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We study a class of reaction–advection–diffusion system
{

ut = ∇ ⋅ (∇u − � ∇vv u) − uv − u
2+� + B1, x ∈ Ω, t > 0,

vt = Δv − v + uv + B2, x ∈ Ω, t > 0,

which is in fact motivated by recent modeling approaches in criminology, for � > 0
in a smooth bounded domain Ω ⊂ ℝn with n ≥ 2. While there are results regarding
the existence of global solution of the original crime model1, the restriction of � is
existed for n ≥ 2. We prove that, for n ≥ 2, suppose

� >

{

0, if n < 4,
n
4 − 1, if n ≥ 4,

then the classical solutions of above system are uniformly bounded for any � > 0.
Our result expand � to be arbitrary.
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1 INTRODUCTION

The work is considered with the coupled parabolic chemotaxis system with singular sensitivity
⎧

⎪

⎪

⎨

⎪

⎪

⎩

ut = ∇ ⋅ (∇u − � ∇v
v
u) − uv − u2+� + B1, x ∈ Ω, t > 0,

vt = Δv − v + uv + B2, x ∈ Ω, t > 0,
)�u = )�v = 0, x ∈ )Ω, t > 0,
u(x, 0) = u0, v(x, 0) = v0, x ∈ Ω,

(1)

for �, � > 0, where Ω ∈ ℝn is a bounded domain with smooth boundary. u and v are functions of location and time. The initial
functions u0 ∈ C0(Ω̄) and v0 ∈ W 1,∞(Ω) satisfying u0 ≥ 0 and v0 > 0.
While crime may occur everywhere, certain regions in space have a disproportionately high level of crime empirically. There

exists spatially heterogeneous especially clustered crime data, forming so-call hotpot. Althoughmany social and economic forces
contribute to the heterogeneity of spatial distributions in criminal activity, opportunity is the most important factor leading to
crime2,3. Over the pass few decades, two theories have been popularized in the study of criminal behavior at the social level4,5,6.
One is repeat and near-repeat victimization effect interpreting that neighborhoods of a burgled house as well as the same house
become more likely to be burglarized soon7,8. The other theory is established on the fact that burglarization of a house tends to
attract more burglars, named as broken-window effect9.
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Taking the two theory into consideration, in 2008, Short et al.1 first proposed a system
{

ut = ∇ ⋅ (∇u − � ∇v
v
u) − uv + B1,

vt = Δv − v + uv + B2,
(2)

over a 2D lattice to describe the urban criminal agents pattern and spatial-temporal distribution of crime hotspot. u and v denote
density of criminal agents and attractiveness of regions, respectively. From the first equation, we see that crime agents enjoy
self-diffusion and attractiveness-depending diffusion, interpreting movement toward high concentrations of the attractiveness
value. The attraction rate � = 2 illustrates that there is a complete broken-window effect. The decay term −uv roughly are
criminals which we see an abstaining from a second crime, whereas the near-repeat victimization effect is translated by its
positive counterpart uv in the second equation. The non-negative functionB1 quantifies the criminal agents at beginning, andB2
represents some information, whatever those may be, leading certain neighborhoods tend to be more attractive.B1 andB2 have a
significant affect on the long term behavior of the solutions. For a review of agent-based urban crime modeling, We refer to10,11.
In view of the sociological meaningful question whether or not criminal agents spontaneously form aggregates, the literature

on initial-value problems for (2) is still at quite an early stage and there are only few relative results. For instance, local existence
and uniqueness result is achieved for regularized version of (2) in12. For one-dimensional case, Rodríguez andWinkler13 proved

the existence and uniqueness of global solutions for � ∈ (0,
√

6
√

3+9
2

), and Qi et al.14 extended this to arbitrary � ∈ (0,∞). Both
of them cover the case � = 2. For the higher dimension, global solution is achieved by15 under small � . Further, there are some
modified versions is studied under technical conditions (see the works of16,17,18). From the viewpoint of mathematical analysis,
it is not hard to recognize that (2) shares essential component with the Keller–Segel chemotaxis model (see19). However, the
nonlinear kinetics in second equation (2) are quite different from the chemotaxis models and they bring difficulties in that a
suitable method for the latter may not apply to the former. We would like to refer to20,21,22,23,24,25 and references therein for
chemotaxis model and26,27,28,29 for other version of chemotaxis model that may enlighten readers.
It should be emphasized that the coefficient � = 2 is embedded in the sociological phenomenon described in system (2) and

