folowing spaces:

= {u,v € L*(0,T, H'(Q)) N C(0, T, LA(Q)), u(0, ) = uy and v(0,.) = v, }.
Z = {¢,w € C'(Qy) such that ¢(T,.) = 0 and w(T,.) = 0}.
D= {u,ve LX0,T, H(Q))n CO,T, LX(Q))}.

Definition 1. We call (u, v) a weak solution of system (T)) if
eVu,v € X and Vb, € Z we have

/u—dxdt+/g(|Vu6|)VuV¢dxdt=/f(t,x,u,u,VU)d)dxdt+/u0¢(0,x)dx,

. (14)

B
oy
—/Udedt+/dUVUVu/dxdt:/p(t,x,u, U,Vu)u/dxdt+/vou/(0,x)dx,

QT QT QT Q

where f (¢, x,u, v, Vv), p(t, x,u,v,Vu) € LZ(QT).

Theorem 1. Under the assumption (H,), (H,) and for the diffusivity g given in {@). The reaction-diffusion system (I)) admits a
weak positive solution (u, v) in the sense defined in (T4) for all u,, v, € L*(Q) such that uy, v, > 0.

Proof. The proof of the Theorem (I)) is done in four step:

2.1 | Stepl: Existence result for bounded nonlinearities

First, we will show the existence result for bounded source terms f, p.
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Lemma 1. Under the obove assumption (H,) and (H,) of the nonlinearities, if there exists M ;, M, such that for almost every
(t,x) € O,

|/ (2, x, 81,85, V)l S My, |p(t, X, 51,85, Vs S M, V(sy,s,) € R?, 15)
then for every uy,v, in L*(Q), there exists a weak solution (u,v) to the considered system (T4). Moreover there exists
CM;, M, T,o,|lugll 120), Vgl 12er)) such that

”(Ll, U)”L”(O,T,LZ(Q.))Z + ”(u, U)”LZ(O,T,HI(.Q))Z < C. (16)

Furthermore if u, v, are positive and f, p are quasi-postive, then u(z, x) > 0 and v(z, x) > 0 for almost every (¢, x) € Oy.

Proof. We show the existence of a weak solution by the classical Schauder fixed point theorem.
We introduce the space

ou Jv
o1’ or
Let w = (w,, w,) € W(0,T)? and (u, v) be the solution of a linearization of problem (T)) given by:
eVYu,v€ DandVop,y € Z

W(,T) : {u,ve L*0,T, H(Q)) n L®, T, L*(Q)), — e L*(0,T,(H'(Q)))}

P
- / ua—(fdxdt+ / g(IV(w)),\VuVddxdt = / [t x,w,, w,, Vw,)ddxdt + / uy(0, x)dx,
Or Or Or Q
) (17
0
- / ua—"t’dxdt+ / d,VoVydxdt = / Pt x, Wy, w,y, Vw, wdxdt + / 0w (0, x)dx.
QT QT QT QT

The application w € W(0,T) — (u,v) € W(0,T) is clearly well defined. In fact w, € L®(0,T, L*(Q)) and g, G, are in
C*(Q) so g(|V(w)),|) € L*(0,T,C*®(Qr)) and since g is non-increasing it satisfied

asg(lv(wl)(;')sd’ (18)

where d > 0 and a is a positive constant that depends only on ¢ and g. Let (, v) the solution of the linearized problem (7).
Now we establish some important estimates to construct the functional setting where Schauder fixed point theory is applicable.
ForallO<t<Tandfor¢p =uandy =v

