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ABSTRACT. This paper deals with the global existence and decay estimates of solu-
tions to the three-dimensional magneto-micropolar fluid equations with only velocity
dissipation and magnetic diffusion in the whole space with various Sobolev and Besov
spaces. Specifically, we first investigate the global existence and optimal decay esti-
mates of weak solutions. Then we prove the global existence of solutions with small
initial data in H*, B3  and critical Besov spaces, respectively. Furthermore, the op-
timal decay rates of these global solutions are correspondingly established in H™ and
Bg}m spaces with 0 < m < s and in Bg}l with 0 < m < %, when the initial data
belongs to B2_ f}o 0<i< g) The main difficulties lie in the presence of linear terms
and the lack of micro-rotation velocity dissipation. To overcome them, we make full
use of the special structure of the system and employ various techniques involved with
the energy methods, the improved Fourier splitting, Fourier analysis and the regularity
interpolation methods.

1. INTRODUCTION

The three-dimensional (3D) incompressible magneto-micropolar fluid equations can
be written as
(Ou+ (u-V)u— (p+ x)Au=—=VP+b-Vb+2xV X w,
Ow + (u-V)w+dxyw — kVV - w — yAw = 2xV X u,
Ob+ (u-V)b—vAb=1">-Vu, (1.1)
V-u=V-b=0,
Lu(z,0) = up(x),w(z,0) = we(z),b(z,0) = by(x),

where (z,t) € R® x RT. u,w,b and P denote the velocity fields of the fluid, micro-
rotational velocity fields, the magnetic field and the pressure, respectively. u,x and v
are, respectively, kinematic viscosity, vortex viscosity and magnetic resistivity. « and
are angular viscosities.

The magneto-micropolar fluid equations usually describe the motion of aggregates of
small solid ferromagnetic particles relative to viscous magnetic fluids under the action of
magnetic fields, such as salt water, ester, fluorocarbon [1, 14]. Using spectral Galerkin
method, Rojas-Medar [29] proved the existence and uniqueness of local strong solutions
to (1.1) in bounded domain. Later, Rojas-Medar and Boldrini [30] established the
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global existence of weak solutions to system (1.1) in bounded domain. Later, the global
existence of classical solutions to (1.1) with small initial data and Dirichlet boundary
condition was proved by Ortega-Torres and Rojas-Medar in [27]. Recently, the global
existence of weak solutions and global strong solutions with small initial data to (1.1) in
the whole space R? were established (see, e.g., [25, 40]). For more results related to the
global regularity and regularity criteria, one refers to [5, 7, 11, 15, 21, 43, 45, 49, 50, 51]
and the references therein.

When ignoring the angular viscosity (see, e.g., [48, 33]), system (1.1) becomes the
following 3D magneto-micropolar fluid equations,

(Ou~+u-Vu—(p+x)Au=—-VP+b-Vb+2xV X w,
ow+u-Vw+4dxyw — kVV - w = 2xV X u,
Ob+u-Vb—vAb=10b-Vu, (1.2)
V-u=0,V-b=0,

Lu(z,0) = up(x),w(z,0) = wy(z),b(z,0) = by(x).

So far, to our best knowledge, the previous well-posedness results on (1.2) mainly focus
on the two-dimensional system. In particular, Yamazaki [48] proved the global existence
of smooth solutions in R? by fully exploiting the structure of (1.2) and applying the
techniques of Littlewood-Paley decomposition. Recently, system (1.2) with fractional
dissipation was studied by Shang and Wu [33]. Moreover, Shang and Gu [32] studied
the global regularity of solutions to (1.2) with only partial magnetic diffusion. For more
results about the global well-posedness with various partial dissipation, one can refer to
6, 8, 12, 13, 16, 22, 28, 34, 44, 47] and the references therein for interested readers.

Once the global well-posedness is established, one may wonder the large time behav-
ior of global solutions. This is an important issue in the fields of partial differential
equations. It is well-known that the L? decay problem of weak solutions to the 3D
Navier-Stokes equations, i.e., (1.2) with w = 0 and b = 0, was proposed by the cel-
ebrated work of Leray [20]. By introducing the elegant method of Fourier splitting,
Schonbek [35, 36] successfully established the optimal time decay rate of weak solutions
of the Navier-Stokes equations, see also [19, 46]. Recently, by virtue of the structure to
(1.1) and the Fourier splitting method, Li and Shang [25] established the decay estimates
for weak solutions of (1.1) and obtain the same rate as those of the 3D Navier-Stokes
equations. One can refer to [9, 18] for more results about the decay rate of system (1.1).
Very recently, Braz e Silva, Cruz, Freitas and Zingano [4] improved the decay rate of w
for the solution of the 3D micropolar equations (1.1) with b = 0. In addition, the decay
estimates of the higher order derivatives of smooth solutions of 3D Navier-Stokes equa-
tions and magneto-micropolar equations with small initial data were obtained in [26, 37|
and [25, 40] respectively. We remark that the methods to derive the decay results above
are strongly depending on the full Laplacian dissipation in all equations.

In this paper we are interested in the global well-posedness and decay estimates of
solutions to (1.2) with only velocity dissipation and magnetic diffusion. We establish the
global existence results to system (1.2) in various Sobolev and Besov spaces. Further-
more, the optimal large time decay rates of these global solutions in the corresponding
spaces are also established.
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We now list the main results of the paper. The first result is the following global
existence and optimal decay estimates of weak solutions in L? space.

Theorem 1.1. Let > 0,x > 0,v > 0 and k > 0. Assume that (ug,wq,by) € L*(R?)
with V -ug =0 and V - by = 0. Then the following statements hold:
(i) For any T > 0, system (1.2) has a global weak solution (u,w,b) satisfying

(u,b) € L=(0,T; L*(R*)) N L*(0,T; H'(R?)), w € L>(0,T; L*(R?)). (1.3)

(ii) Let (ug,wo,bg) € LP(R?) with 1 < p < 2. Then the global weak solution (u,w,d)
satisfies for all t > 0,

_3(2_
()l z2es) + llw ()l 2y + 6] 2es) < C(1+)7367Y, (1.4)

where the positive constant C depends on p,x,v and the initial data (ug, wo, bo).

Remark 1.2. The decay estimate (1.4) for the velocity field w and magnetic field b are
optimal, because it agrees with that of the heat kernel. In addition, we believe that the
decay rate for micro-rotational field w in (1.4) cannot be improved better. In fact, if we
take the L*-inner product of the second equation in system (1.2) with w, we obtain

1d
5 7 wllze + xllwllzs < 2Vl aflw]l 2z,
which yields

t

lw@®)llze < e flwollz2 + 2X/ e~ Vu(7) | 2dr
0

This implies that to improve the decay rate of ||w||rz, we need to get the decay estimate
of ||Vul||p2. However, due to the strong coupling structure of system (1.2) and the lack
of dissipation in the equation of w, it is extremely difficult to achieve this goal for weak
solutions.

The proof of global existence of solutions in Theorem 1.1 can be referred to the
Friedrichs method and fully exploiting the structure of (1.2). Classical Fourier splitting
methods developed by [19, 46] are not applicable to establish the decay estimate (1.4)
because of the lack of the dissipation of w. The main observation is that the low
frequency effect dominates in the study of the L? decay of weak solutions. Therefore,
we overcome the difficulty based on the improved Fourier splitting methods and fully
utilizing of the damping term 4yw in (1.2), then eventually establish the desired decay
estimate.

The next three theorems are devoted to the global existence and the time decay
estimates of solutions to system (1.2) with small initial data in Sobolev and Besov
spaces. In general, the approach to establish the global existence includes two main
steps. The first one is related to the local (in time) well-posedness while the second
extends the local solution into a global one based on a global (in time) a priori bounds.
For simplicity, we omit the proof of local well-posedness of solutions and pay attention
on the global a priori bounds of (u,w,b). We are able to obtain the global existence in
three Besov spaces. Furthermore, by using the interpolation method, energy estimates
and the technique of Fourier analysis, we obtain the correspondingly optimal time decay
rates of these solutions.
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More precisely, the first theorem establishes a unique global solution when the initial
data (ug,wo, by) is sufficiently small in H*(R?), and obtain the optimal decay rates of
the global solution itself and its higher order derivatives, as stated below.

Theorem 1.3. Let > 0,x > 0,v > 0 and k > 0. Assume that (ug,wy, by) € H*(R3)
with s >0 and V - ug =V - by = 0. Then the following two statements hold:
(i) Let s > % Then there exists a positive constant Cy such that for all 0 < e < Cy,

if

[[uol %15(11@3) + [lwol %{s(u@) + [|bo] ?{S(R?’) <6 (1.5)

then system (1.2) has a unique global solution (u,w,b) satisfying, for anyt > 0,

() s sy + 1w () [[rs sy + 101

+ [ vl

wrsrsy +w(T I

H*(R3)

sy + [IVO(T )|

wrs(r3))dT < Ce, (1.6)

where C' > 0 is a constant independent of t.
(it) Let s > 2. Suppose that (ug, wo, by) € By! (R?) with 0 < 1 < 3. Then the global
solution (u,w b) satisfies the following decay estimates:
i) For all real number m with 0 < m <'s,
D™ u(t)||2@s) + D™ w(E)||2@s) + [ D™b() | L2s) < C(141)”

ii) For 0 <m < s—1, the following improved decay estimates for w hold

m
2

1, (1.7)

l

|D™w(t)| p2msy < C(1+1)"" "3, (1.8)

i11) Assume also that there exists a positive constant Cy such that

N

D™ "2 | 2 (gsy > Co(1+1)"5 2. (1.9)
Then the following lower bound decay estimates for b hold
ID™b|| 2y > C(1+1)"% 2. (1.10)

Remark 1.4. (1) Theorem 1.3 establishes the optimal LP(R3)-L?(R3) type of decay rates
forp € [1,2) for all of the derivatives of order 0 < m <'s for (u,b) and0 < m < 3—1 for
w in the larger space By ! (R?), since LP(R?) < By (R?) with1 < p <2 and | = o—3

(2) Our global ezistence part (i) is an obvious genemlzzatwn of that in [40], where the
H*(R3) with s > 3 smoothness on the initial data is required. In fact, our assumption
s > 3 is crucial and necessary to ensure L=(R?) — H*(R?).