cannot be scaled out by linear or nonlinear transformations. It our goal of this paper to achieve global solution for arbitrary
� , which covers the case � = 2, through appropriately modification of system (2) in higher dimension. The first equation of
system (1) roughly interprets that the criminals enjoy an extreme abstaining from a second crime. Indeed, this may prevent the
aggregation of crime agents resulting from large advection rate. Consequently, in this paper we establish the global existence
and uniform boundedness of the classical solution of (1), which reads as follows.

Theorem 1. Let Ω be a bounded domain with smooth boundary )Ω on ℝn for n ≥ 2, initial data v0 > 0 and u0 ≥,≢ 0 in Ω
with u0 ∈ C0(Ω̄) and v0 ∈ W 1,∞(Ω). Whenever

� >
{

0, if n < 4,
n
4
− 1, if n ≥ 4, (3)

(1) admits a unique classical solution (u, v) from C0(Ω̄ × [0,∞))
⋂

C2,1(Ω̄ × (0,∞)) for all � ∈ (0,∞). Moreover, there exist
constants �, > 0 such that � ≤ v <  and 0 ≤ u <  for all t ∈ (0,∞).

2 PRELIMINARIES

The starting point of our analysis of (1) is the existence of its local-in-time solutions. The local existence of classical solution
is well-established by methods of standard parabolic regularity theory and an appropriate fixed point framework, referring to
Theorem 3.1 in30 or Theorem 5.2 in31. We show it in the following.

Lemma 1. Let Ω ∈ ℝn be a bounded domain with smooth boundary, B1 ∈ C1
(

Ω × [0,∞)
)

and B2 ∈ C1
(

Ω × [0,∞)
)

are
non-negative as well as 0 ≤ u0 ∈ C0(Ω̄), 0 < v0 ∈ W 1,q(Ω) for 1 ≤ n < q, then for � > 0, there exists Tmax ∈ (0,∞] and a pair
of unique non-negative solution satisfying

{

u ∈ C0(Ω̄ × [0,∞))
⋂

C2,1(Ω̄ × (0,∞)),

v ∈ C0(Ω̄ × [0,∞))
⋂

C2,1(Ω̄ × (0,∞))
⋂

L∞loc([0, Tmax);W
1,q(Ω)),

such that (u, v) > 0 solves (1) classically onΩ×(0, Tmax) andmoreover, if T <∞, then lim
t→Tmax

‖u(⋅, t)‖L∞(Ω)+‖v(⋅, t)‖W 1,q(Ω) = ∞.
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Throughout the sequel, without explicit mention we shall assume the requirements of Theorem (1) to be met, and let u, v and
Tmax be as provided by Lemma 1. Besides, For simplicity, we skip dΩ in the following integrals and adjust the values of generic
constants C and Ci that may vary from line to line.
With those facts, we can deduce the non-negative lower boundedness of v from the abstract representation formula of v-

equation.

Lemma 2. Let (u, v) satisfy Lemma 1, non-negative functions B1 ∈ C1
(

Ω × [0,∞)
)

and B2 ∈ C1
(

Ω × [0,∞)
)

, then there
exists Tmax > 0 and a nonnegative constant � depending on v0 such that

v ≥ � > 0, ∀(x, t) ∈ (Ω̄ × [0, Tmax)). (4)

Proof. Due to B2 ∈ C1
(

Ω × [0,∞)
)

are non-negative, we have

inf
t>0 ∫

Ω

B2(x, t) > 0.

Then following the process of Lemma 2.1 in the work of13, v satisfies (4) for Tmax > 0.

The following is L1 norms of (u, v).

