References
1. Fauci AS, Lane HC, and Redfield RR. Covid-19 - Navigating the
Uncharted. N Engl J Med. 2020;382(13):1268-9.
2. Paules CI, Marston HD, and Fauci AS. Coronavirus Infections-More Than
Just the Common Cold. JAMA. 2020;323(8):707-8.
3. Barlow A, Landolf KM, Barlow B, et al. Review of Emerging
Pharmacotherapy for the Treatment of Coronavirus Disease 2019.Pharmacotherapy. 2020;40(5):416-37.
4. Group RC, Horby P, Lim WS, et al. Dexamethasone in Hospitalized
Patients with Covid-19 - Preliminary Report. N Engl J Med. 2020.
5. Xu X, Han M, Li T, et al. Effective treatment of severe COVID-19
patients with tocilizumab. Proc Natl Acad Sci U S A.2020;117(20):10970-5.
6. Spinner CD, Gottlieb RL, Criner GJ, et al. Effect of Remdesivir vs
Standard Care on Clinical Status at 11 Days in Patients With Moderate
COVID-19: A Randomized Clinical Trial. JAMA.2020;324(11):1048-57.
7. White KM, Rosales R, Yildiz S, et al. Plitidepsin has potent
preclinical efficacy against SARS-CoV-2 by targeting the host protein
eEF1A. Science. 2021.
8. Alijotas-Reig J, Esteve-Valverde E, Belizna C, et al.
Immunomodulatory therapy for the management of severe COVID-19. Beyond
the anti-viral therapy: A comprehensive review. Autoimmun Rev.2020;19(7):102569.
9. Baum A, Fulton BO, Wloga E, et al. Antibody cocktail to SARS-CoV-2
spike protein prevents rapid mutational escape seen with individual
antibodies. Science. 2020;369(6506):1014-8.
10. Soy M, Keser G, Atagunduz P, Tabak F, Atagunduz I, and Kayhan S.
Cytokine storm in COVID-19: pathogenesis and overview of
anti-inflammatory agents used in treatment. Clin Rheumatol.2020;39(7):2085-94.
11. Becker RC. COVID-19 update: Covid-19-associated coagulopathy.J Thromb Thrombolysis. 2020;50(1):54-67.
12. Hasoksuz M, Kilic S, and Sarac F. Coronaviruses and SARS-COV-2.Turk J Med Sci. 2020;50(SI-1):549-56.
13. Pouletty M, Borocco C, Ouldali N, et al. Paediatric multisystem
inflammatory syndrome temporally associated with SARS-CoV-2 mimicking
Kawasaki disease (Kawa-COVID-19): a multicentre cohort. Ann Rheum
Dis. 2020;79(8):999-1006.
14. Wu JT, Leung K, Bushman M, et al. Estimating clinical severity of
COVID-19 from the transmission dynamics in Wuhan, China. Nat Med.2020;26(4):506-10.
15. Huang C, Wang Y, Li X, et al. Clinical features of patients infected
with 2019 novel coronavirus in Wuhan, China. Lancet.2020;395(10223):497-506.
16. Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine
storm syndromes and immunosuppression. Lancet.2020;395(10229):1033-4.
17. Rodrigues TS, de Sa KSG, Ishimoto AY, et al. Inflammasomes are
activated in response to SARS-CoV-2 infection and are associated with
COVID-19 severity in patients. J Exp Med. 2021;218(3).
18. Kroemer A, Khan K, Plassmeyer M, et al. Inflammasome activation and
pyroptosis in lymphopenic liver patients with COVID-19. J
Hepatol. 2020.
19. Aid M, Busman-Sahay K, Vidal SJ, et al. Vascular Disease and
Thrombosis in SARS-CoV-2-Infected Rhesus Macaques. Cell. 2020.
20. Gao YL, Zhai JH, and Chai YF. Recent Advances in the Molecular
Mechanisms Underlying Pyroptosis in Sepsis. Mediators Inflamm.2018;2018:5823823.
21. Jia C, Chen H, Zhang J, et al. Role of pyroptosis in cardiovascular
diseases. Int Immunopharmacol. 2019;67:311-8.
22. Man SM, Karki R, and Kanneganti TD. Molecular mechanisms and
functions of pyroptosis, inflammatory caspases and inflammasomes in
infectious diseases. Immunol Rev. 2017;277(1):61-75.
23. Kovacs SB, and Miao EA. Gasdermins: Effectors of Pyroptosis.Trends Cell Biol. 2017;27(9):673-84.
24. Zhang Y, Chen X, Gueydan C, and Han J. Plasma membrane changes
during programmed cell deaths. Cell Res. 2018;28(1):9-21.
25. Fleisher TA. Apoptosis. Ann Allergy Asthma Immunol.1997;78(3):245-9; quiz 9-50.
26. Moretti J, and Blander JM. Increasing complexity of NLRP3
inflammasome regulation. J Leukoc Biol. 2020.