/ua—dxdt+/g(|V(wl) DVuVudxdt = /f(t X, wl,wz,sz)udxdt+/ 2dx

QI Qr r Q
—/Uadxdt+dUVvVdedt=/p(t,x,wl,wz,le)vdxdt+/vodx.
0, 0, Or
—%/uz(t)dx+%/ 2(0)dx+/g(|V(w1) |)|Vu|2dxdt—/f(t X, wl,wz,sz)u+/ up,
Q Q Q, Q
—%/vz(t)dx+%/ v*(0)dx +d, /|Vu|2dxdz /p(t,x,wl,wz,le)udde/ugdx,
Q Q o, Q
é/ 2(t)alx+‘/g(|V(w]) DIVul?dxdt = /f(t X, wl,wz,sz)udxdt+;/ude,
19 0, 0, ) Q (19)
2/ 2(t)dx+d /lVU| dxdt = /p(t,x,wl,wQ,le)vdxdt+§/Ugdx,
Q 0, 0, Q
L 2(t)d Vuldxdt < | |M,||uldxdt + 1 24
3 wtydx+a [ |Vul"dxdt < [ |M|luldx +§ uydx,

Q

< o ° 20)
1 2 2 1 2 (
3 v'(dx +d, [ |Vol7dxdt < [ |[M,||vldxdt + 3 vydx,
0, 9 Q

Q
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witha f, |[Vul> > 0and d, [, |Vo|* > 0.

/uz(t)de/|Mf||u|dxdt+%/uédx,

Q Or Q

/Uz(t)dXS/|Mp||U|dxdT+%/Ude,
Or Q

Q

N | —

N | —

with Cauchy Schwartz

( 1 1
2 2
l/uz(t)dxg </|Mf|2dxdt> </|u|2dxdt> +%/ugdx,
Q

2
Q

Q’l' T
A 1 1
2 2
%/Uz(t)dxs </|Mp|2dxdt> </|u|2dxdt> +%/U(2]dx,
Q Or T Q
with Young
;/ P(t)dx < £ /|Mf| dxdt+—/ 2dxdt+%/u§dx.
Q
/U(z)a'x.
Q

Q
;/ P(dx < £ /IMldxdt+—/ 2dxdt+%
Q

My, fo, |Mp|2dxdt =M,

/uz(t)dxs M| +/u2dxdt+

Q Or

/vz(t)dxs |Mp|+/u2dxdt+

Q Oy

Lete = 1 and /Qr |M ,|*dxdt =

u

=N
QU
=

@1

P~ P~
Ocl\)
QU
=

Using Gronwall’s inequality we obtain

/u2dxdt < <exp(T)— )(Mf +/u dx>,
Or @ (22)
/Uzdxa’ts <exp(T)— 1><M +/v dx>,
Or Q
sup /uz(t)dx <M, + <exp(T)— 1> <Mf +/u dx> +/u(2)dx =c
0<t<T
Q Q
sup /uz(t)dx <M, + <exp(T)— 1> <Mf +/v dx) +/v§dx =c,
0<i<T
Q Q Q
Therefore by setting C; = ¢; + ¢, we get
(23)

1, Ol L0712 < Ci-

;/ 2(t)dx+a/|Vu| dxdt</|Mf||u|dxdt+%/uédx,

Q
;/ P(dx +d, /|VU| dxdt</|M ||U|dxdt+%/védx,
Q

Q

—/|u|2dxdt+a/|Vu|2dxdt§ %Mf+%/u2(t)dx+%/u§dx,
Q

|u|2+d |Vu|?dxdt < M + 2(t)dx+1 vidx,
2 0

Q
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/|u| dxdt+a/|Vu| dxdt < M, + /uz(z)dx+/u§dx,
Q Q

—/|U|2dxdt+d /|Vu| dxdt <M +/ 2(t)dx+/ vpdx,
Q Q

Qr

min(= a)/|u|2dxdt+/|Vu| dxdt < M, + /uz(t)dx+/u(2)dx,

Q Q

min( )/|u| dxdt+/|VU|2dxdt<M +/ 2(t)dx+/ vedx,
Q Q

M, + [Lu*(®dx + [, uPdx
/|u| dxdt+/|Vu| dxdt < —L Jo 1 Ja =c,,
min(a,a)
M, + [ v*()dx + [, v’dx
/|U| dxdt+/|Vv| dxdt < -2 /Q - fQ 0 = cs,
min(z,du)
setting C, = ¢, + ¢5
”(Ll, U)”LZ(OT H'(Q))? < Cz. (24)