Lemma 3. There is a positive constant C such that we have

∫
Ω

u + ∫
Ω

v ≤ C, ∀t > 0. (5)

Proof. By Lemma 2, this follows immediately from computing
d
dt ∫

Ω

u = −∫
Ω

uv − ∫
Ω

u2+� + ∫
Ω

B1 ≤ −� ∫
Ω

u + ∫
Ω

B1. (6)

After solving the differential inequality (6), we have that for C > 0,

∫
Ω

u ≤ C. (7)

On the other hand, integrating the v-equation gives
d
dt ∫

Ω

v = −∫
Ω

v + ∫
Ω

uv + ∫
Ω

B2.

This together with (7) and the fact (B1, B2) ∈ L∞(Ω̄ × [0,∞]) leads to

d
dt

⎛

⎜

⎜

⎝

∫
Ω

u + ∫
Ω

v
⎞

⎟

⎟

⎠

+
⎛

⎜

⎜

⎝

∫
Ω

u + ∫
Ω

v
⎞

⎟

⎟

⎠

≤ ∫
Ω

u + ∫
Ω

(

B1 + B2
)

≤ C.

An application of Gronwall’s inequality deduces (5).

For the purpose of using it in the following, we recall two point-wise identities and an inequality.

Lemma 4. Let Ω ∈ ℝn, n ≥ 1 be a smooth bounded domain. Any function f ∈ C2(Ω) satisfies

i. ∇|∇f |2 = 2∇f ⋅D2f, (8)
ii. (Δf )2 ≤ n|D2f |2, (9)

iii. ∇f∇Δf = 1
2
Δ|∇f |2 − |D2f |2. (10)

All those identities and inequality can be obtained from straightforward calculation. One can see23,29 and Lemma 3.1 in32 for
their application. We could not find a precise reference in the literature that covers all that is necessary for our purpose; therefore
we conclude a short lemma here.
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3 A USER-FRIENDLY INTEGRAL INEQUALITY

Our proof of Theorem 1 is based on generalization and application of an integral inequality by Q.Wang14, where the inequality
is subject to one dimension. We calculate a multi-dimensional form in the following.

Theorem 2. Let Ω ∈ ℝN be a smooth bounded domain and w > 0 satisfying w ∈ C2(Ω̄) and )w
)�
= 0 on )Ω. Then for all

p ≥ 1, q ≥ − 1
2
and � > p

2q+1
> 0 we have that

∫
Ω

|∇w|2p+2

wq+2
≤ N + 4p�
2q + 1 − p

�
∫
Ω

|D2w|2|∇w|2p−2

wq . (11)

Proof. We introduce J ∶= ∫Ω |Δ logw|
2 |∇w|2p−2

wq−2 > 0 for p > 1. Directly calculate |Δ logw|2 to get

J = ∫
Ω

|Δw|2|∇w|2p−2

wq

J0
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

−2∫
Ω

|∇w|2pΔw
wq+1

+ ∫
Ω

|∇w|2p+2

wq+2
. (12)

Since )w
)�
= 0 on )Ω, employing integration by parts gives

J0 =2∫
Ω

∇|∇w|2p ⋅ ∇w
wq+1

− 2(q + 1)∫
Ω

|∇w|2p+2

wq+2

=2p∫
Ω

|∇w|2p−2∇|∇w|2 ⋅ ∇w
wq+1

− 2(q + 1)∫
Ω

|∇w|2p+2

wq+2
.

By (8) and Young’s inequality, we have for � > 0 that

J0 =4p∫
Ω

|∇w|2p ⋅D2w
wq+1

− 2(q + 1)∫
Ω

|∇w|2p+2

wq+2

≤4p� ∫
Ω

|∇w|2p−2|D2w|2

wq −
(

2(q + 1) −
p
�
)

∫
Ω

|∇w|2p+2

wq+2
. (13)

Subscribing (13) into (12), and in the view of the pointwise inequality (9), we have

J ≤ (N + 4p�)∫
Ω

|∇w|2p−2|D2w|2

wq −
(

(2q + 1) −
p
�
)

∫
Ω

|∇w|2p+2

wq+2
. (14)

Because � > p
2q+1

> 0 and J > 0, we have (2q + 1) − p
�
> 0 and then deduce (11).

