References
1. Yao X, Ye F, Zhang M, et al. In Vitro Antiviral Activity and
Projection of Optimized Dosing Design of Hydroxychloroquine for the
Treatment of Severe Acute Respiratory Syndrome Coronavirus 2
(SARS-CoV-2). Clin. Infect. Dis. 2020.
2. Gautret P, Lagier J-C, Parola P, et al. Hydroxychloroquine and
azithromycin as a treatment of COVID-19: results of an open-label
non-randomized clinical trial. Int. J. Antimicrob. Agents 2020:105949.
3. WHO Solidarity Trial Consortium, Pan H, Peto R, et al. Repurposed
Antiviral Drugs for Covid-19 - Interim WHO Solidarity Trial Results. N
Engl J Med 2020.
4. Giudicessi JR, Noseworthy PA, Friedman PA, Ackerman MJ. Urgent
Guidance for Navigating and Circumventing the QTc-Prolonging and
Torsadogenic Potential of Possible Pharmacotherapies for Coronavirus
Disease 19 (COVID-19). Mayo Clin. Proc. 2020;95:1213–1221.
5. Chorin E, Dai M, Shulman E, et al. The QT interval in patients with
COVID-19 treated with hydroxychloroquine and azithromycin. Nat Med
2020;26:808–809.
6. Rosenberg ES, Dufort EM, Udo T, et al. Association of Treatment With
Hydroxychloroquine or Azithromycin With In-Hospital Mortality in
Patients With COVID-19 in New York State. JAMA 2020.
7. Woosley RL, Heise CW, Romero KA. www.Crediblemeds.org.
8. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for
mortality of adult inpatients with COVID-19 in Wuhan, China: a
retrospective cohort study. Lancet 2020;395:1054–1062.
9. Mehra MR, Ruschitzka F, Patel AN. Retraction—Hydroxychloroquine or
chloroquine with or without a macrolide for treatment of COVID-19: a
multinational registry analysis. The Lancet 2020:1–1.
10. Lippi G, South AM, Henry BM. Electrolyte imbalances in patients with
severe coronavirus disease 2019 (COVID-19). Ann Clin Biochem
2020;57:262–265.
11. Alfano G, Ferrari A, Fontana F, et al. Hypokalemia in Patients with
COVID-19. medRXiv 2020:1–18.
12. Windley MJ, Lee W, Vandenberg JI, Hill AP. The Temperature
Dependence of Kinetics Associated with Drug Block of hERG Channels Is
Compound-Specific and an Important Factor for Proarrhythmic Risk
Prediction. Mol Pharmacol 2018;94:760–769.
13. Barrows B, Cheung K, Bialobrzeski T, Foster J, Schulze J, Miller A.
Extracellular potassium dependency of block of HERG by quinidine and
cisapride is primarily determined by the permeant ion and not by
inactivation. Channels (Austin) 2009;3:239–248.
14. Po SS, Wang DW, Yang IC, Johnson JP, Nie L, Bennett PB. Modulation
of HERG potassium channels by extracellular magnesium and quinidine. J.
Cardiovasc. Pharmacol. 1999;33:181–185.
15. Du CY, Harchi El A, Zhang YH, Orchard CH, Hancox JC. Pharmacological
inhibition of the hERG potassium channel is modulated by extracellular
but not intracellular acidosis. J Cardiovasc Electrophysiol
2011;22:1163–1170.
16. Perry MD, Ng CA, Mangala MM, et al. Pharmacological activation of
IKr in models of long QT Type 2 risks overcorrection of repolarization.
Cardiovasc. Res. 2019;81:299.
17. Tomek J, Bueno-Orovio A, Passini E, et al. Development, calibration,
and validation of a novel human ventricular myocyte model in health,
disease, and drug block. Elife 2019;8.
18. Heitmann S, Aburn MJ, Neurocomputing MB, 2018. The Brain Dynamics
Toolbox for Matlab. Neurocomputing 2018;315:82–88.
19. Sadrieh A, Domanski L, Pitt-Francis J, et al. Multiscale cardiac
modelling reveals the origins of notched T waves in long QT syndrome
type 2. Nat Commun 2014;5:5069.
20. Sadrieh A, Mann SA, Subbiah RN, et al. Quantifying the origins of
population variability in cardiac electrical activity through
sensitivity analysis of the electrocardiogram. J Physiol (Lond)
2013;591:4207–4222.
21. Mann SA, Imtiaz M, Winbo A, et al. Convergence of models of human
ventricular myocyte electrophysiology after global optimization to
recapitulate clinical long QT phenotypes. J Mol Cell Cardiol
2016;100:25–34.
22. Wang G, Lu C-J, Trafford AW, et al. Mechanistic insights into
ventricular arrhythmogenesis of hydroxychloroquine and azithromycin for
the treatment of COVID-19. bioRxiv 2020;3:e208857–31.
23. Blinova K, Stohlman J, Vicente J, et al. Comprehensive Translational
Assessment of Human Induced Pluripotent Stem Cell Derived Cardiomyocytes
for Evaluating Drug-Induced Arrhythmias. Toxicol. Sci.
2016;155:kfw200–247.
24. Shukla AM, Archibald LK, Wagle Shukla A, Mehta HJ, Cherabuddi K.
Chloroquine and hydroxychloroquine in the context of COVID-19. DIC
2020;9.