Next we estimate the — and — in L*0,T,(H'(Q))) we have

% = div(g(|Vu,|)Vu) + f(t,x,u,v, Vv),
ov
— =d,Av+ pt, x,u,v, Vu),
ot
||0u,||Lz(0T(H1(Q))) _C”VU”LO(Q )+Mf :=C3,

Novll 20,71 @y € dull VUl 20,y + MT 1= Cy,
setting Cs = C; + Cy

[l (ou,, aUr)||L2(0,T,(Hl(sz))/)2 <G (25)

Now we are in a position to apply Schauder fixed point in the functional space

Wo(0,T) = {(u,v) € L*0,T, H'(Q))* n L0, T, (H" (), I, )| oo.1.12p < Crs 10, D)l 2017112 < Cos

1@u,, vl 207 (11 @)y < Cssul., 0) = ug, v(.,0) = vy}

We can easily verify that W,(0, T') is a nonemply closed convex in W (0, T) to use Schauder fixed point, we will show that the
aplication

F : Wy(0,T) — Wy(0,T) 26)

w — Fw),
is a weakly continuous.
We consider a sequence w, € W;,(0,T) such that w, = w in W;(0,T) and let F(w,) = (u,, v,) thus
ou

a_tn = dlv(g(lvwlngl)vun) + f(t9 x? w]ns wzn’ VwZn)9

ov

n

ot

=d,Av, + p(t, x, w,, W,,, Vw,,),
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we have that (u,, v,) is bounded in L*(0, T, H'())* and (d,u,,, d,v,) is bounded in L*(0, T, (H'(L))")? then by Simon"# is

relatively compact in L?(Q) which means we can extract a subsequence denoted w, such that:
eu, = uin L*(0,T, H'(Q)).

v, = vin L*(0, T, H'(Q)).

of(t,x,w,, Vv,) = f(t,x,w, Vv)in L>(Q7).

op(t,x,w,, Vu,) = p(t,x,w, Vu) in L*(Q7).

eu, — uin L?(0, T, L*(Q)) and almost every where in Q.

eu, — uin L?(0, T, L*(Q)) and almost every where in Q.

eVu, — Vuin L*(0,T, L*(Q)).

*Vu, = Vuin L*0, T, L*(Q)).

ew, — win L*(0,T, L*()) and almost every where in Q.

2(IV(wy), ) = g(VQw,),|) in L20.T, H' ().

d,u, — duin L*0,T,(H (Q))).

0,0, = d,vin L*(0,T,(H'(Q))).

Using these convergence, we can pass to the limit and show that the limit (i, v) are solution of the problem

2 = div(e (V1w V) + 10,3, w0y, 103, Viwy),
ov
5 =d,Av+ p(t,x, w;, w,, Vw,),

thus F(w) = (u, v) then F is weakly continuous, then we deduce the existence of w = (u, v) € W;(0,T) such as w = F(w) and

thus thee existence of (u,v) € W(0,T).

2.2 | Step2: Existence result for truncated nonlinearities
In this case, we truncate f and p using truncation function ¥, € C*(R), such that 0 <¥, < 1 and
1 if |r|<n,
¥Y,(r) =
0 if |rl=2n+1.

Thus, we can state that the approximate problem

oJu
at" = div(g(|Vu,,)Vu,) + f,(t, x,u,,v,, Vv,),
Jv,
5 = d,Av, + p,(t, x,u,,v,, Vu,),
where
fu@t x,u,,0,,Vu,) =¥, (lu) f@, x,u,0, Vo),
and

pn(la X, bln, Una Vun) = ‘Pn(|u|)p(t, X, U, 0, vu),

O

@7

(28)

by the means of theorem (I)) the problem [28) admits a weak solution. Now we show that a subsequence (u,, v,) converges to

the weak solution (u, v) of problem (T}, for this we need to prove the following results.