Remark 1. Let Ω ∈ ℝn and take p = 2, � > 2
2q+1

, we have N+8�
2q+1− p

�

= 2+8�
2q+1− 2

�

. Note that 2+8�
2q+1− 2

�

can achieve its global minimum

over certain � and we denote it by C♯. Thus we obtain

∫
Ω

|∇w|6

wq+2
≤ C♯

∫
Ω

|D2w|2|∇w|2

wq . (15)

4 SOME USEFUL A PRIORI ESTIMATES

In preparation for construction and estimate of energy-type functional, some important a priori estimates are provided and
collected into two lemmas in this section.

Lemma 5. Let 2 ≤ q < 3, for �1, �2 > 0 we have

d
dt ∫

Ω

|∇v|4

vq
≤ − (12 − 16q

q + 1
− (4�1 + 4�2)C♯)∫

Ω

|∇v|2|D2v|2

vq
+ C�1 ∫

Ω

u3v4−q + C�2 ∫
Ω

|∇u|2v4−q − (4 − q)∫
Ω

|∇v|4

vq
− q ∫

Ω

|∇v|4u
vq
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− q ∫
Ω

|∇v|4

vq+1
B2. (16)

Proof. Through straightforward calculation we can show

d
dt ∫

Ω

|∇v|4

vq
= 4∫

Ω

|∇v|2∇v ⋅ ∇vt
vq

− q ∫
Ω

|∇v|4vt
vq+1

=

I1
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

4∫
Ω

|∇v|2∇v ⋅ ∇Δv
vq

−4∫
Ω

|∇v|4

vq
+

Ic
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

4∫
Ω

|∇v|2∇v∇(uv)
vq

I2
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

−q ∫
Ω

|∇v|4Δv
vq+1

+q ∫
Ω

|∇v|4

vq
− q ∫

Ω

|∇v|4u
vq

− q ∫
Ω

|∇v|4

vq+1
B2. (17)

In light of the third identity in Lemma 4, we have

I1 =2∫
Ω

|∇v|2Δ|∇v|2

vq
− 4∫

Ω

|∇v|2|D2v|2

vq

= − 2∫
Ω

∇
(
|∇v|2

vq
)

∇|∇v|2 − 4∫
Ω

|∇v|2|D2v|2

vq

= − 2∫
Ω

(∇|∇v|2)2

vq
+ 2q ∫

Ω

∇v|∇v|2∇|∇v|2

vq+1
− 4∫

Ω

|∇v|2|D2v|2

vq

= − 12∫
Ω

|∇v|2|D2v|2

vq
+

I11
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

2q ∫
Ω

∇v|∇v|2∇|∇v|2

vq+1
, (18)

where the second line is from application of integration by parts and fourth line is from (8). Similarly, we calculate that

I2 =q ∫
Ω

∇
(
|∇v|4

vq+1
)

∇v = 2q ∫
Ω

∇v|∇v|2∇|∇v|2

vq+1
− q(q + 1)∫

Ω

|∇v|6

vq+2
. (19)

Combining I2 and I11, for � > 0, we have from Young’s inequality that

I2 + I11 =4q ∫
Ω

∇v|∇v|2∇|∇v|2

vq+1
− q(q + 1)∫

Ω

|∇v|6

vq+2

≤4q� ∫
Ω

(∇|∇v|2)2

vq
+ (

q
�
− q(q + 1))∫

Ω

|∇v|6

vq+2
.