25. Rangwala R, Leone R, Chang YC, et al. Phase I trial of
hydroxychloroquine with dose-intense temozolomide in patients with
advanced solid tumors and melanoma. Autophagy 2014;10:1369–1379.
26. McLachlan AJ, Cutler DJ, Tett SE. Plasma protein binding of the
enantiomers of hydroxychloroquine and metabolites. Eur. J. Clin.
Pharmacol. 1993;44:481–484.
27. Karunajeewa HA, Salman S, Mueller I, et al. Pharmacokinetics of
chloroquine and monodesethylchloroquine in pregnancy. AAC
2010;54:1186–1192.
28. Mackenzie AH. Dose refinements in long-term therapy of rheumatoid
arthritis with antimalarials. The American Journal of Medicine
1983;75:40–45.
29. Gendrot M, Javelle E, Clerc A, Savini H, Pradines B. Chloroquine as
a prophylactic agent against COVID-19? Int. J. Antimicrob. Agents
2020;55:105980.
30. Fihn SD, Perencevich E, Bradley SM. Caution Needed on the Use of
Chloroquine and Hydroxychloroquine for Coronavirus Disease 2019. JAMA
Netw Open 2020;3:e209035–14.
31. Redfern WS, Carlsson L, Davis AS, et al. Relationships between
preclinical cardiac electrophysiology, clinical QT interval prolongation
and torsade de pointes for a broad range of drugs: Evidence for a
provisional safety margin in drug development. Cardiovasc. Res.
2003;58:32.
32. Gintant G. An evaluation of hERG current assay performance:
Translating preclinical safety studies to clinical QT prolongation.
Pharmacology & Therapeutics 2011;129:109–119.
33. McChesney EW, Banks WF, Fabian RJ. Tissue distribution of
chloroquine, hydroxychloroquine, and desethylchloroquine in the rat.
Toxicol. Appl. Pharmacol. 1967;10:501–513.
34. Pan L, Mu M, Yang P, et al. Clinical Characteristics of COVID-19
Patients With Digestive Symptoms in Hubei, China: A Descriptive,
Cross-Sectional, Multicenter Study. Am. J. Gastroenterol.
2020;115:766–773.
35. Chorin E, Dai M, Shulman E, et al. The QT Interval in Patients with
SARS-CoV-2 Infection Treated with Hydroxychloroquine/Azithromycin.
medRXiv 2020:2020.04.02.20047050.
36. Wang Y, Guo J, Perissinotti LL, et al. Role of the pH in
state-dependent blockade of hERG currents. Sci Rep 2016;6:32536.
37. Pfizer. Zithromax IV. 2013:1–16.
38. Fleet WF, Johnson TA, Graebner CA, Gettes LS. Effect of serial brief
ischemic episodes on extracellular K+, pH, and activation in the pig.
Circulation 1985;72:922–932.
39. Clayton RH, Holden AV. Dispersion of cardiac action potential
duration and the initiation of re-entry: a computational study. Biomed
Eng Online 2005;4:11.
40. Food and Drug Administration, HHS. International Conference on
Harmonisation; guidance on S7B Nonclinical Evaluation of the Potential
for Delayed Ventricular Repolarization (QT Interval Prolongation) by
Human Pharmaceuticals; availability. Notice. Fed Regist
2005;70:61133–61134.
41. Yap YG, Camm AJ. Drug induced QT prolongation and torsades de
pointes. Heart 2003;89:1363–1372.
42. Behr ER, Roden D. Drug-induced arrhythmia: pharmacogenomic
prescribing? Eur Heart J 2013;34:89–95.
43. Sauer AJ, Moss AJ, McNitt S, et al. Long QT syndrome in adults. J Am
Coll Cardiol 2007;49:329–337.
44. Gautret P, Lagier J-C, Parola P, et al. Hydroxychloroquine and
azithromycin as a treatment of COVID-19: results of an open-label
non-randomized clinical trial. Int. J. Antimicrob. Agents 2020:105949.
45. Araujo FG, Shepard RM, Remington JS. In vivo activity of the
macrolide antibiotics azithromycin, roxithromycin and spiramycin against
Toxoplasma gondii. Eur. J. Clin. Microbiol. Infect. Dis.
1991;10:519–524.
46. Tett SE, Cutler DJ, Day RO, Brown KF. A dose-ranging study of the
pharmacokinetics of hydroxy-chloroquine following intravenous
administration to healthy volunteers. Br J Clin Pharmacol
1988;26:303–313.
47. Yang Z, Prinsen JK, Bersell KR, et al. Azithromycin Causes a Novel
Proarrhythmic Syndrome. Circ Arrhythm Electrophysiol 2017;10.
48. Ballouz S, Mangala MM, Perry MD, et al. Co-expression of calcium and
hERG potassium channels reduces the incidence of proarrhythmic events.
Cardiovasc. Res. 2020.
49. Stillitano F, Hansen J, Kong CW, Elife IK, 2017. Modeling
susceptibility to drug-induced long QT with a panel of subject-specific
induced pluripotent stem cells. eLife 2017;6:e19406.
50. Touret F, Gilles M, Barral K, et al. In vitro screening of a FDA
approved chemical library reveals potential inhibitors of SARS-CoV-2
replication. Sci Rep 2020;10:13093.