Lemma 2. Let (u,,v,) be the solution of the approximate problem (28) then

(1) There exists a constant M < Jo tndx, [o v, 0dx, T> such that

/(un +v,)dxdt <M Vtel0,T].
Or
(2) There exists M, > 0 such that
/ |Vu,|? + |Vo,|*dxdt < M.
Or
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(3) There exists M, > 0 such that
[ 15,1+ pyJaxas < ar,
Proof. (1) We have the approximatif problem
Ju,
T div(g(|Vu,,|)Vu,) = 1, x,u,,v,, Vv,),
Jv, (t Vu)
LA R4S 7R Una n’»
o x,u u
Ju,
u"? —div(g(|Vu, )Vu,)u, = u, f,(t, x,u,,v,, Vu,),
du,
Unw —div(g(|Vu,,|)Vu,)v, =v, f,(t, x,u,,v,, Vv,),
(u, +v, wDVu)u, +v,) =, +v,)f,¢ x,u,v,, Vu,),
ov,
u, =~ —d,Av,u,)u, = u,p,(t,x,u,,v,, Vu,),
ov,
U,,a— —-d,Av,v, =v,p,(t, x,u,,v,, Vu,),
(u, + U")a_tn —d,Av,(u, +v,) = w, + v,)p,t, x,u,,v,, Vu,),
o DV, +v,) = (U, +0,)f,(t, x,u,,0,, VU,),
v
(u, + v,,)—” —d,Av,(u, + v,) = (u, + v,)p,(t,x,u,,0v,, Vu,),
|/(u +v ) d dt— / [div(g(|Vu,, ) Vu,)+d, Av, | (u,+v,)dxdt] = | /(u +u,) [(f, 4P x, 1, 0,, Vo, Vu,)| dxdt],
Or
/(u +v )d dt < /(u + o) [fl + p, D@, x, u,, 0,, Vo, Vu,)|dxdt,

Or

%/(un(t) +v,®)dx — 3 /(un(O) +0,(0)dx < /(un —+ U,,)[(|fn| + |p, D, x,u,,v,, Vv, Vun)]dxdt,
Q Q

%/(un(t) +v,(t))*dx — %/(uno +v,0)%dx < /(u,, + Un)[(|fn| + |p, D, x,u,, v,, Vo, Vun)]dxdt
Q Q

S /(un + Un)(lel + |Mp|)dxdts

Or
setting |[M ;| + [M,| = ¢

; /(u () +v,)dx — = /(u,,0 +v,0)%dx <c /(u +v,)dxdt,

Q Oy

% / () + 0,()dx < / (u, + Un)dxdt% / (U + 0,0)2d,
Q Q

/ (u, (1) + v,())*dx < 2¢ / (u, + v,)dxdt / (U + V0 dx,
Q Q
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using a standard Gronwall’s argument we get:

T
/(un +v,)dxdt < </(un0 + UHO)de> <exp(/ 1ds)>,
0r Q 0
( / (U, + Uno)zdx> <exp(T)>,
Q

/(un +v,)dxdt < M.
Or

IA

(2) We have: P
% - dlU(g(IVuno.l)VLln) = fn(t’ X, uﬂ’ Uﬂ’ VU")’

aun .
una— —div(g(|Vu, )Vu,u, = u, f,(t, x,u,,v,, Vu,),

/u —dxdt—/div(g(qum,l)Vun)undxdt=/u,,fn(t,x,un,vn,an)dxdt,

"o
Qr QI Q!

/un /g(|Vu,w|)|Vun|2dxdt < /|un||fn(t X, U,, U, Vv,)|dxdt,

Qz Q! Qi

< [ lwlinglaxar

%/un(t)zdx— /uﬁodx+a/|Vun|2dxdt§/|un||Mf|dxdt,

Q o o o,

using Cauchy Schwartz and young’s we get
1 1
/uodx < /lu |2 dxdt 5 /le 2dxdt 2,
Q

%/un(t)zdx—
Q
/lu |2dxdt + 2—mes(QT)
Oy

M
%/uzdxdt+ Tfmes(QT),

N =

N1 —
IA

IA

/ui(t)dx—/uiodx /u dxdt+Mfmes(QT),

Q
/ w>(Ndx < / w>dxdt + / wodx + M mes(Qy),
Q Or Q

using Gronwall’s we get

/uidxdt < </u30dx + Mfmes(QT)> exp(T),
Q

T
/uzdxdt <c,
n

Or
we have that /Q u*dxdt is bounded.
Let n

ov,
ot

(t,x,u Vu,)