(8) The decay estimates of solutions to (1.1) with full dissipation were studied in [40].
Our results of Theorem 1.3 improves that of Theorem 1.2 ([40]) in two aspects: First,
the decay estimate (1.7) is only valid for 0 < m < s—2 in [40]. Second, the upper bound
decay estimate (1.8) of w is improved to (1.8) other than (1.7) in [40].

(4) A sufficient condition of lower bound (1.9) is due to Oliver and Titi [26].

(5) We also remark that it may be difficult to obtain the lower bounds of the decay
rates of u and w because of the presence of linear terms in the equation of u and w
and lack of the dissipation in the equation of w. Therefore, it would be interesting and
challenging to derive the lower bound of decay estimates for u and w in the near future.
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The proof of the global existence part of Theorem 1.3 relies on the global a prior:
bound for ||(u,w, b)|| gsrs). Due to the lack of dissipation in the equation of w, we utilize
the special structure of system (1.2) and take advantage of the velocity dissipation
and damping term in equation of w to overcome the difficulty from the linear terms
2xV xw and 2xV xu. We remark that Sohinger and Strain [38] first introduced negative
homogeneous Besov space B; ! (R%) to study the decay estimates of the Boltzmann
equation. Later, this space is used to study the decay estimates of other evolutional
equations (see, e.g., [10, 39, 40]), whose advantage comes from the fact that the solution
can preserve the evolution of time. As we know, it is difficult to verify that the LP(R?)
(with 1 < p < 2) norm of the solution can be propagated.

The second theorem states that system (1.2) has a unique global solution when the
initial data (uo, wo, bo) is sufficiently small in Bj _(R?), and also establish their optimal
decay rates.

Theorem 1.5. Let 1> 0,x > 0,v >0 and k > 0. Assume that (ug, wo, by) € B§7OO(R3)
with s >0 and V - ug =V - by = 0. Then the following two statements hold:
(i) Let s > 3. Then there exists a positive constant Cy such that for all 0 < € < Cj,

if

[[wol 235’00(11@3) + |wol 2B§’OO(R3) + [ 0ol 235’00(11@) <6 (1.11)

then system (1.2) has a unique global solution (u,w,b) satisfying, for anyt > 0,
a2, g + ol o + DO, g
2 2 2
HIVUlZs sy oy + 101 my @y HIVOIL 5y oy < C6 (112)

2,00

where C' > 0 independent of t is a pure constant.

(i) Let s > 2. Suppose that (ug, wo, by) € Biéo(R?’) with 0 < 1 < 2. Then the global
solution (u,w,b) satisfies the following decay estimates:

i) For all real number m with 0 < m < s,

_m_ 1
la®)l g + 10 gy + 16 gy < L+ )75, (1.13)

i1) For 0 <m < s — 1, the following improved decay estimates for w hold

_m+l
2

N~

||w(t)||B§7m(R3) < C(1+1) (1.14)
Remark 1.6. Since H3(R?) — BS’OO(]R?’), the decay estimates of Theorem 1.5 lies in a
space which is larger than H*(R3).

To ensure the global existence results of Theorem 1.5, it is important to prove the
uniform bounds of ||(u,w,b)||p; _r3). Due to the lack of dissipation in the equation of w,
we need to employ the interpolétion inequality of Besov spaces and utilize the properties
of the heat operators to overcome the difficulties.

Finally, the following theorem shows that system (1.2) has a unique global solution
when the initial data (ug, wo, by) is sufficiently small in critical Besov spaces. Further-
more, the decay rates to the global solution are also established.
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Theorem 1.7. Let p > 0,x > 0,v > 0 and k > 0. Assume that (ug,by) € B;l(RP’) with

3
V-uy=V by =0 and wy € B3,(R?). Then the following two statements hold:
(i) If there exist positive constants Cy and Cy such that

Cox < min{u + x, v}, (1.15)
and for any 0 < € < C1,

[[uol| . (1.16)

1
B2, (R?)

Hlhwollyg o+ Woll g

then system (1.2) has a unique global solution (u,w, b) satisfying, for anyt >0,

lu@)]l. +lw®l g 6@, 5 s

B2 (R
2 21(3
t

+/0 (!!VU(T)llBél(RS)ﬂL Hw(T)HBél(Rg)Jr IVb(T )HBgl(Rg) < Ce, (1.17)
where C' > 0 independent of t is a pure constant.

(ii) Suppose that (ug,wo,by) € B R with 0 < 1 < % Then for all real number
m with 0 < m < 3, the global solution (u,w,b) established in (i) satisfies the following
decay estimates
m__ 1

[l g, sy + [0 O] g sy + 100 [ g, sy < CA+E) 272 (1.18)

To prove Theorem 1.7, we focus on the uniform bounds of ||(u, b)||L2(0tB% &) an
1792 00

||w||L2 053 @) Due to the lack of dissipation in the equation of w), it seems extremely
7t7 2,00

difficult to deal with the linear terms on the right hand sides of system (1.2) in critical
Besov spaces. To overcome these difficulties, a condition of coupling parameters (1.15)
is imposed. Therefore, it would be interesting to establish the global well-posedness
and decay estimates to system (1.2) without the assumption (1.15), which is left to be
investigated in future.

Throughout this manuscript, to simplify the notation, we will write [ f for [, fdz,

[f1lze for [l ey, [1f]1ge and || fllzs for || f]] g+ gs) and || f|[ms(s) respectively, By and
By, for .BIS’""(RB) and By (R?) respectively, and Lg(B;T) and Eg(B;r) for LZ(B;’T(R?’))
and L{(B; . (R?)) respectively.

The rest of this paper is divided into six sections. In section 2, we introduce some
definitions and related results of Besov spaces and give several useful calculus inequalities
to be used in the subsequent sections. Sections 3, 4, 5 and 6 state the proofs of Theorem
1.1, Theorem 1.3, Theorem 1.5 and Theorem 1.7, respectively. The proofs of Lemma 2.5
and Lemma 2.6 below are provided in Appendix A.

2. PRELIMINARIES

This section provides several notations of functional spaces and calculus inequalities,
which will be helpful in the next sections.
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2.1. Functional spaces. In this preparatory subsection, we recall the Littlewood-Paley
operators and their elementary properties which allow us to define the Besov spaces.
Related results can be found in several books and many papers (see, e.g., [2, 3, 24, 31,
42)).

We start with several notations. S denotes the usual Schwarz class and S’ its dual,
the space of tempered distributions. To introduce the Littlewood-Paley decomposition,
we write for each j € Z

Aj={¢eR?: 271 < gl <2}

The Littlewood-Paley decomposition asserts the existence of a sequence of functions
{®,};ez C S such that

supp:I;j C Aj, @(5) = $y(277¢) or ®;(z) = 2/99,(277),
and
SN 1, if&eR*\ {0},
S HO={0 weco

Therefore, for a general function ¢ € S, we have

o0

ST B5(€)0(E) = () for £ e R\ {0}

j=—00

We now choose W € S such that

V(E)=1-Y d;(§), €eRr

=0
Then, for any ¢ € S,

U+ Ox9p=1
§=0

and hence
Ui f+Y Bynf=f (2.1)
=0
in &’ for any f € §’. To define the inhomogeneous Besov space, we set
0, if j < =2,
Ajf=q ¥xf, if j =—1, (2.2)

D, x f, if j=0,1,2,---.
To define the homogeneous Besov space, we set
Ajf=d; % f, if j=0,£1,4£2,---. (2.3)

Besides the Fourier localization operators A;, the partial sum S; is also a useful
notation. For an integer 7,
j—1

k=—1
For any f € &', the Fourier transform of S;f is supported on the ball of radius 27. Tt is
clear from (2.1) that S; — Id as j — oo in the distributional sense.
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Definition 2.1. The inhomogeneous and homogeneous Besov spaces BS,, and B, with

p,q p,q
s €R and p,q € [1,00] consists of f € S’ satisfying
£ 1155, = 12712 fll o llir < oo,
and ‘
1l = 1218 llzs s < oo,
respectively.

Several classical function spaces are special cases of Besov spaces. The following
proposition lists some useful equivalence and embedding relations.

Lemma 2.2. For any s € R,

S
q g,max{q,2}"

For any non-integer s > 0, the Holder space C* is equivalent to B, .

We have also used the space-time space defined below.