27. Jamilloux Y, Henry T, Belot A, et al. Should we stimulate or
suppress immune responses in COVID-19? Cytokine and anti-cytokine
interventions. Autoimmun Rev. 2020;19(7):102567.
28. Al-Samkari H, Karp Leaf RS, Dzik WH, et al. COVID-19 and
coagulation: bleeding and thrombotic manifestations of SARS-CoV-2
infection. Blood. 2020;136(4):489-500.
29. Grobler C, Maphumulo SC, Grobbelaar LM, et al. Covid-19: The
Rollercoaster of Fibrin(Ogen), D-Dimer, Von Willebrand Factor,
P-Selectin and Their Interactions with Endothelial Cells, Platelets and
Erythrocytes. Int J Mol Sci. 2020;21(14).
30. Wilk AJ, Rustagi A, Zhao NQ, et al. A single-cell atlas of the
peripheral immune response in patients with severe COVID-19. Nat
Med. 2020;26(7):1070-6.
31. Blanco-Melo D, Nilsson-Payant BE, Liu WC, et al. Imbalanced Host
Response to SARS-CoV-2 Drives Development of COVID-19. Cell.2020;181(5):1036-45 e9.
32. Carfi A, Bernabei R, Landi F, and Gemelli Against C-P-ACSG.
Persistent Symptoms in Patients After Acute COVID-19. JAMA.2020;324(6):603-5.
33. Garg P, Arora U, Kumar A, and Wig N. The ”post-COVID” syndrome: How
deep is the damage? J Med Virol. 2020.
34. Linton SD, Aja T, Armstrong RA, et al. First-in-class pan caspase
inhibitor developed for the treatment of liver disease. J Med
Chem. 2005;48(22):6779-82.
35. Stack JH, Beaumont K, Larsen PD, et al. IL-converting
enzyme/caspase-1 inhibitor VX-765 blocks the hypersensitive response to
an inflammatory stimulus in monocytes from familial cold
autoinflammatory syndrome patients. J Immunol.2005;175(4):2630-4.
36. Foy BH, Carlson JCT, Reinertsen E, et al. Association of Red Blood
Cell Distribution Width With Mortality Risk in Hospitalized Adults With
SARS-CoV-2 Infection. JAMA Netw Open. 2020;3(9):e2022058.
37. Maellaro E, Leoncini S, Moretti D, et al. Erythrocyte caspase-3
activation and oxidative imbalance in erythrocytes and in plasma of type
2 diabetic patients. Acta Diabetol. 2013;50(4):489-95.
38. Thomas T, Stefanoni D, Dzieciatkowska M, et al. Evidence for
structural protein damage and membrane lipid remodeling in red blood
cells from COVID-19 patients. medRxiv. 2020.
39. Cheung EW, Zachariah P, Gorelik M, et al. Multisystem Inflammatory
Syndrome Related to COVID-19 in Previously Healthy Children and
Adolescents in New York City. JAMA. 2020;324(3):294-6.
40. Jiang L, Tang K, Levin M, et al. COVID-19 and multisystem
inflammatory syndrome in children and adolescents. Lancet Infect
Dis. 2020;20(11):e276-e88.
41. Singh-Grewal D, Lucas R, McCarthy K, et al. Update on the
COVID-19-associated inflammatory syndrome in children and adolescents;
paediatric inflammatory multisystem syndrome-temporally associated with
SARS-CoV-2. J Paediatr Child Health. 2020;56(8):1173-7.
42. Richardson S, Hirsch JS, Narasimhan M, et al. Presenting
Characteristics, Comorbidities, and Outcomes Among 5700 Patients
Hospitalized With COVID-19 in the New York City Area. JAMA.2020;323(20):2052-9.
43. Yap JKY, Moriyama M, and Iwasaki A. Inflammasomes and Pyroptosis as
Therapeutic Targets for COVID-19. J Immunol. 2020;205(2):307-12.
44. Sutterwala FS, Haasken S, and Cassel SL. Mechanism of NLRP3
inflammasome activation. Ann N Y Acad Sci. 2014;1319:82-95.
45. Akdis M, Aab A, Altunbulakli C, et al. Interleukins (from IL-1 to
IL-38), interferons, transforming growth factor beta, and TNF-alpha:
Receptors, functions, and roles in diseases. J Allergy Clin
Immunol. 2016;138(4):984-1010.
46. Arend WP, Palmer G, and Gabay C. IL-1, IL-18, and IL-33 families of
cytokines. Immunol Rev. 2008;223:20-38.
47. He Y, Hara H, and Nunez G. Mechanism and Regulation of NLRP3
Inflammasome Activation. Trends Biochem Sci. 2016;41(12):1012-21.
48. Latz E, Xiao TS, and Stutz A. Activation and regulation of the
inflammasomes. Nat Rev Immunol. 2013;13(6):397-411.
49. Zhou Z, Ren L, Zhang L, et al. Heightened Innate Immune Responses in
the Respiratory Tract of COVID-19 Patients. Cell Host Microbe.2020;27(6):883-90 e2.