’n7 n7

(29)

(30)

(€19}

(32)



Matallah Hana ET AL 11

ov,
U —
"ot

ov
/U,,—"dxdt—/dvAvnvndxdtz/vnpn(t,x,un,vn,Vun)dxdt,

—-d,Av,v, =v,p,(t, x,u,,0v,,Vu,),

at
Q, o, 0,

dv
/U,, at"dxdt+dU/VUnVUndxdt=/Unpn(t,x,un,vn,Vun)dxdt,

o, o, o

ov
/Una—t"dxdt + dU/ |Vo,|*dxdt < / v, |Ip,(t, x,u,, v,, Vu,)|dxdt, (33)
Q; Qr Ql
using Cauchy Schwartz and Young’s:

Jv,
/Un dxdt < /lunllMpldxdt,
ot

Qy Ql
1 1
2 2
Mp</|1|2dxdt> </|Un|2dxdt> ,
Or 0,

< %mes(Q )+ L v’ dxdt
= 2 o) n

I\

o,
/ vA(dx — / v2,dx < M,mes(Qr) + / vidxdt, (34)
Q Q o
using Gronwall’s
/Uidxdts (Mpmes(QT)+/Uﬁodx>exp(T), 35)
. Q
/ Pdxdi < ¢, (36)

Or
we have that /Qr v2dxdt is bounded.
From (33)) we have:

ov
/vna—t"dxdt+dv/|an|2dxdt < /|Un||p,,(t,x,u,,,U,,,Vun)ldxdt,
Q, QI QT

< / |v,|1M,|dxdt,
o,
M e

< > mes(Q,)+21—£/|Un|2dxdt,
QI

M e
%/vﬁ(t)dx—%/viodx+du/|an|2dxdt§ Tpmes(QT)+%/|vn|2dxdt,
o

Q Q Oy
/ vA(Ndx — / vl,dx +2d, / |Vo,|*dxdt < M,mes(Qr) + / v, |*dxdt,
Q Q Or 0r

/ vA(Ndx +2d, / |Vo,|*dxdt < M,mes(Qr) + / lv, |*dxdt + / v, dx,
Q Or Or Q
from the previous result, we have that /, o, |v,|?dxdt is bounded with ¢, > 0

/ vA(Ndx +2d, / |Vo,|*dxdt < M,mes(Qr) + ¢, + / vl dx, (37)
Q or Q
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using Gronwall’s:

/ |Vu,|>dxdt < <Mpmes(QT)+c2+ / uﬁodx> exp(T), (38)
Q

Or
<C, (39

we have that f, |Vv,|*dxdt is bounded, now let us show that [, |Vu,|dxdt is bounded.
From (29), we have:

%/un(t)zdx—%/uﬁodx+a/|Vun|2dxdt < /lunlleldxdt,

Q Q
< Mfgmes(Q )+ L / lu, |>dxdt
) 77 2 " ’
Or
/ui(t)dx+2a/ |Vu”|2dxdt < M mes(Qr) + / |un|2dxdt+/uiodx,
Q Or Or Q
we have that /Qr |u,|?dxdt is bounded with ¢; > 0:
/ w(Hdx + 2a / |Vu,|*dxdt < M mes(Qr) + ¢; + / i dx, (40)
Q Or Q
using Gronwall’s:
/qun|2dxdt < <Mfmes(QT)+cl +/u30dx>exp(T), 41
QT Q
<G, (42)
2 .
we have ‘/QT |Vu,|*dxdt is bounded.
/ |Vu,|*> + |Vo,|*dxdt < M;, where M, =C,+C,>0. (43)
Or
(3) We have:
ou
=~ i Vu, DVu,) = £, x,u,, 0, V0,),
Jv, (t Vi)
dt ’x3un’ Un’ un s
du,
= = div(g(| Vit DV, = £,(1.%.1,,0,, V0,
01)
”()_ —-d,Av,v, =v,p,(t, x,u,,v,, Vu,),
Ju,
ungdxdt — [ div(g(|Vu,,DVuu,dxdt = [ f,t, x,u,,v,, Vv,)dxdt,
Qr Qt QY
av,
U,,dedt— d,Av,v,dxdt = v,p,(t, x,u,,v,, Vu,)dxdt,
0, 0, o,