Definition 2.3. For ¢ > 0, s € R and 1 < p,q,r < oo, the inhomogeneous and
homogeneous space-time spaces LyB; ., LiB, , and LyB; ,, LiB, , are defined through
the norms

£ llezms, = 2718 flleelle gy 1 Fllzrms, = 11214 f ol 2y
and . . .
1 fllirgs = 12708 f e llies W f s = 127014 fllzree e,
t - p.q J t—Dp,q J
respectively.

The inhomogeneous space-time space has the following properties.

LB, = LB, itq>r, LiBS, — LiBS ., ifr >q.
Asqg=r,
1Fllegm;, = 1 fllz 5.,

The homogeneous space-time space has the similar properties.

Bernstein’s inequalities are useful tools in dealing with Fourier localized functions.
These inequalities trade integrability for derivatives. The following proposition provides
Bernstein type inequalities for fractional derivatives. The upper bounds also hold when
the fractional operators are replaced by partial derivatives.

Lemma 2.4. Leta >0 and 1 <p < q < 0.
1) If f satisfies
supp f C {€ € R?: [¢] < K27},
for some integer j and a constant K > 0, then

(=) fll Laray < Ch 92edtidt, q)HfHLP(Rd)-
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2) If f satisfies
supp f C {6 cRY: K20 < |€| < K29}

for some integer j and constants 0 < Ky < Ks, then

1

) aj+jd(L—2
Cy QZQJHfHLQ(Rd) < H(—A)afHLQ(]Rd) < Oy 92 J+id(s q)HfHLp(Rd),

where C7 and Cy are constants depending on o, p and q.

2.2. Calculus inequalities. As preparations we first give two lemmas regarding to
commutator estimates and product law, which proofs are put in the Appendix A.

Lemma 2.5. Let s > —1, (p,7,p1,p2, q1,G2) € [1,+00] with ]% = ’p% - qil = 1}2 + qi? and
u be a smooth divergence free vector field. Then for j € 7Z,

127114z - V]ollio e < IV ullim | Vo]

st IVl [Vl

B;;lr)a (24)

1271 [Aj, u - Vvl ol < C(IVul| o [Jo]

g+ IollemllVulls, ), (25)

where [Aj,u- Vv = Aj(u- Vo) —u-A; (Vo).

Lemma 2.6. Suppose that s > 0 and (p,r,p1,pa2, ¢1,q2) € [1, +00] with % = pil 4 qil =
p% + qiz. Then the following holds true
£l < CUFInllallsy + 115, Nl (2.6)

Remark 2.7. In particular, Lemma 2.5 and Lemma 2.6 with p1 = qa = 00 and q; = po
have previously been obtained in [2, 24].

Finally, we recall the following three inequalities for homogeneous Besov space.

Lemma 2.8. (sce [38]) Let 0 <1< 3 and 1 <p <2 with § + L = %. Then
11551 @3y < Cllflr@s). (2.7)

Lemma 2.9. (see [38]) Let 51 < s <85, 1 <pp<p<p<ooandl <gp<qg<q <
oo. Then

s9—3 s—s1

sthq(Rg) < C||f||;2;;:11(R3)||f|

/]

Lemma 2.10. (see [2, 24]) Let s, s, and sy be real numbers. Let s < s9, 0 < 0 < 1,
1<p<ococandl <r; <ry<oo. Then

1155, ) < CIIS|

(2.8)

S2751
. 3y -
By, (R?)

By, (R3)’ (2.9)

”fHBEilHI*G)SZ(Rs) < CHf’ GB;}OO(RLS)”JC‘ }gg?om(RS)' (2'1())
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3. THE PROOF OF THEOREM 1.1

In this section, we shall prove Theorem 1.1. The global existence part (i) of Theorem
1.1 can be attained according to Friedrichs method. For simplicity, we sketch the key
ideas as follows.

Proof of assertion (i) of Theorem 1.1. Consider the approximation problem

&guN + ]P)JN(]P)JNUN . VPJNUN) — (/L -+ X)APJNUN = PJN(JNbN : VJNbN)
+2xV x Jyw?,
ath + JN(PJNUN . VJNUJN> + 4XJNU)N — kVV. JNU)N = 2XV X PJNUN, (31)
@bN + JN(IP)JNUN : VJNbN) — VAJNbN = JN(JNbN : VIP)JN’LLN),
uN (z,0) = Jyug, w(x,0) = Iywp, b (x,0) = Jybo,

where we denote P the Leray projection onto divergence free vector fields, and the
spectral cutoff Jy

INF(€) = xBom(€)f(), N >0,

where B(0, N) = {¢ € R*||¢] < N}, and xp(o,n) is the characteristic function on B(0, N).
Moreover, we define

Ly = {f € L*(R®)]suppf C B(0, N)}.
Using Picard’s theorem in [23], it is easy to prove that system (3.1) has a unique local
solution (u¥,w™ bV) € C([0, Ty); L%) with Ty > 0. Furthermore, we derive that

Pu = o, Jyu® = o, Jyw®™ = w0, Iyt =V, V-’ =0 and V-V = 0.
Therefore, equations (3.1) can be reduced to
o + Py (u® - Vul¥) = (u+ x)Aul + Py (0N - VON) + 24V x w?,
o™ + Iy - V) 4+ dyw — kVV - w? =2V x u?,
AN + Jn(u - V) = v AN + Ty (B - Vul) (3.2)
V-ud =0,V =0,
uN(z,0) = Jyug, w = Jywg, bV (z,0) = Jybp.

To extend the local solution to the global one, we just need to show that (u™,w™,b")
remains bounded in L3, for all time. Taking the L*-inner products with (u”,w™,b") to
(3.2), then standard calculations yield

1d

5 g7 e IZe + ™2 + 167 1Z2) + (1 + 201 Ve 72 + dxlw™ |72 + vIIVE 172

§4x/V><uN~wN. (3.3)
where we used the facts that

/waN-uN:/quN-wN, /bN-VbN-uN—I—/bN-VuN-bN:O.

Applying the Young inequality, we derive that

Ot
/v cu w < 24—XX||VuN||§2 e LA (3.4)
2
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Inserting (3.4) into (3.3), one obtains

1d 1
5 77 (1 1Ze + ™[22 + 167 172) + SIVeize +

dxp

/J I QXHUJNH%Q + VHVbN”%z S 0.

(3.5)

Then it follows from this and Picard’s theorem that (u, w,b") exists for all time and
satisfies for any 7' > 0,

(¥, ) [imore) < C. (Va0 90" 20rury < O, (36)

where C'is independent of N. These estimates imply that there exists a subsequence of
(u™,w™, o) (still denoted by (u®,w™,b") for convenience), such that

(™, w™ b)) —* (u,w, b) weakly in L>=(0,T; L}, .(R?)). (3.7)

(Vu, w, VoY) — (Vu,w, Vb) weakly in L*(0,T; L7, (R?)). (3.8)
Subsequently, for any 7' > 0, standard computations show that

N € L0, T: H™"), 8" € L5(0,T;H ). (3.9)

Thus by virtue of Aubin-Lions Lemma in [41] , there exists a subsequence of (u®,b")

such that
(™, b™) — (u, b) strongly in L*(0,T; L7, .(R?)). (3.10)

loc

These convergence, together with the method of [20], verify that (u,w,b) is a weak
solution of (1.2). We thus complete (i) of Theorem 1.1.
[

Now we start to prove assertion (ii) of Theorem 1.1. We remark that the following
proof is formal, which can be rigorously applied to the approximate solution (uV, w¥, o™V)
above.

Similar as (3.3)-(3.5), we obtain the uniformly global a priori estimates as follows.

Lemma 3.1. Let (ug,wg,by) € L*(R3). Then for any t > 0, the solution (u,w,b) of
system (1.2) satisfies
d
—(llullzz + lwllze + 18l[72) + co(IVullze + wlze + [VBl72) <0, (3.11)
and
t
lull2 + [lwllZe + [1B]172 + Co/ (IVu(n)I72 + l[w(m)|72 + [IVO(T)]72)dr
0

< lJuollZ> + llwollZ2 + lIbollZ2, (3.12)

—mi Sxp
where co = min{p, 29, 2v}.

Another preparation is the following lemma which will play an important role to

derive the decay estimates of Theorem 1.1.

Lemma 3.2. Let (u,w,b) be a smooth solution to system (1.2) with V -uy =V by = 0.
Then for any |&| < 1, there exists a constant C > 0 such that

6(€, 1) + (€, )2 + |b(€, 1)[2 < 27201 (|G| + [ + [Bo[?) + CJ€] 72 (3.13)
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Proof. Applying the Fourier transform to the first three equations of system (1.2), we
obtain

Oyt + (p+ x)|€]P0 = —F(VP) + F(b- Vb) + 2xi€ x w — F(u - Vu),
8t7:D + 4XUA)A+ REE - = 2xi€ X 4 — F(u - Vw), (3.14)
Ob + vIE*b = F(b-Vu) — F(u-Vb).

Taking the dot product to (3.14);, (3.14), and (3.14)3 with @, w and b respectively,
multiplying (3.14)q, (3.14)y and (3.14)3 conjugated by @, w and b respectively, and
adding them up, we obtain

(jal® + [0* + [b) + 2(u + X)EL A + 8x[@]® + 2v[¢|bf
= —F(VP) - ii— F(VP) i+ F(b-Vb) - it + F(b-Vb) - it + 2\ X b - i + 2xi€ X 1 - @
— Flu-Vu) -t — F(u-Vu) -0+ 2xi& X @ -0+ 2xi€ X 4 -0 — F(u - Vw) -

_—

— Flu- V) -+ Fb-Vu) b+ Fb-Vu)-b— Flu-Vb)-b— Flu-Vb)-b.
(3.15)

The terms in (3.15) will be labeled as K, K,, - -+, K6 according to the order they
appear in (3.15).
Taking advantage of the divergence free condition V - u = 0, we derive that

KlzKQZO.