Here, we take � = 4
(q+1)

and apply (8), the inequality goes

I2 + I11 ≤
16q
q + 1 ∫

Ω

|∇v|2|D2v|2

vq
. (20)

Similarly, employing Young’s inequality we have

Ic =4∫
Ω

|∇v|2∇v∇u
vq−1

+ 4∫
Ω

|∇v|4u
vq

≤(4�1 + 4�2)∫
Ω

|∇v|6

vq+2
+ C�1 ∫

Ω

u3v4−q + C�2 ∫
Ω

|∇u|2v4−q . (21)
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Substituting (18)-(21) into (17) gives

d
dt ∫

Ω

|∇v|4

vq
≤ − (12 − 16q

q + 1
)∫
Ω

|∇v|2|D2v|2

vq
+ (4�1 + 4�2)∫

Ω

|∇v|6

vq+2
+ C�1 ∫

Ω

u3v4−q + C�2 ∫
Ω

|∇u|2v4−q

− (4 − q)∫
Ω

|∇v|4

vq
− q ∫

Ω

|∇v|4u
vq

− q ∫
Ω

|∇v|4

vq+1
B2. (22)

From Remark 1 we can show that (5) satisfies.

Lemma 6. Let �1 = (2� − 4(4 − q)) and �2 = (2(4 − q)� − (4 − q)(3 − q)). For 2 ≥ q < 3, there exist small �3 > 0 and � > 0
such that
d
dt ∫

Ω

u2v4−q ≤ − (2 − �1�3)∫
Ω

|∇u|2v4−q + (�2 +
�1
4�3

)∫
Ω

u2|∇v|2v2−q − 2∫
Ω

u3+�v4−q − (4 − q)∫
Ω

u2v4−q + (4 − q)∫
Ω

u3v4−q

+ 2∫
Ω

uv4−qB1 + (4 − q)∫
Ω

u2v3−qB2. (23)

Proof. In light of (1) and integration by parts we can show that
d
dt ∫

Ω

u2v4−q = 2∫
Ω

uv4−qut + (4 − q)∫
Ω

u2v3−qvt

= −2∫
Ω

∇(uv4−q) ⋅ (∇u − �∇v
v
u) − (4 − q)∫

Ω

∇(u2v3−q)∇v − 2∫
Ω

u3+�v4−q − (4 − q)∫
Ω

u2v4−q + (4 − q)∫
Ω

u3v4−q

+ 2� ∫
Ω

uv4−q + (4 − q)�∫
Ω

u2v3−q − 2∫
Ω

u2v5−q

= −2∫
Ω

|∇u|2v4−q +

I3
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

�1 ∫
Ω

u∇u∇vv3−q +�2 ∫
Ω

u2|∇v|2v2−q − 2∫
Ω

u3+�v4−q − (4 − q)∫
Ω

u2v4−q + (4 − q)∫
Ω

u3v4−q

− 2∫
Ω

u2v5−q + 2� ∫
Ω

uv4−q + (4 − q)∫
Ω

u2v3−qB2. (24)

Employing general Young’s inequality, for �3 > 0, we have that

I3 ≤ �1�3 ∫
Ω

|∇u|2v4−q +
�1
4�3 ∫

Ω

u2|∇v|2v2−q . (25)

Noting that v enjoys its lower bound for any t > 0, we denote �∗ = �−
2
3 the upper bound of v−

2
3 . Substituting (25) into (24), we

obtain (23).

5 LAYPUNOV FUNCTIONAL

In this section, we shall finish the proof of the Theorem 1. First, we construct the energy functional and prove that each item of
functional is uniformly bounded.

Lemma 7. Let � > 0, 2 ≤ q < 3, and �(u, v) be the following form

�(u, v) = � ∫
Ω

u2v4−q + ∫
Ω

|v|4

vq
,

then there exists a constant C > 0 such that
d
dt

�(u, v) + (4 − q)�(u, v) < C. (26)
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Moreover, we have that
‖u‖L2(Ω) < C. (27)

Proof. Denoting �3 = 12 −
16q
q+1

− (4�1 + 4�2)C♯ and combining Lemma 5 and Lemma 6, we achieve

d
dt
(

� ∫
Ω

u2v4−q + ∫
Ω

|∇v|4

vq
)

≤ − ((2 − �1�3)� + C�2)∫
Ω

|∇u|2v4−q − �3 ∫
Ω

|∇v|2|D2v|2

vq
− (4 − q)∫

Ω

|∇v|4

vq
+ (�2 +

�1
4�3

)�

I4
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

∫
Ω

u2|∇v|2v2−q

+ ((4 − q)� + C�1)