;/ 2(t)dx+a/|w | dxdt</|u [ f,(t: X, u,, 0,, VO, )|dxdt+;/u2 dx,
Q

T

%/Uﬁ(t)dx+dv/|Vun|2dxdt§/|v [|p,(, x,u,, v,, Vu, )|dxdt+%/v0dx,
Q Or Or Q



Matallah Hana ET AL 13

/|Vu |2dxdt</|u [ £, x,u,,0,, Vv, )|dxdt+%/ wydx,
Q

/|Vu |2dxdt < / lv,p,(t, x,u,, v,, Vu, )|dxdt+%/vi0dx,
Or Or Q
using Cauchy Schwartz and Young’s:

1 1
2
/|Vu |*dxdt < </|u | dxdx) </|fn(t X, ), U,, VU,)| dxdt> +%/ui0dx,
Or Q

1 1
2 2
/|VU Pdxdr < </|U | dxdt) </|pn(t,x,u,,,u,,,Vun)dedt) +%/u§0dx,
Or Q

a/qu |2dxdt < E/lu |2dxdx+i/|f (t,x,un,un,an)lzdxdt+

Q
/le |2dxdt < = /|v | dxdt+—/|p,,(t X, Uy, Uy, Vit,)| dxdt+%/vi0dx,
Q
2a/|Vu | dxdt</|u | dxdx+/ | f,, (¢ x,u,,v,, Vv, YWodxdt + /
Q

2d, / |Vo,|*dxdt < / lv, |2dxdt+/ |p,(t, x,u,,v,, Vu,)| dxdt+/v dx,
Q
we have from the previous result that /Qr |Vun|2dxdt and /Q’I' |an|2dxdt are bounded, moreover |, [u,|*dxdtand [, |v,|*dxdt
are bounded. Hence

:I\)

[ 11+ Inhaxar < b, >0 )

Q'['
O

2.3 | Step3: Convergence

According to the lemma (2) we have (u,,, v,) is bounded in L*(0, T, H'(€))* and (aait”, %) is bounded in (L*(0, T, (H'(Q))) +
L'(Q7))?, then with Simon¥ (u,, v,) is relatively compact in (L?(Q5))? then we can extract a subsequence (u,, v,) in (L*(Q7))?
such that:

eu, — uin L*(Qy) and for almost every where in Q.

v, = vin L?(Q7) and for almost every where in Q7.

VG, * u, =~ VG, * uin L*(Qy) and for almost every where in Q.

5(IVG, * u,)) = g(IVG, * ul) in L*(Qy).

o f,(t, x,u,,v,,Vv,) = f(,x,u,v, Vu) for almost every where in Q.

ep,(t,x,u,,0,, Vv,) — pt, x,u,v, Vv) for almost every where in Q.

To prove that (u, v) is a weak solution of system (), we actually need to prove that f,(¢, x, u
f(t,x,u,v,Vv) in L'(Qy) and this convergence is given by the following lemma.

Vu,) converges strongly toward

n» n’

Lemma 3. Under the additional assumption that, for R > 0:
sup <If(t, x,r,8,Vs)| + |p(t, x, r, s, Vr)l) € L'(Qr).
[r[+]s|<R
(1) There exists C > 0 such that:
[ 20007, + Ip,haxar < b,

Or
(2) f, and p, converges strongly toward f and p in L'(Qy).
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Proof. (1) we have:

Ju
a—t" - div(g(|Vu,,)Vu,) = f,(t,x,u,,v,, Vv,),

Jv,
ot

t, x,u,,v,, Vu,),

ou
u”a_tn — div(g(|Vu,, )Vuu, = u, f,t,x,u,,v,, Vv,),

du
2Un—t" —div(g(|Vu,, |)Vu,)(2v,) = u,) f,(t, x,u,, v,, VU,),

0
(u, + 2u,,)% — div(g(|Vu,, DVu, ), +20,) =, +20,)f,(t, x,1,,0,, V0. ), (45)
0(2v,)
Uy = 2d,Av,u, = 2u,p,(t, x,u,, v,, Vu,),
a(2v,)
5 2d,Av, =2p,(t,x,u,,v,, Vu,),
0(2v,)
2v, Frai 2d,Av,(2v,) = 2Q2v,)p,(t, x, u,,v,, Vu,),
a(2v,)
(u, +2v,) FYae 2d,Av,(u, +2v,) = 2(u, + 2v,)p,(t, x,u,,v,, Vu,), 46)
from (@3)) and (@6) we have:
o(u, +2v,)
/ (u, +2v )a—dxdt - / [div(g(IVu,,|)Vu,) + 2d,Av, | (u, + 2v,)dxdt = / (u, +2v,)(f, + p,)dxdt,  (47)
0y 0,
| /(u +2v ) )d dt — / [div(g(IVu,,)Vu,) + 2d,Av, |, + 2v,)dxdt| = | /(u +20,)(f, + 2p,)dxdt|,
0, 0,

o(u, +2v,) ,
/ (u, +2v )dedt+ / [div(g(IVu,,|)Vu,) +2d,Av, | (u, + 2v,)dxdt = / (, +20,)(1f,] +2|p,|)dxdt, (48)
0, 0,

/(u +2v ) )d dt+/ [div(g(IVu,,|)Vu,)+2d, Av, | (u,+20 )dxdt</(u +20,) (1 £, |+1p,l dxdt+/(u +v,)|p,|dxdt,
0, 0, 0,

o(u, +2v,)
/(u +2v )—d dt < /(u +2v )(If | + 1p,I dxdt+/(u +v,)|p,ldxdt,
/(u +20,) (17, + |p,| dxdt+/|u ||p,,|dxdt+2/|u [|p,ldxdt,

/(u +20,)(1f,] + |p,|)dxdt + M, /|u ldxdt +2M, /|v |dxdt,
Q, Qr QI

/(un(t)+2vn(t))2dx—%/( Uy +20,0 dx</(u +20,) (£, 1+ p,|)dxdt+ M, /lu ldxdt+2M, /lv |dxdt, (49)

Q Q Or

NSA

We have from the previous result of lemma (2)) that fQ |u,|dxdt and fQ |v,|dxdt are bounded.

/(un+20n)(|fn|+|p,,|)dxdt§%/( Uy +20,0) dx + M, /lu |dxdt +2M, /|U |dxdt, (50)
. Q

I
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/(u,,+2vn>(|f,,| +1p|)dxdi < My, Mj >0, (51)
Q’I'
(2) We have f,, p, converge almost every where toward f, p. We will show that f, and p, are equi-integrable in L'(Qy). The
proof will be given for f, however the same result for p,.
Let € > 0 and prove that there exists 6 > 0 such that | E| < § with E C Q implies that

/ | f,(t, x,u,,v,, Vv,)|dxdt < €.
E

Forall K > 0:

/ |f,.(t, x,u,,v,, Vo,)|dxdt < / |f,(t, x,u,,v,, Vu,)|dxdt + / |f,(t, x,u,,v,, Vu,)|dxdt,

E [ENn|u,+2v,|<K] [ENn|u,+2v,|>K]
with

| £t x,u,,v,,Vu,)|dxdt < / sup |f,@ x,u,,v,, Vv,)|dxdt,
|u,+20,|<K
[EN|u,+2v,|<K]

and supy, 1o, <k |/u(ts X1, 0,, VU )| < supy, 4, 1<k | F0(8, X, 1, 0,, VU,)|. For all € > 0, there exists 6 > 0 such that |E| < 6
we obtain