Using the properties of Fourier transform and the divergence free condition V - b = 0,
we obtain

| K5 + Ka| < 2[¢||F(b@b)||d]
< 2[¢][lb @ bl 1|4
< 2/¢][[bl|721al-
Similarly, we have

| K7 + Kg| < 2|€]||ul|?:]al.
|K11 + Kio| < 2[¢]([Jull72 + [Jw]|72)]w@].

K13 + Kia + Kis + Kol < 41€]([ull72 + [[B]172)[0],
Applying the Young inequality,
| K5 + Ko + Ko + Kio| < 8x[¢|[w]]]

16 4.

< (u+2 210)% 4+
< (p+2x) €70l 1o

Combining the above estimates with (3.15), yield
N . > N Sxp | . >
(|l + [0 + [b]*) + plEPlal* + —=—|w[* + 2v[&[*|b|?
(™ )" = %) + plejal™ + - =5l [€1710]

< ClEl(lullze + llwllF + 16I1Z2)(1a] + @] + [o1).
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Hence for |[£| < 1, this inequality implies
u(al® + [0 + [b) + col€(|af* + [ + [B])
< Clel(lullz> + llwllZ> + 18l172) (] + J@] + [b]),

which immediately yields

0t\/|756!2 + [ + [bf?* + 60|£|2\/|ﬁ|2 + [ + [bf? < ClE|(lull2 + llwll72 + [1b]72)-
(3.16)

Integrating (3.16) in [0, t], we obtain

V1B + 102 + b2 < &7 Jagf2 + o2 + [fof?
t
+0 [ D ) + )+ 100 ). (3.17)
0

Then this inequality, together with Lemma 3.1, yield the desired result (3.13).
0

With the help of Lemma 3.1 and Lemma 3.2 at our disposal, we are ready to prove
assertion (ii) of Theorem 1.1.

Proof of assertion (ii) of Theorem 1.1. Set
S(t) = {€ e RI[¢] < p(t)}

with p(t) <1 to be chosen later. By Plancherel’s theorem,
IVulf + VB = [ I6Pa©F + 1))
> [ PR + )P
&1=p(t)
> 20) [ ()P + b6 P
€1>p(t)
= POl + 91— 20 [ (O + bOP)dE. (319

[€1<p(t)

Note that p(t) < 1, we obviously obtain
lwlze > p*(t)[lwll7-- (3.19)
Inserting (3.18) and (3.19) into (3.11), it derives that

d
—(llullzz + [lwllze + 181[Z22) + cop® (@) (lullze + [lwlz2 + [1b]22)

sﬁ@/ (G(©) + [B(O)[)de. (3.20)
€] <p(¢)
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Combining (3.13) with (3.20), we obtain
d
—(llullzz + lwllze + 101172) + cop® (@) (lullzz + llwllzz + [1b72)

<202(0) [ (ol + ol + o) + o) [ el g
lg1<p(t)

[€1<p(t)

< Cp" (@) (luoll e + lwollZe + lIbollZe) + Co*(2), (3.21)

where we have used Holder’s inequality

fporss (L pore) (£,9)”

and the Riesz theorem

1£(E)ze < CIFE)l|ze
With%—l—ézlandlgng
Choosing T > 0 and

1
3 2
)=\—F/——=1] , 3.22
o0 = () (3.2
such that p(t) <1 for all ¢ > Tp.

Inserting (3.22) into (3.21), and multiplying the result by (1 +¢)3, we obtain

d 3.2 .
(% (lullFz + wllf + D7) < €O+ 2070 4 C(1+ )2,

Integrating it in [Ty, t], it leads to
lullZ2 + [[wl|Z2 + 1lIZ: < (1 +6)72(1+ To)* (lu(To)lIz2 + lw(To)lz + [[6(To)[I72)
+C(1+0)26 Y Lo +1)2
<C(1+1t)2. (3.23)

When [£| < p(t), combining (3.12) and (3.23) with (3.17), we have for ¢t > Ty,

V1B + 102 + b2 < e Jag[2 + diol? + [fol?

Ty
4 [ eI g+ ol + ol
0

t
+C(1+1)2 / e~ oleP(=9)(1 1 5)~2ds

To

</ liof? + [iol? + linf2 + C. (3.24)

Inserting (3.24) into (3.22), we eventually obtain

N

d 302
priiChs £ (lull22 + [[wl2e + [Ib]22)) < 1+ ) 267Y 4 O(1 +1)3.
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This immediately yields
lullz2 + lwlZz + 10172 < (1 + )71+ To)* (lu(To) 172 + llw(To)ll72 + [6(To)][72)
_2(2_1) _3
+C(1+t) 22V +C(1+1t) 2
<C(l+)7267Y, (3.25)

which implies (1.4) for t > Ty. For the case t < Tj, we have

_3(2_ _3(2_
(L4 6) 7257l o + fwl 7o + 1B1172) < (1+T5) 725 ((fuol|Z + llwoll 72 + bollZ2) < C,

where we have used the fact 1 < p < 2. Thus the proof of assertion (ii) of of Theorem

1.1 is completed.
O

4. PROOF OF THEOREM 1.3

This section is devoted to the proof of Theorem 1.3. We first prove the global well-
posedness part (i) of Theorem 1.3. As we know, it suffices to establish the global a priori
H? estimates.

Proof of assertion (i) of Theorem 1.3. Applying A]- to the first three equations of (1.2),
we have

DA utu-VAu—(u+x)AjAu = —A;Vp—[A;, u-V]u+A;(b-Vb)+2xA;V xw, (4.1)
8tAjw +u- VAjw + 4)(Ajw — mAjVV Sw = —[Aj, u - V]w + 2xAjV X U, (4.2)

where [A;, f-V]g = A;(f - Vg) — f - VA,g is commutator.
Dotting (4.1)-(4.3) by Aju, Ajw and A;b respectively, integrating resulting equations
in R?, and adding them together, we easily obtain
Ld,
2dt

1A ullZ2 + 1 AjwliZ2 + 1400172) + (1 + )12, VullZa + 4x[|Ajw]|Z2 + v]|A; V07

where we use the divergence free conditions V - u =0 and V - b = 0, and the facts

/AjVXU)'AjU:/AjVXU'A]’w7

/b-vAjb-Ajw/b-vAju.Ajb:o.
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Multiplying (4.4) by 2>/, taking the % over j € Z, noting that BS’Q — H* and using the
Holder’s inequality, we yield

Be) + (1 X) V| i T v[IVb|
< 1270[4;,u - VIullzzllelull s + 1211A7,6 - V1ol z2lle] |l
1129114y, u - Vwl| g2l ]

2o+ Ax||w)

ae + ] b

2.+ 1b]

Hs

s XVl [[w]] s

129014 - Vel e e lBl e + 127145, - Pl o 18] (4.5)
With the help of the Young inequality, one yields
4 : < (P 2 4x? 2 A
XVl g lwllge < (5 + )Vl + 3 Xllwll (4.6)
2

Inserting (4.6) into (4.5), adding the resulting inequality and (3.11) together, we have

ws  1Bl1s) + co( Va7 + lwllzs + [Vl

< (e + Il
< 20129)|[A, w - Vul gzl e + 2012791[A5,0 - V10| g2l e =
+ 2029 )[4 w- VIw| g2l llw]l e + 212 [[Ag, w - V1ol 22 2 16l -
+ 21129 [[[A5,0 - Vull g2z bl - (4.7)
Using commutator estimate (2.4), and noting that for s > 2,
[fllzee < Clfllas, £z < Clifllg, = ClIF

one obviously derives

127514, - Vul| g2z < ClIVull <[ Vull gy < ClIVullZs.