I5
⏞⏞⏞⏞⏞⏞⏞

∫
Ω

u3v4−q −(4 − q)� ∫
Ω

u2v4−q + 2�

I6
⏞⏞⏞⏞⏞⏞⏞⏞⏞

∫
Ω

uv4−qB1 +(4 − q)�

I7
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

∫
Ω

u2v3−qB2 −2� ∫
Ω

u3+�v4−q

− 2� ∫
Ω

u2v5−q . (28)

From Young’s inequality, we have

I4 ≤ �4 ∫
Ω

|v|6

vq+2
+ C�4 ∫

Ω

u3v4−q . (29)

Combining the second term of I4 with I5 and employ Young’s inequality again to show for �5 > 0 that

∫
Ω

u3v4−q = ∫
Ω

u3v
3(4−q)
3+� v

�(4−q)
3+� ≤ �5 ∫

Ω

u3+�v4−q + C�5 ∫
Ω

v4−q . (30)

Similarly, since ‖B1‖L∞(Ω) < C and ‖B2‖L∞(Ω) < C we have from Holder inequality for �6, �7 > 0 that

I6 ≤ C ∫
Ω

uv
5−q
2 v

3−q
2 ≤ �6 ∫

Ω

u2v5−q + C(�6) (31)

and

I7 ≤ C ∫
Ω

u2v
2(4−q)
3+� v

(3−q)(1+�)−2
3+� ≤ �7 ∫

Ω

u3+�v4−q + C(�7), (32)

where, we have ‖v‖L3−q(Ω) < C and ‖v‖
L3−q−

2
1+� (Ω)

< C since 2 ≤ q < 3 and the boundedness of ‖v‖L1(Ω). Now, to estimate
‖v4−q‖L1(Ω), we properly rearrange it and apply Gagliardo-Nirenberg inequality to obtain for C1, C2 > 0 that

‖v
4−q
6
‖L6(Ω) ≤ C1‖v

4−q
6
‖

6
(3−q)n+6

L
6
4−q (Ω)

‖∇(v
4−q
6 )‖

(3−q)n
(3−q)n+6

L6(Ω) + C2‖v
4−q
6
‖

L
6
4−q (Ω)

. (33)

For �8, �9 > 0 and due to the boundedness of ‖v‖L1(Ω), we apply Young’s inequality and from (33) and our integral inequality
to have

C�5 ∫
Ω

v4−q ≤C3((∫
Ω

|∇v|6

vq+2
)

(3−q)n
(3−q)n+6 + 1)

≤�8 ∫
Ω

|∇v|6

vq+2
+ C4 ≤ �9 ∫

Ω

|∇v|2|D2v|2

vq
+ C5. (34)

Substitute (29)-(32) and (34) to (28), there exists C > 0 such that
d
dt
(

� ∫
Ω

u2v4−q + ∫
Ω

|∇v|4

vq
)

≤ − ((2 − �1�3)� + C�2)∫
Ω

|∇u|2v4−q − �5 ∫
Ω

|∇v|2|D2v|2

vq
− (2� − (4 − q)��7 − �4�5)∫

Ω

u3+�v4−q − (2� − 2��6)∫
Ω

u2v5−q
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− (4 − q)∫
Ω

|∇v|4

vq
− (4 − q)� ∫

Ω

u2v4−q + C, (35)

where, we denote �4 = (�2 +
�1
4�3
)�C�4 + (4− q)� +C�1 and �5 = (�3 − (�2 +

�1
4�3
)��4C♯ − �9). Take �2 =

1
4�

and �3 =
1
�1
, we have

(2−�1�3)�+C�2 = 0. Then take �5 =
�
�4
, �7 =

1
(4−q)

to obtain 2�−(4− q)��7−�4�5 = 0 and take �6 = 1 to show 2�−2��6 = 0.
Finally, we take �1, �4 and �9 small such that �5 ≥ 0. Thus, this simplifies (34) and obtains (27). Then (28) can be achieved due
to the lower boundedness of v.