50. Labzin LI, Lauterbach MA, and Latz E. Interferons and inflammasomes:
Cooperation and counterregulation in disease. J Allergy Clin
Immunol. 2016;138(1):37-46.
51. Matzinger P. Tolerance, danger, and the extended family. Annu
Rev Immunol. 1994;12:991-1045.
52. Matzinger P. The danger model: a renewed sense of self.Science. 2002;296(5566):301-5.
53. Carelli-Alinovi C, Pirolli D, Giardina B, and Misiti F. Protein
kinase C mediates caspase 3 activation: A role for erythrocyte
morphology changes. Clin Hemorheol Microcirc. 2015;59(4):345-54.
54. Firat U, Kaya S, Cim A, et al. Increased caspase-3 immunoreactivity
of erythrocytes in STZ diabetic rats. Exp Diabetes Res.2012;2012:316384.
55. Rinalducci S, Ferru E, Blasi B, Turrini F, and Zolla L. Oxidative
stress and caspase-mediated fragmentation of cytoplasmic domain of
erythrocyte band 3 during blood storage. Blood Transfus. 2012;10
Suppl 2:s55-62.
56. Zini G, Bellesi S, Ramundo F, and d’Onofrio G. Morphological
anomalies of circulating blood cells in COVID-19. Am J Hematol.2020;95(7):870-2.
57. Liu Y, Zhang X, Qiao J, et al. A Controllable Inflammatory Response
and Temporary Abnormal Coagulation in Moderate Disease of COVID-19 in
Wuhan, China. J Clin Med Res. 2020;12(9):590-7.
58. Tomar B, Anders HJ, Desai J, and Mulay SR. Neutrophils and
Neutrophil Extracellular Traps Drive Necroinflammation in COVID-19.Cells. 2020;9(6).
59. Wiewiora M, Piecuch J, Sedek L, Mazur B, and Sosada K. The effects
of obesity on CD47 expression in erythrocytes. Cytometry B Clin
Cytom. 2017;92(6):485-91.
60. Marini JJ, and Gattinoni L. Management of COVID-19 Respiratory
Distress. JAMA. 2020;323(22):2329-30.
61. Neupane K, Ahmed Z, Pervez H, Ashraf R, and Majeed A. Potential
Treatment Options for COVID-19: A Comprehensive Review of Global
Pharmacological Development Efforts. Cureus. 2020;12(6):e8845.
62. Shahzad K, Bock F, Al-Dabet MM, et al. Caspase-1, but Not Caspase-3,
Promotes Diabetic Nephropathy. J Am Soc Nephrol.2016;27(8):2270-5.
63. Communal C, Sumandea M, de Tombe P, Narula J, Solaro RJ, and Hajjar
RJ. Functional consequences of caspase activation in cardiac myocytes.Proc Natl Acad Sci U S A. 2002;99(9):6252-6.
64. Frenette CT, Morelli G, Shiffman ML, et al. Emricasan Improves Liver
Function in Patients With Cirrhosis and High Model for End-Stage Liver
Disease Scores Compared With Placebo. Clin Gastroenterol Hepatol.2019;17(4):774-83 e4.
65. Barreyro FJ, Holod S, Finocchietto PV, et al. The pan-caspase
inhibitor Emricasan (IDN-6556) decreases liver injury and fibrosis in a
murine model of non-alcoholic steatohepatitis. Liver Int.2015;35(3):953-66.
66. Harrison SA, Goodman Z, Jabbar A, et al. A randomized,
placebo-controlled trial of emricasan in patients with NASH and F1-F3
fibrosis. J Hepatol. 2020;72(5):816-27.
67. Doitsh G, Galloway NL, Geng X, et al. Cell death by pyroptosis
drives CD4 T-cell depletion in HIV-1 infection. Nature.2014;505(7484):509-14.
68. Schurink B, Roos E, Radonic T, Barbe E, et al. Viral presence and
immunopathology in patients with lethal COVID-19: a prospective autopsy
cohort study. Lancet Microbe. 2020.
69. Kim J, Zhang J, Cha Y, Kolitz S, Funt J, Escalante Chong R, et al.
Advanced bioinformatics rapidly identifies existing therapeutics for
patients with coronavirus disease-2019 (COVID-19). J Transl Med.2020;18(1):257.
70. Jeremy D. Baker RLU, Gerald C. Kraemer, Jason E. Love, and Brian C.
Kraemer. A drug repurposing screen identifies hepatitis C antivirals as
inhibitors of the SARS-CoV-2 main 1 protease. 2020.
71. Yaqinuddin A, and Kashir J. Novel therapeutic targets for
SARS-CoV-2-induced acute lung injury: Targeting a potential
IL-1beta/neutrophil extracellular traps feedback loop. Med
Hypotheses. 2020;143:109906.
72. Mitrani RD, Dabas N, and Goldberger JJ. COVID-19 cardiac injury:
Implications for long-term surveillance and outcomes in survivors.Heart Rhythm. 2020;17(11):1984-90.