Hs,

Similarly, we have

127%[1[Aj,0- Vbl 22 ]li2 < CIVO|F,
1271112, w - Vol z2lle < CUIVullLo V0] g1 + VBl oo [Vl 1)
< C||Vullgs ||Vl gs,
and
12°1[Az,0- V]ullzlliz < CIVull el VO] -
Taking advantage of the commutator estimate (2.5), we imply that
127°/11Aj,w - Vw|z2llie < CUIVull e [[wll 55, + wllze [ Vull55.,)

< C|[Vul|us

Combining the above estimates together, we get

w| Hs-

—(lullzze + llwllz: + 1811z) + collVellz: + llwllz. + [V0]-)
< ClIVulls lullas + ClIVbIgs lullas + ClIVul e[l
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Then the Young inequality leads to

Co
—(lullzze + [l + 18llz) + 5 IV ullzs + o]z + [1VollZ.)
< C(Jlullzzs + llwllzzs + 017 WVallzr + lwlzs + 1VOllFe)- (4.8)
This inequality indicates that, if the initial data (uo,wo, by) satisfy, for 0 < € < Cy = 3%,
[uollZrs + llwollZr« + llboll7 < e,
then the corresponding solution remains for all time. Namely,
()77 + [w (@l + [0 |17 < e. (4.9)

In fact, if suppose (4.9) is not true and Tj is the first time such that (4.9) is violated,
le.,

lu(To) 17 + 1w (To) s + 16(To) 7 = e,
and (4.9) holds for any 0 <t < Tj. We can deduce from (4.8) that for any 0 <t < Ty,

d 2
=l

7e + IVO|[5.) < 0.

is + 1] ws + [l

C
we + [lw] qu)+(§0—0€)(IIVUI

Therefore,
a1 + llw(®) 7 + [[6(2)]

This is a contradiction. Thus, we get the uniform bound of (4.9). In addition,

e < € (4.10)

o+ [Ibol

s+ [lwol

ie < luol

/O UVl Iz + ()l + [VB()I[7:)ds < Ce. (4.11)

Therefore, the proof of (i) of Theorem 1.1 is completed.
0

Now we turn to prove the decay estimates assertion (ii) of Theorem 1.3. As a tool,
we first verify the following lemma in negative Besov space B o With 0 <1 < 3

Lemma 4.1. Let ¢ = min{yu, #8-5_2“)(’ 2v}. Then we have
(1) For0<1<1

d
Tl + ol +103,0) + cllVal + el + 1965 )

3+ 3+ 3 1
< C(IIVaullzz" + VOl E ) (1Aullza - + 1A ) (IVullze + [[Vewllzz + [V 2)
X (lull gy + ol g+ 1blg50). (412)

(2) For t <1<32,
d
—(llull +||wH —t +||b||B—z )+00(HVU||2-—1 +lwlig + V0I5

< O + 22 + IVl E + 19l F + 90T
x (lull s+ lwll e+ 16]50). (4.13)
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Proof. From (4.4), together with divergence free conditions V -u =V - b = 0, we derive
that
1d

2
< —/Aj(u-vu).Aju+/Aj(b-Vb)-Aju—/Aj(u-Vw)-Ajw

1AjullZ2 + 1 AjwliF2 + 1400172) + (1 + )12 VullZa + 4x[|Ajw]|Z2 + v]|A; V07

+4X/Ajv><u~Ajw—/Aj(u-Vb)~Ajb+/Aj(b-vu)-Ajb.
Multiplying this inequality by 277 and taking the I5° over j € Z, we obtain

d
Sl ol + I ) + 200+ 0NVl +Sxlhwl o + 20 Vbl

< 202729 Ay (u - Vu) |2 | Agul 2 lize + 20127271 A5 (5 - V0) |22 | Al 2 [l
+2[272) A (u - Vo) | 2| Ajw] 2 lize + 8x1127 21 A5(V x w)| 2l Ajw]| 2 lie
+ 2012729 A (u - V0) [ 22| Al 2 flize + 20127291 A (b - V) [ 2| Al 22 e
< 2l Vull g [full g+ 205 Volpo ull oo+ 2l Vool ol o
+8xIVull g llwll g 420w Vbl gt (bl + 2010Vl bl - (4.14)
Applying the Young inequality, we derive that

8y
Bl Vallgge s, < (ot 200Vulgge, + g llellsge,

Therefore, it follows from this, (4.14) and Lemma 2.8 that
d 2 2 2 2 2 2
Sl +llwlle + 18l ) + ol Vel +llwl +IVEIG. )
< 2Vl lull o+ 206+ Vb o llulls, o+ 2l Vol o w50

3421 3+21 3+21

+ 2l VBl o [bll e + 2010 Full e 01

3+21 3+21
= J1+J2—|-J3+J4+J5. (415)

Next we divide the proof into two cases.
HNIfo<i< %, by Holder’s inequality and Gagliardo-Nirenberg inequality, we have

- Vall e < llull, 3 19l 22 (4.16)
and
1421 1-2
lull 3 < CIVull,Z Aul,Z .
Thus

3421 12
Ji < C||Vul| 7 ||Aul|,2 HUHB;;'

Similarly, we obtain
3421 1-21

Jy < O[Tl 2 A0 3 [lull g -
142 Lo
Jy < CIVull 2 [ Aull 2 [Vl |wl g

1+21 12
Jo < COlVull 2 [|Aull s [IVO] 26l gy
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1421 1-2
Js < ClIVBlI 2 [|ABILE [ Vullze]|b] g -

Inserting the above bounds into (4.15), we get the desired estimate (4.12).
2) If % <l< %, applying the Gagliardo-Nirenberg inequality, we have

21 3-21
[ull ¢ < Cllullz [[Vell:
Together with (4.16), we yield
21 5-2
S < Ol Va2 llullgye -

Similarly, we have

Jo < CblZ 90,7 HUHB o
Js < Cllull 7 [ Vull F vaHLZHwHB L
Jo < Cllull 7 [ Vull 7 IIVb||L2Hb||B L

Js < Clbll & IVl ||VU||L2||b||B—
Inserting the above estimates into (4.15), we obtain (4.13).

By means of Lemma 4.1, we now start to prove assertion (ii) of Theorem 1.3.

Proof of assertion (ii) of Theorem 1.3. The proof is slightly long. For the sake of clarity,
we divide it into three parts.
(1) We first prove (1.7). Resorting to (4.4), together with Holder’s, Bernstein’s and
Sobolev’s inequalities and the divergence free conditions V - u = V - b = 0, we yield
1d
2 dt

g—/Aj<u-vu).Aju+/Aj(b-Vb)-Aju—/Aj(u-Vb)-Ajb

U Azullze + 12wl 72 + 1A50072) + (0 + )14Vl f2 + Ax [ Ajwl]|Z2 + v A; V0|2

+/Aj(b-Vu)-Ajb—/[Aj,u~V]w-Ajw+4x/AjV><u-Ajw
< 4 (u- Va)ll g [ Azullze + 1A VB)I| g 1Azullzs + A5 (u - VO ¢ |20 2o

+ 1145 V)l g llAzbllze + 1Az, w - Vw2 | Ajwllze + x4,V % ull 2| Ajwl] e
< OV Ayw @)l ¢ 1A Vul + CV A (b @b, |A; Va2

+ O | Aj(w @)l o 1AVl 22 + I[Ay, w- V]wl 2] Ajw] 2

Applying the Young inequality,
2
. . /’L . X .
WAV Xl [[Azwllez < (5 + )14 Vull7: + H—XIIAjWIliz- (4.18)
2
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Inserting (4.18) into (4.17), multiplying the resulting inequality by 272" and taking the

[2 over j € Z together with Lemma 2.5 and Lemma 2.6, we obtain

d
2l + 1wl + 1001%y,) + collIVully, + ol +1V0I;,)

< OV Ajw@ )l ¢ e 1Vl gy, +CH2(’"+1 1A;(0@0)ll g 2l Vull s,

O Ay (@ B) | e [, + ClI2™ 1A, Vol el g,
< ClJull I Vulyy, + Clbll s V0l g, [Vl g,

- Ofull s[5, + 1Bl 2Vl ) [Vl s,

+ OVl ol o + 1l s el o 20l

< O(llull2: Va2, + [BI2: 119512, + [Vl e + [w]] =)

X (IVuly, + [l + V0, ) (4.19)

Choosing the € in (1.6) sufficiently small, and noting that 37272 = H™, we get

i(Hqum + [wlm + 1015m) + %(HVUHZm +llwlfm + IVOE) <0. (4.20)
Applying Lemma 2.9, we derive that
[ll g < CIIUII’“““ |IVUI|’”+Z“- (4.21)
6]l g < C!Ibll’”““ IIVbII"””ll- (4.22)
Therefore, if
(4.23)

lull s+l + bl < C

then inserting (4.21) and (4.22) into (4.20), we obtain

m+l+1

me < 0. (4.24)

(|IUII2 m G + 10050) + CUlullGm + Il + 101 m)

It follows that
(4.25)

[l + w0l + 0] < C(L+ )7,

which immediately yields (1.7).
Therefore, it is left to verify that (4.23) holds for 0 < I < 2. To this end, we divide

the proof into four cases.
Case 1. (0 <! < 3) By Lemma 4.1, we obtain

d
G+ lwllfe + 16l )

dt
< C(||Vu| e VOl ) (el e + lwllg + 11l s, ).