To prove Theorem 1.1, one shall first prove the boundedness of Lp norm of (u, v). We show this in two cases.

6 LP ESTIMATES

6.1 In the case of n < 4
By now, we know the boundedness of ‖u‖L2(Ω) under the condition � > 0. To show Theorem 1, the boundedness of ‖v‖W 1,q(Ω) is
needed for some q ∈ (1,∞]. A easy way is an application of heat semi-group estimate on representation formula of v-equation.
We present it in the following. As for the details of proof, we refer to15.

Lemma 8. Suppose that p > n
2
and q ∈ (n,∞] and suppose q < np

n−p
if p ≤ n. Then there exists a constant C > 0 depending on

q, T and ‖B2‖L∞(Ω) as well as ‖v0‖W 1,∞(Ω) and an exponent 
 > 0 such that

‖v(⋅, t)‖W 1,q(Ω) ≤ C(1 + ‖u‖
L∞((0,T );Lp(Ω))). (36)

With this theorem and (28), in the case n < 4, we extend q such that ‖v(⋅, t)‖W 1,q(Ω) is bounded, which reads as follows.

Corollary 1. Let n < 4 and n
2
< q < 2n

n−2
. Then we can find a constant C > 0 depending on q, T and ‖B2‖L∞(Ω) as well as

‖v0‖W 1,∞(Ω) such that
‖v(⋅, t)‖W 1,q(Ω) ≤ C. (37)

With this and appropriate choices for the parameters, we can gain the following estimate

Lemma 9. Let p > 1 and � > max{ p
2
(n−2)−1, 0} for n < 4, there exists a positive constantC depending on p, T and ‖B1‖L∞(Ω)

such that
‖u‖Lp(Ω) < C. (38)

Proof. Let 2 < � < 2n
n−2

. By a direct calculation and integration by parts, we have for �, � > 0 and small �1, �2 > 0 that

1
p
d
dt ∫

Ω

up = − (p − 1)∫
Ω

|∇u|2up−2 + �(p − 1)∫
Ω

∇uup−1∇v
v

− ∫
Ω

upv − ∫
Ω

up+1+� + ∫
Ω

up−1B1

≤ − (p − 1 − �1)∫
Ω

|∇u|2up−2 + �2 ∫
Ω

u
p�
�−2 + C(�1, �2, �, p)∫

Ω

|∇v|�

v�

− ∫
Ω

upv − ∫
Ω

up+1+� + ∫
Ω

up−1B1. (39)

Employing Young’s inequality and Holder inequality, since ‖B1‖L∞(Ω) < C we have

∫
Ω

up−1B1 ≤ � ∫
Ω

up+1+� + C(�), (40)

for small � > 0. Similarly, let � close to 2n
n−2

and � > max{ p
2
(n − 2) − 1, 0}, which implies p�

�−2
≤ p + 1 + �, then we obtain

∫
Ω

u
p�
�−2 ≤ C ∫

Ω

up+1+� + C, (41)
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for C > 0. Subscribing (40) and (41) into (39), it is concluded from Corollary 1 that
1
p
d
dt ∫

Ω

up + ∫
Ω

up ≤ C, (42)

for some C > 0. The Lemma 9 is satisfied though Gronwall’s inequality.

6.2 In the case of n ≥ 4
Lemma 10. Let p > 1 and � > max{ p

2
− 1, 0} for n ≥ 4, there exists a positive constant C depending on p, T and ‖B1‖L∞(Ω)

such that
‖u‖Lp(Ω) < C. (43)

Proof. To show this, we follow the calculation of (39) and rearrange the estimates to have for �, � > 0 that
1
p
d
dt ∫

Ω

up = − (p − 1)∫
Ω

|∇u|2up−2 + �(p − 1)∫
Ω

∇uup−1∇v
v
− ∫
Ω

upv − ∫
Ω

up+1+� + ∫
Ω

up−1B1

≤ − (p − 1 − �1)∫
Ω

|∇u|2up−2 + �2 ∫
Ω

u
3p
2 + C(�1, �2, �, p)∫

Ω

|∇v|6

v6
− ∫
Ω

upv − ∫
Ω

up+1+� + ∫
Ω

up−1B1.