/ sup | £,(t, X, ,,0,, Vu,)ldxdr < = (52)
0, 1<K 2
E
we have |u, +2v,| > K= |u,+v,| > K= % < lv I then we have:
| f,.(t, x,u,,v,, Vu,)|dxdt < % /(u,, +20,)|f,,(t, x,u,,v,, Vu,)|dxdt,
[ENn|u,+2v,|>K] Or
with E C Oy
| f,(t, x,u,,v,, Vv,)|dxdt < % /(un +20)|f,,(t, x,u,,v,, Vu,)|dxdt, (53)
[EN|u,+2v,|>K] E
and since (5T) ensures that / (U, +2v,)|f,|dxdt is bounded, we obtain:
/ | £t x,u,,v,,Vv,)|dxdt < €. 54
E
The same thing holds for p, as well. 0
2.4 | Step 4: The positivity of the solution
Consider the function:
— -1 if s<0, (55)
sign=(s) =
0 if s>0.

Lete > 0 we build a sequence of regular convex functions j_(s) such as j é (s)is bounded and for all s € R where j:: (r) » sing=(s)
when € — 0.

To prove the positivity of the solution (u, v), we proved that the bilinear form is definite and positive, the definite is relies on the
quasi-positivity of nonlinearities given in the hypothese (H,), so it remains to show the positivity, for this we take u = v.

22— div(g(1Vu, V) + d, Al = (f + )t %616, Vi), 56)
Let u be a solution of (56), we multiply both of the equation by ! (u), and integrating on Q, =0, [xQ for ¢ € [0, T[

2/%jé(u)dxdt—/diU(g(|Vu6|)Vu)j2(u)dxdt—/dUAujé(U)dxdt=/(f + p)(s, x,u, u, Vu)jé(u)dxds, (&1
0o, 0, o, o,
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2/%jé(u)dxdt+/g(|VuU|)VuVjé(u)dxdt+dU/VuVjé(U)dxdt=/(f+p)(s,x,u,u, Vu)j!(wydxds.

Q; Qr Qr QI
From (I8)) and with
adj (u(t,x
/dedm/j’(u)@dxdt
ot £ ot
Or Or
we have
dj (u(t,x
> / VLD ycar +a / |Vulj wdxdt + d, / |Vulj/'(v)dxdi < / (f + D)5, %, 4, u, Vi) (W) xds.
Qr Qt QY QY

2 ()_]‘E(u(t, X)) 2. ./
dedt +(a+d,) [ |Vul"j (wdxdt < [ (f + p)(s,x,u,u, Vu)j (u)dxds.

o, 0, o
Z/Ug(u)(t) - Jjw)(0)]ldx + (a + dv)/ |Vu|2jé'(u)dxdt < /(f + p)(s, x,u, u, Vu)j;(u)dxds.
Q 0, 0,
Since u(0, x) = uy, then j, (uy(x)) = j. (u)(0) = 0, /jg(u)(O)dx =0 and/ IVulzjé’(u)dxdt > 0, then we have
Q 0,
2/jg(u)(t)dx < /(f + p)(s, x,u, u, Vu)jé(u)dxds.
Q 0,

/js(u)(t)dx < % /(f + p)(s, x,u,u, Vu)j (u)dxds.
Q 0,
1

IA

(f + p)(s, x,u,u, Vu)j (w)dxds + % / (f + ), x,u,u, Vu)j (u)dxds.
(0,1)x[u<0] (0.9)Xx[u<0]

Where u < 0 we have j;(u) =0, so / f + p)(s,x,u,u, Vu)j;(u)dxds = (0, therefore

(0,H)x[u<0]
/ Jew(@®)dx < % (f + p)(s, x,u,u, Vu)j' (wdxds,
Q 0,)X[u<0]
pass to the limit when € — 0 we obtain
/ @ (dx < -3 / (f + p)(s. .., Vudxds < O, (58)
Q 0,)X[u<0]

by the hypothese (H,) of nonlinearities, we obtain (1)~ (t)dx > 0, then (1)~ (¢) = 0 on L, therefore u > 0 and v > 0 in Q,.
O
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