(4.26)

7+ [|wl
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Integrating this inequality in [0, ], one yields
Ol + IOl + [,

< Juollyye, + el + ol +C sup (hu(r) g+ ) lggs + 1Bl g )

< [avutn)

< O+ sup ([lu(m)llzr, +lw@llgg, + 1605, (4.27)

is + ()l + [Vb()I[7.)dr

where we have used (1.6) in the last inequality. Then utilizing Young inequality to this
above inequality, it implies (4.23).
Case 2. (3 <[ < 1) Since HfHBiio O fllz — HfHB_% , then (4.25) with [ = § yields

2,00

(@)l 2 + [[w(E)llz2 + 1622 < C(1L+ )75, (4.28)
() o + Tl o + 16 e < CA+)75 (4.29)
Therefore, the Gagliardo-Nirenberg inequality, together with (4.28) and (4.29), leads to
s—1 1
[Vaullz < Cllull s lull ;.
<C(+1)77 (4.30)
Similarly, we have
Vw2 + | V0|2 < C(1+ )74, (4.31)
Applying the Young inequality to (4.13), together with (4.28)-(4.31), we obtain
d 2 2 2
e+l + 1)
< O[(flall3 + w3+ o7 D UVul> + [IVwl 32 + (Vo5
IVl + [Vl 2 + IV g, + olls,o -+ [bl5,0)
<C(A+6) D | Vulls + wllFe + V]3:)
s (ull g+ ol oo+ (Bl ). (432)

Integrating this inequality in [0, ¢], and noting that (1.6), we have
e + ol + o0,

< Juolly,e + el +boll3 e +C sup (hulr) s+ ) ls + 16l g1 )
,O0 ,00 ,00 <r< B 5 s

X (/Ot(l + 1)~ Ddr + 1)

< C+C sup ([Jul(r)]gye, + ()l + 107550 )s (4.33)

0<r<t

Then by virtue of the Young inequality, we complete (4.23).
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Case 3. (1 <[ < 2) Note that ||f||B£z NN fllze = Ifllg-0 with 0 < Iy < 1, then
,00 2,00
taking [ = [y in (4.25), we have derived that

(@) |2 + [[w(E)]|z2 + [(8)]| 2 < C(1+)73. (4.34)

_stlg
lu@ s + [lw @)l s + [0 e < CA+)7 2 (4.35)
Then using the Gagliardo-Nirenberg inequality, it deduces that
s=1 1
IVullz < Cllull s lullg,
<O+t (4.36)
Similarly, we have
l 1
Vw2 + Vb2 < C(1+18)" 2. (4.37)
Therefore, it follows from (4.13) and (4.34)-(4.37) that
Sl + Nl + 0l )
_ 2lg+3-21 9 9 9
<+ = + [ Vulls + lwlize + [[VOl[5.)
< (ullgoe + lwllgee -+ Ibll,0): (4.38)

Integrating this inequality in [0, ], we obtain
o+ ol + DBl

< Juollyye, + el +boli3e +C sup (hu(r) g+ ) lggs + 1Bl gge)

t —
X </ (147 dr + 1)
0

< C+C sup (fu(r)ll gzt + w0l + 1615, (4.39)

0<r<t

where we have used the fact that for any 1 < [ < g, we can choose [y < 1 sufficiently

near 1 such that 1 — 203=2L < (0. Then it eventually yields (4.23).
Case 4. (I = 3) Note that ||f||B,% O fllz = I f]l g1 with 0 < Iy < 2, then by
2,00

2,00

choosing [y near %, following the idea in Case 3, we complete the proof of this case.

(2) Now we are at a stage to verify (1.8). Applying D™ to the second equation of
(1.2), dotting it by D™w, integrating in space domain, then standard calculations yield

1d, . m
S D™ w2 + 4| D™ w2

§2x/DmV><u~me—/Dm(u-Vw)~me

< (D™ |2 + 1D | g2 [wl| oo + [Jull oo || D™ ]| g2 ) | D™ w]| 2.
Then this inequality, together with (1.6), leads to

d
D" wllr +4x(| D™ wll 2 < C(ID™ Ml 2 + [ D™ wllz2).
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Multiplying this inequality by e*X! integrating the resulting inequality in [0, ¢], together
with (1.6) and (1.7), we have

t
D™ wl|2 < e 4Xt!\me0\|L2+C/ (D™ ()| 2+ | DT (1) | 22 )dr
0
< Ce” 4Xt+0/ XD (D™ ()| g2 + D™ ()| p2)dr

t
* C/ e~ XED (|| D™ Hy(7) || g2 + | D™ o(7) | g2 )
%

N[
|+

(/02d7>%

< Cem™ 4 Cem™ </ (D™ u(r) Lz + HDm“w(T)Hiz)dT>

0

¢
+C e*4X(t*T)(1 + T)*MTH*%CZT
< Ce™ 4 Ce 2tz 4 C(1+1¢) " 2
<C4t)7" s,
Thus the proof of (1.8) is completed.
(3) Finally, we prove (1.10). We write the third equation of (1.2) into integral form,

o~

t
b=e"2 by + / "2 (b Vi — - VD) (1) dr.

0
Applying D™ to this equation and taking the L? norm, together with (1.7), we obtain

t

| D™b — D™e"Abg|| 2 < /2 | D"V 2 (b @ u — u @ b)(7)|| p2dT

0

t
+ / |Ver2=1 D™ (b @ u — u @ b)(7)|| 2dr

ol

SC/ (t—7)"" 5750 @u — u®b)(7)|| rdr
0
+C/ (t—7) 72 D™(b @ u— u @ b)(7)| p2dr

m—+1

<c / (t — 7)) 2|7 | o
e / (t = 1) () e | D) 2 + 6| e | D™ () 12

m+1

<C'/ (t—7)"" 51 +7)ldr

+C (t — )14 ) 2R TR gy

o S

<OM@H)(141)" %2, (4.40)
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where
(1+1)"GH) 4 (1 +1) 157, if 1<1,
M@#) = (148G D1 +t)+ (1 +t) 322, if [=1,
(14+8)G2) 4+ (14¢)" 153, if 1>1.

Therefore, combining (4.40) and (1.9), and choosing ¢ sufficiently large, yield
|D™b||2 > || D™ e bgl| 2 — || D™b — D™ bg|| 12
> Cy(1+1)"%72 - CM(t)(1+1)" %
>C(141t)7% 3, (4.41)

since M (t) — 0 as t — oo. We thus obtain (1.10). Therefore, the proof of assertion (ii)

of Theorem 1.3 is completed.
O

5. PROOF OF THEOREM 1.5

This section is devoted to proving Theorem 1.5. We first show the global existence
part (i). The key step is to establish the global a priori Bj , estimates of the solution.

Proof of assertion (i) of Theorem 1.5. Applying Holder’s inequality to (4.4) and inte-
grating the resulting inequality in [0, t], we obtain

t t
DA ulZ + 1A w]2e + 1AD]2: + 20+ ) / 1A, Vu(r)|Zadr + 8x / 1A jw(r)[2adr

t
+2y/ |1A;Vb(7)||32d7
0
< N Ajuoll72 + 1A woll72 + [[Asb0]|7

t t

2 / 1A - Viu()l| e 1A u(r)l|adr + 2 / 1A, b Vb ozl Au(r) | o
t t

2 / 1Ay - VIw(r)ll A jw(r)] adr + 8 / 1A,V % u()ll e A o) edr

t t
+2/0 H[Aj,u-V]b(T)\ILZHAjb(T)HdeT+2/0 1A b= VTu(m)|| 2 18;6(7)[| 2

Multiplying it by 22% and taking the supremum over j € Z, one yields
g+ 0y 1By + 200+ 01Tl + Sl
+ 21/||Vb\|2£$(35m)
< ||u0||2.§m + ||w0||2-§m + ||b0||235m + Ly + Lo+ L3+ Ly + Ls + Lg (5.1)
with .
Ly =2sup 228j/0 1A, w - V]u(T)|| 22| Aju(r)|| 2 d,

JEZ
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t
I = 2sup 2281/ 1A, b V() 22| A ju(r) | odr,
je 0

t
Lo = 2sup 27 [ 4y, Vw(r)121B0() o
0

JET

t
L, = 8xsup 225j/ 1AV x w(T)| 2| Ajw(T)|| L2dT,
JezZ 0
. T . .
Lo = 2sup 2 [ 1Ay, VI |00
JeZ 0
. T . .
L6 =2 sup 228] / || [Aj, b- V]U(T) ||L2 ||Ajb(T)||L2dT.
JEZ 0
Applying Hoélder’s inequality and (2.4), we have
b < 2elzzs; o S0p@7 A v Vil
j
< Cllull ey ) IVullzroe IVullzzy-)-
Similarly,
Ly < CHUHE?(BQOO)HVanfLOOHVbHL?(Bg;y
Ls + L < Clbll g 5 ) (IVull L2 [[VOI £2 51y + VOl 22 [Vl 2 51))-
Again applying Hoélder’s inequality, together with (2.5), we obtain

Lo = iz oy o SUPENAG - VTl i2)
’ J

< Cllwllzze iy (IVullzzzm lholzzgs; _ + lwllzze [ Val z3ss )

Using Holder’s inequality and the Young inequality, it holds that
16>
2 2
Ly < (p+ 2X)||vu||ig(35m) + 0t 2X||w||ig(35m)'

Inserting the above estimates into (5.1), one leads to

SX
2 2 2 2 2
el Ze g ) 100Ny F 1B Ege gy + IVl Zas5 ) + 25 I s

< |uol

By T lwollly  + 10l + ClIVullz o (el sy ) | Vull 2
F 0l zge 5 ) IVl z2(8521) + 1wl ey llwllzzes; )
4 OVl zaoe Ol e g I P03 + Iole g1Vl z3s5-)
+CHwHiiw(Bgm)HwHLfLooHVUHig(B;m)- (5.2)
Adding (3.11) and (5.2) up, using the Young inequality, and noting that for s > %,

[fllzee < Cllflizs ..o W15 < ClF

S
B2,<>o’
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we have
2 H 2 dxp 2
HUHLOO(BS + HwHLOO(BS ) + ”bH~§O(B§700) + 2 HVU”L?(B 1 I 2XHw”L?(B§’°°)
+ V||Vb||L2 BS
< luoll? Bs ., + ||w0| B T 1o 2BS

+ Ol gy + 10l gy + 1605 )

A T A 1 N (5.3)

This inequality indicates that, if we set Cy = mm{QT““X} and the initial data (ug, wo, by)

satisfy, for e < Cj,

o] 23500 + [[wol 235700 + [ bo] 235,00 <€

then we have

2
HUHLOO(BS y T ”w“LOO(BS )+ Hbe‘J(BS,oo)

+IVullzy s ) 1wl ) T IVOIE 5 ) < C6

which implies the global existence part (i) of Theorem 1.5.