Due to Holder inequality and � ≥ p
2
− 1, for C > 0, we have

∫
Ω

u
3p
2 ≤ C ∫

Ω

up+1+� (44)

and conclude from Theorem 2 and (40) that
d
dt ∫

Ω

up + ∫
Ω

up ≤C(�1, �2, �, p)∫
Ω

|∇v|6

v6

≤C̃ ∫
Ω

|∇v|2|D2v|2

vq
, (45)

where, C̃ > 0 depends on �1, �2, �, p and ‖
1
v
‖L∞(Ω). Combining this with (35), there exists a �̃ > 0 such that

d
dt
(�(u, v) + �̃ ∫

Ω

up) + (4 − q)(�(u, v) + �̃ ∫
Ω

up)

≤ − ((2 − �1�3)� + C�2)∫
Ω

|∇u|2v4−q − �6 ∫
Ω

|∇v|2|D2v|2

vq

− (2� − (4 − q)��7 − �4�5)∫
Ω

u3+�v4−q − (2� − 2��6)∫
Ω

u2v5−q + C.

Taking �̃ small enough such that �6 = �3 − (�2 +
�1
4�3
)��4C♯ − �9 − �̃C̃ > 0, we readily achieve

d
dt
(�(u, v) + �̃ ∫

Ω

up) + (4 − q)(�(u, v) + �̃ ∫
Ω

up) ≤ C,

for C > 0. Then (10) satisfies by an application of Gronwall’s inequality.

7 UNIFORM BOUNDEDNESS

In this section, we shall prove Theorem 1. As in the prevous section, by Lemma 1 we are given here some T > 0 and a
classical solution (u, v) to (1) in Ω× (0, T ). Lp estimate of u and Lemma 8 will help us in deriving higher regularity for u by its
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representation formula

u(⋅, t) =etΔu0 − �

t

∫
0

e(t−s)Δ∇ ⋅
(

u(⋅, s)
v(⋅, s)

∇v(⋅, s)
)

ds −

t

∫
0

e(t−s)Δ(u(⋅, s)v(⋅, s) + u(⋅, s)2+�)ds +

t

∫
0

e(t−s)ΔB1(s)ds

≤etΔu0 − �

t

∫
0

e(t−s)Δ∇ ⋅
(

u(⋅, s)
v(⋅, s)

∇v(⋅, s)
)

ds +

t

∫
0

e(t−s)ΔB1(s)ds, (46)

which holds for all t ∈ (0, T ). The idea of its proof resembles the lemma 3.4 in the work of Winkler25.

Lemma 11. Suppose

� >
{

0, if n < 4,
n
4
− 1, if n ≥ 4, (47)

and there is p > n
2
such that

sup
t∈(0,T )

‖u(⋅, t)‖Lp(Ω) <∞, (48)

then there is a C > 0 with
‖u(⋅, t)‖L∞(Ω) ≤ C,

for all t ∈ (0, T )

Proof. Noting that with the condition of � in Lemma 9 and Lemma 10, (11) satisfies for p > n
2
. Therefore, we can show the

Lemma by directly following the proof of Lemma 11 in15.

Now, all the ingredient necessary to verify Theorem 1.

Proof of Theorem 1.1. Theorem 1 provides us with the solution (u, v) to (1) in Ω ×
(

0, Tmax
)

for some Tmax ∈ (0,∞] and, for
any T ∈ (0,∞) such that the solution exists in Ω × (0, T ) by Lemma 8 and 11 we find C > 0 with

‖u(⋅, t)‖L∞(Ω) ≤ C,

and
‖v(⋅, t)‖W 1,∞(Ω) ≤ C,

for all t ∈ (0, T ). Considering the alternative in Lemma 1, Tmax <∞ can therefore be ruled out. Further, since the nonnegativity
of u and v can be deduced from the maximum principle, the additional fact v ∈ L∞loc

([

0,∞);W 1,∞(Ω)
)

ensures uniqueness of
(1).
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