We now start to prove the decay estimates assertion (ii) of Theorem 1.5.

Proof of assertion (ii) of Theorem 1.5. For the sake of clarity, we divided it into two
parts.

(1) First, we deal with (1.13). Applying divergence free conditions V-u =V -b=0
o (4.4), together with Holder’s, Bernstein’s and Sobolev’s inequalities, we obtain

(1A gulZe + 18wl + 1A581172) + (i + 30185 Vulfz + 4l Ajw] 7z + vIIA; VB

| —
Q.l&

< —/Aj(u.vu)‘Aju+/Aj(b-Vb).Aju—/Aj(wvz)).Ajb
+/Aj(b-Vu)-Ajb—/[Aj,u-V]w~Ajw—l—4x/AjVxu-Ajw
< 1A (- V)l g l1Azull o + 1250 - VO ¢ 1 Ajullzs + 1Ay (w - VO)I| ¢ 1 A;0] 1o
F 1850 Vull g 180l e + [[Az, v - VIwl| 2| Ajw]| 2 + 4x([A;V X ul| 2] Ajw]| 2
< CY||Aj(u @ u)| s [1A;Vul 2 + O | A; (b @ b)|| g [|A; V|2
+C2[ A (w@ ) 1A Vbl 2 + 1A, w - VIw] L2l Ajw]l 2
+4x||A]V X u||L2||Ajw||L2. (54)
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Multiplying this inequality by 272"% and taking the supermum over j € Z, together with
(4.18), Lemma 2.5 and Lemma 2.6, we derive that

Ol + el + 10l ) + oIVl -+l + 193, )
< C2m Ay (w W) g Vel g+ CI A0 @ B gl [Pl 5
O Ay (w @ b gl [ bl s+ CI27 A, - ool el o] g
< Clullzo|Vulldy,_ + CIbllza 90l [Vl
+ Ol 170l g+ 1ol s 1Vl e IV
+ (I ul e ol + el e ol o) 0] o
< C(lullzlIVul 22 + 639 + 1Vul 2 + ] 2)
X (IVullyy+ ol + IV, ) (5.5)

Choosing the suitable € in (1.12) small enough, we obtain

d 2 2 2 Co 2 2 2
Sl + ol + 1003 )+ 2OVl + ol + 1963, ) <0 (5.6

Applying Lemma 2.9 to obtain

[ull gy < C||U||’"“+1 ||VUH’"““. (5.7)
16l e, < C||5H"‘“+1 IVb| ;”ll“- (5.8)

Therefore, if
lull e+l e+ Dbl < C. (5.9)

then (5.6)-(5.8) imply

d mtl+
Sl o+l + 10, )+ Cllullyy, + ol + I, )5 <0 (510
It follows from this that
lullyy, +olid, + 1ol <O +n7" (5.11)

This immediately yields (1.13).

To complete the proof, it is enough to verify (5.9). Since the key idea is similar as
that of assertion (ii) in Theorem 1.3, we only sketch the proof and point out the main
differences for simplicity. We again divide the proof into four cases.

Case 1. (0 <! < 3) By Lemma 4.1, we have

d
Sl + ol + bl )
< Ol + lull;+ IV )(lulsoe +lulsse + Bl ). (512

Integrating this inequality in [0,¢], together with (1.12) and the Young inequality, we
eventually obtain (5.9).
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Case 2. (1 <1< 1) Note that ||f||B;z N fllgg = ||f||B,%, then with the help of
(5.11) we know that -

2s+1

lu)ll;  + lw@)lp;  +10@)p; < CA+1)" 5. (5.13)
Applying Lemma 2.10, we obtain
_2s 1
[ullz < Cllull” ™ flull 5.
327020 2,00
<C(1+1t)71. (5.14)
Furthermore,
s=1 1
[Vullze < Clully3 llul,
<C(+1)71, (5.15)
Similarly, we have
lewllce + 11bll e < CL+ )72, (5.16)
Vw2 + | Vb]| 2 < C(1+ )77 (5.17)
Using Lemma 4.1, together with (5.14)-(5.17), we derive that
d 2 2 2
Sl + ol -+ Bl )
<O+ ([ VullB; |+ llwlfy  +1V0lE; )
< (g + ol oo+ (Bl ) (5.15)

Integrating this inequality in [0,¢], together with (1.12) and the Young inequality, we
eventually yield (5.9).
Case 3. (1 <1 < 3) Since ||f||B;l N fllgg = [1fll gt with 0 < Iy <1, then we
,00 ;00 2,00

get from (5.11)

_stlg

u®llgy_+ lo®lls;_+ 16O, < C(L+8) (5.19)
Again applying (2.10), we infer that
El lO
Jullze < Cll Tl
<C(1+1)%. (5.20)
Furthermore,
s=1 1
IVullze < Cllull gz flulls,
lg+1
<C(L+t) . (5.21)

Similarly, we have

wllz2 + [|b]|z2 < C(1+ )% (5.22)
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IVwl| g2 + [ Vb]| 2 < C(1+t)~% . (5.23)
Combining (5.20)-(5.20) with Lemma 4.1 together, we derive that

d
Tl +||w||2~fz +[0l5;)
2t8-21

<SO((U+07% +[|Vuly + llwll +90]3; )

, OO

x (ull s+ ol s+ 16]50). (5.24)

This implies (5.9) as explained above.
Case 4. (I = 2) Note that HfH 3 N HfHBo — HfHszO with 0 < Iy < 2, then by

oo

choosing [y near = followmg the step of Case 3, we complete the proof.

(2) Now we prove (1.14). Taking the L*-inner product to (4.2) with Ajw, we obtain

1d
2dt

< 2x/Aj(V x u) - Ajw — /A](u - Vw) - Ajw
< CUIA; (V)2 + A5 - Vo) [l22) 1A ] 2.

Multiplying this inequality by 22/, taking the supremum over j € Z and utilizing
Bernstein’s inequality and Lemma 2.6, we yield

— A w72 + 4x ]| Ajwl|Z.

d
Sllwllzp, +axlwligy < Cllullgpa +llull=llw] gpar + llwlze[lull gper)

< C(llull gper + llwll gper),

where we used (1.12) in the last inequality. Integrating this inequality in [0, ¢] and using
(1.12) and (1.13), we obtain

t
ol < el +C [ N ul)lgpr + ) gl
%
< Ce 4. [T D ulr) g + ()l g )dr
0 o0 00

t
—i—C[ e~ =T (||u(r )HBgf;l + Hw(T)HBST;I)dT

2

< Qe 4 G2t (/O (lu(m)1% ! +||w(T)‘|2’537;1>d7> </0 dT)

¢
+C | et 4 T)fmTH*édT
t
3
1

< Ce™ 4 Ce X3 4 C(141)

m—+1

<O+t~ s,
Thus the proof of (1.14) is completed.

L
2
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6. PROOF OF THEOREM 1.7

This section is devoted to the proof of Theorem 1.7. As above we establish the global
a priori bounds of the solution in the critical Besov spaces to prove the global existence
part (i) of Theorem 1.7,

Proof of assertion (i) of Theorem 1.7. Dotting (4.1) and (4.3) by Aju and A;b respec-
tively, and integrating it in space domain, with the aspects of Bernstein’s inequality and
Holder’s inequality, we yield

1d . . o .
55(”%’”%2 +[AB]72) + (1 + x)er2¥ | Ajull7 + ve 2% (| A7

< —/[Aj,u-V]u-Aju—l—/[Aj,b-V]b~Aju+2x/AjV < w-Au
< (1A, u Flull2l|Agullzz + 1A, b - V1| 2| Asul 2 + 2xe22’|| Ajuo]| 2 A o2
1Ay - Vbl Agbllze + I[Ay, b - VTl 21 Ab] e (6.1)

Simple calculations lead to

L IAIE + 1AM + 25 1Al + 15012,
< A, w- Viullzz + 114,60 Vbl 2 + 2xe22’[|Ajw]) 2
+[1[Ag,w- Vbl g2 + [1[Ay, b - V]ul| 2 (6.2)
with ¢3 = ¢y min{ (¢ + x), v}. Integrating it in [0, t], we obtain
1A ullze + 1450122 + ex2 | Ajull a2 + a2 | Abl| 1y 2
< 2[|Ajuollz2 + 2[|Azboll 2 + 20I[As, w - Vullprzz + 201 [Ay, 0 Vbl 1z + 4xc22? | Ajw]| g2
+ 2[4y w- Vbl gz +2[[[A, 6 V]ully 2.

Multiplying it by 229 and taking the ljl. over j € Z, one yields
el 5+ 100,

b
el g +ealbl,

1 .3
3, 1 (B31) 21)

l, . l .
< 2uoll .y +20boll 5+ 201227 [Ag, w - Viullpyelli + 2[11227[Az, b - Vbl Ll
2.1 2,1
l, . l, .
+ 4X02||w"i%(32%1) +2[[1227[A, u - Vbl y el + 2012274, b - Viu| g el (6.3)
Similarly,
d . . . o
S 185wz + dxllAzwllre < (1A, w- Viwllze +2x27[| Ajul e, (6.4)
and

3. .
. . . 2J . .
ol g +xloly s < ol 22185, u Flwllsl + 21l 5 - (65)
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Multiplying (6.4) by e*X* on both sides, and integrating the resulting inequality in [0, ],
we obtain

1A wlze < ™| Ajwol| 2 +/0 “EINA w - Vw(r)||adr

+ax [ D A
0
Taking the L} norm, and using the Young inequality, we have
1Ajwlzpze < o~ HA wol|z2 + ;H[Apu Viwl|gyz2 + 2]HA ullpyze-
Therefore, multiplying it by 253 and taking the ll- over j € Z, it leads to

1
— —1257||[A, - .
ol 58 < o lolyg + = I2P0As - Viulgly + 5l s . (66)

Adding (6.3) and (6.5) together, and inserting (6.6) into the resulting inequality, we get

-2 1 4 :
Jull gy + 1005+l g+ e = 2ot D)l g+ eslbll, g+l s
< 2l 20l + (oo Dl + 2020 - Tl
2 2 21

+ 20122718, b VIl zypalli + 2011227 (A, w - VIBll ol

14 . é .
+ 2001227 [A,0- Vullprrelln + c2ll227 [, w - Vwl| gyl (6.7)
Using Lemma 2.5, and noting that || f||z1ps ) = [1fll 1183 ,) and [|f]lr= < CHfHB% , we
’ ’ 2,1
obtain
u.,—l—b,—i—w, —2x(ca + 1)) ||u 5 +cs3||b 5
lull g+ 180, + ol + (o= 2x(ca+ D)l 3 +calll, 5
<2||uO|| ! +2||bo|| (C2+1)Hwo||.g
2,1 i1 Bsa
+0 [l + 16603 g + 16,5 + o)l s 69

This inequality indicates that, if
2x(c2 +1) <3 = cymin{(p + x), v},

andforany0<e<01:%(jw,
ol .3+ llwoll .5 +1boll .3 <
BQl 2 2
then bootstrap argument yields
““”Bél + HbHBé1 + [lwl] d t lull,, w6l +ol, w6l <C

Thus the proof of (i) of Theorem 1.7 is completed.

We now turn to prove the decay part (ii) of Theorem 1.7.
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Proof of assertion (ii) of Theorem 1.7. Using the divergence free condition V - u =V -
b = 0, together with (6.1), we obtain
14,
2dt
< —/Aj(u-Vu)-Aju+/Aj(b-Vb)-Aju—l—Qx/AjV x w - Aju

1A ulge + [1A50072) + (1 + x)en2¥ | Ajul[F2 + ver 2 | Ab |2

—/Aj(u-Vb)-Ajb+/Aj(b-vu)~Ajb
< Aj(u- V)| 2l|Ajullzz + |4 (b - V)| 2| Ajul| 2 + 2xea?’ | A jw]| g2 | A jul| 2
+ 8 (uw- V)|l 2[|Azbl 2 + [[A;(b - Vu)|| 22| Az0][ 2. (6.9)

It follows from Bernstein’s inequality that

d - ; . ; ;
a\/HAjuHiz + 1145007, + 0322’\/||AjUHiz + 114561172
< CY|Aj(u@ )|z + C2 || Aj(b @ )| 12 + 2x227|| Ajw|| 2
+ C27||Aj(u @ b)|| 2 (6.10)

Multiplying (6.10) and (6.4) by 2™ and ;2017 respectively, adding them up, and
taking the ljl» over j € 7, we obtain

d c3 — 2XCo

W)+ eallwllgpe) + ————(llull g2 + 1bll gyryr2) + 2xcal|wl] gy

< C20 VA (u @ )|zl + C|[20" D7) A (b @ b)|| 2 iy + Cll20" D7) Aj(u & O)l 2l
+ ol |2V [A - V]| 2 (6.11)

where y(t) = ||2’"3\/||Aju||%2 + ||A]b||%2||l]1 Using Lemma 2.5 and Lemma 2.6, to-
gether with || fl|s < ClfIl .y [ Fllgpyr < Cllifllgppes 1 fllee < ClFILg IV 5 <
2.1 ’ ’ 2.1

B LT-2m —

CNfll gmee and || fll gmer < Cllw]| .5 , we obtain
2,1 B B3,

d c3 — 2XC2
%(y(t) + eljwl i) + — 5

< Cllullzsllull g + Cllbl s [0l gy + CClluell s [101] gy + ol o lull )
+O(IVull, g lwllgmyr + lJwll e [[ull gpi2)
T+m’ ’

< Clull y +llwll g + 116l y ) Clullgpgs + 16] o). (6.12)
2,1 2,1 ’ ’

2,1

(Jull gz + M0l =) + 2xc2l|wl gy

Then this inequality, together with (1.17) with e sufficiently small, we obtain

d C3 — 2XC2
E(y@) + caljwl| ) + T(

Applying Lemma 2.9, we infer that

[ull g + 10l =) + 2xcel|wl g < 0. (6.13)

2 m—+1
Jull g < Cllull 557 [Jull 5ris (6.14)
2,1 B; o 2,1
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2 m+1
0], < ClIl = 0l 5577 (6.15)
Therefore, if
lull gy, + llwll gy, + 110l 5,0 < € (6.16)

then there exists a constant ay > 0 such that we obtain from (6.13)-(6.15)

m—+1+2

d
Z((0) + eallwl ) + ao(y(®) + eallwl] o) <0 (6.17)

It follows that

m
2

— L
y(t) + fJwll gpr < CL+1)7273, (6.18)

which completes (1.18). At the end, it is left to prove (6.16). Since the idea is very
similar to the proof of assertion (ii) of Theorem 1.5, we omit the details for simplicity.
]

APPENDIX A. PROOFS OF LEMMA 2.5 AND LEMMA 2.6
This section proves Lemma 2.5 and Lemma 2.6.

Proof of Lemma 2.5. We only prove (2.4), since (2.5) can be proved with minor changes.
Using Littlewood-Paley decomposition, we obtain

2% [[Aju- Vvl <2737 1Ay, Sicru- VAWl +27 Y [A;, A V]Sko1v] 10
[k—j|<2 [k—j|<2

+ 2js Z ||[AJ7 Aku . V]AkUHLP
k>j—1

—- [1—|—12—|—13, (Al)

where Ay, = Ap_1 4+ A+ Api1. Since for fixed j, the summation over |7 —k| < 2 involves
only a finite number of k’s. For the sake of brevity, we shall replace the summations by
their representative term with £ = j in I; and I,. This practice does not change the
estimates. To estimate I, we make use of the commutator structure to write

[Aj, Si_1u - V]Ajv(x)
— [ &= )(Smruly) - 5y-u(w) - VAu()dy
= [osa=w) [ VSt My =) (v - 2)dr- VAi)dy

1
= / / ;A )V qu(r — A2) - (A '2) - VAju(z — A 12)A3dzd),
0
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where we set z = A(z —y) in the last equality. Then Minkowski’s inequality and Holder’s
inequality yield

1
I < CQJS/ /]CI>j()\1z))\lz|||VSj1u(:c — Az)|[zm IVAv(z — A72) || pa A dzdA
0

< 02| @ ()| L [ Vull oo [ VA0l L

< C207 V||V g [V A0l o
Again applying Holder’s inequality and Bernstein’s inequality

L < 2| Ajull1n |V Sj 10| 1os
< C2 VAVl 1o [Vl o
By divergence free condition V - u = 0, we obtain
Iy < €269 S || Agul| o | Aol o
k>j—1

<C Y 2T A V) 207K AT o

k>j—1

< O Vullpn 3 2GR R AT o

k>j—1
Inserting the above estimates into (A.1), and taking the [; over j € Z, yield
12°01[A w- V]ollze iy < CIVullzn [Vl oot + ClIVV| o [[Vull g1
+ OHVUHLPI || Z 2(s+1)(j_k)2(5_1)’“||Ava||Lq1 ||1;

k>j—1

< C||Vullpe ||V gt t C||Vv|| Lo [|[Vul

Hs—1
Bpl»"“’

where the discrete Young inequality has been applied in the last inequality. Note that
the above estimates also hold for p; and ¢; replaced by p, and ¢o respectively, so we
have proved (2.4). Thus the proof of Lemma 2.5 is completed.

O
Proof of Lemma 2.6. Using Littlewood-Paley decomposition, we obtain
218;(fo)lle = 27 D NAH(SkorfArg) s + 2% D A5 (AkfSimrg) o
|k—jl<2 |k—jl<2
+2° 3 1A (ArfArg) | e
k>j—1
= M1+M2+M3, (AZ)

where Ay, = Ap_1 4+ A+ Api1. Since for fixed j, the summation over |7 —k| <2 involves
only a finite number of k’s. For the sake of brevity, we shall replace the summations by
their representative term with £ = j in M; and M,. This practice does not change the
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estimates. By Hélder’s inequality
My < C2°||Sjo1 fllom 18] e
< C2|| fllm (|29l o
Similarly, we have
My < C2*| A f |t [lg] oo -

Again applying Holder’s inequality yields

M; < C29 37 [ Auf o l|Ang]l o

k>j—1

<Ol fllm Y 272 Al o

k>j—1

Inserting the above estimates into (A.2), and taking the I} over j € Z, together with the
discrete Young inequality, yield

I alls, < CUIFlemllgllsg, . +11f]

Note that the above estimates also hold for p; and ¢; replaced by ps and ¢ respectively,
so it follows from this that the desired estimate (2.6) is derived. We thus complete the
proof of Lemma 2.6.

55, Nlgllzn).
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