References
1. Zhang JJ, Dong X, Cao YY, Yuan YD,
Yang YB, Yan YQ, et al. Clinical characteristics of 140 patients
infected with SARS-CoV-2 in Wuhan, China. Allergy2020;75 (7):1730-1741.
2. Azkur AK, Akdis M, Azkur D,
Sokolowska M, van de Veen W, Bruggen MC, et al. Immune response to
SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19.Allergy 2020;75 (7):1564-1581.
3. Tang D, Comish P, Kang R. The
hallmarks of COVID-19 disease. PLoS Pathog2020;16 (5):e1008536.
4. Morens DM, Folkers GK, Fauci AS.
Emerging infections: a perpetual challenge. Lancet Infect Dis2008;8 (11):710-719.
5. Morens DM, Breman JG, Calisher CH,
Doherty PC, Hahn BH, Keusch GT, et al. The Origin of COVID-19 and Why It
Matters. Am J Trop Med Hyg 2020;103 (3):955-959.
6. Ramasamy MN, Minassian AM, Ewer KJ,
Flaxman AL, Folegatti PM, Owens DR, et al. Safety and immunogenicity of
ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young
and old adults (COV002): a single-blind, randomised, controlled, phase
2/3 trial. Lancet 2021;396 (10267):1979-1993.
7. Logunov DY, Dolzhikova IV, Zubkova
OV, Tukhvatullin AI, Shcheblyakov DV, Dzharullaeva AS, et al. Safety and
immunogenicity of an rAd26 and rAd5 vector-based heterologous
prime-boost COVID-19 vaccine in two formulations: two open,
non-randomised phase 1/2 studies from Russia. Lancet2020;396 (10255):887-897.
8. Mulligan MJ, Lyke KE, Kitchin N,
Absalon J, Gurtman A, Lockhart S, et al. Phase I/II study of COVID-19
RNA vaccine BNT162b1 in adults. Nature2020;586 (7830):589-593.
9. Krammer F. SARS-CoV-2 vaccines in
development. Nature 2020;586 (7830):516-527.
10. Pan H, Peto R, Henao-Restrepo AM,
Preziosi MP, Sathiyamoorthy V, Abdool Karim Q, et al. Repurposed
Antiviral Drugs for Covid-19 - Interim WHO Solidarity Trial Results.N Engl J Med 2020.
11. Beigel JH, Tomashek KM, Dodd LE,
Mehta AK, Zingman BS, Kalil AC, et al. Remdesivir for the Treatment of
Covid-19 - Final Report. N Engl J Med2020;383 (19):1813-1826.
12. Liu STH, Lin HM, Baine I,
Wajnberg A, Gumprecht JP, Rahman F, et al. Convalescent plasma treatment
of severe COVID-19: a propensity score-matched control study. Nat
Med 2020;26 (11):1708-1713.
13. Tanne JH. Covid-19: FDA approves
use of convalescent plasma to treat critically ill patients. BMJ2020;368 :m1256.
14. Baum A, Ajithdoss D, Copin R,
Zhou A, Lanza K, Negron N, et al. REGN-COV2 antibodies prevent and treat
SARS-CoV-2 infection in rhesus macaques and hamsters. Science2020;370 (6520):1110-1115.
15. Weinreich DM, Sivapalasingam S,
Norton T, Ali S, Gao H, Bhore R, et al. REGN-COV2, a Neutralizing
Antibody Cocktail, in Outpatients with Covid-19. N Engl J Med2020.
16. Harrison AG, Lin T, Wang P.
Mechanisms of SARS-CoV-2 Transmission and Pathogenesis. Trends
Immunol 2020;41 (12):1100-1115.
17. Thi Nhu Thao T, Labroussaa F,
Ebert N, V’Kovski P, Stalder H, Portmann J, et al. Rapid reconstruction
of SARS-CoV-2 using a synthetic genomics platform. Nature2020;582 (7813):561-565.
18. V’Kovski P, Kratzel A, Steiner S,
Stalder H, Thiel V. Coronavirus biology and replication: implications
for SARS-CoV-2. Nat Rev Microbiol 2020.
19. McManus MT, Sharp PA. Gene
silencing in mammals by small interfering RNAs. Nat Rev Genet2002;3 (10):737-747.
20. Qin XF, An DS, Chen IS, Baltimore
D. Inhibiting HIV-1 infection in human T cells by lentiviral-mediated
delivery of small interfering RNA against CCR5. Proc Natl Acad Sci
U S A 2003;100 (1):183-188.
21. Carmichael GG. Medicine:
silencing viruses with RNA. Nature2002;418 (6896):379-380.
22. Jacque JM, Triques K, Stevenson
M. Modulation of HIV-1 replication by RNA interference. Nature2002;418 (6896):435-438.
23. Ahlquist P. RNA-dependent RNA
polymerases, viruses, and RNA silencing. Science2002;296 (5571):1270-1273.
24. Fire A, Xu S, Montgomery MK,
Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference
by double-stranded RNA in Caenorhabditis elegans. Nature1998;391 (6669):806-811.
25. Agrawal N, Dasaradhi PV, Mohmmed
A, Malhotra P, Bhatnagar RK, Mukherjee SK. RNA interference: biology,
mechanism, and applications. Microbiol Mol Biol Rev2003;67 (4):657-685.
26. Imai M, Iwatsuki-Horimoto K,
Hatta M, Loeber S, Halfmann PJ, Nakajima N, et al. Syrian hamsters as a
small animal model for SARS-CoV-2 infection and countermeasure
development. Proc Natl Acad Sci U S A2020;117 (28):16587-16595.
27. Khaitov M. R. Shilovskiy I.P.,
Kofiadi I. A., Sergeev I. V., Kozlov I. B., Smirnov V. V., Kozhikhova K.
V., Koloskova O. O., Andreev S. M., Zhernov Y. V., Nikonova A.A.,
Inventor The siRNA-based drug for inhibition of the SARS-CoV-2
replication. Russia. 2020.
28. Faizuloev E, Marova A, Nikonova
A, Volkova I, Gorshkova M, Izumrudov V. Water-soluble
N-[(2-hydroxy-3-trimethylammonium)propyl]chitosan chloride as a
nucleic acids vector for cell transfection. Carbohydr Polym2012;89 (4):1088-1094.
29. Khaitov M. R. Kozhikhova K.V.,
Koloskova O. O., Andreev S. M., Timofeeva A. V., Shatilov A. A.,
Shilovskiy I.P., Kofiadi I. A., Smirnov V. V., Nikonova A.A., Inventor
The peptides for intracellular delivery of nucleic acids. Russia. 2020.
30. Gattinger P, Borochova K,
Dorofeeva Y, Henning R, Kiss R, Kratzer B, et al. Antibodies in serum of
convalescent patients following mild COVID-19 do not always prevent
virus-receptor binding. Allergy 2020.
31. Borisevich S. V. Syromyatnikova
S.I., Khamitov R. A., Markov V.I., Maximov V.A., Pistsov M. N., Inventor
Composition of agar coating for titration of coronavirus-the causative
agent of severe acute respiratory syndrome by plaque forming units
Russia. 2008
32. Mook OR, Baas F, de Wissel MB,
Fluiter K. Evaluation of locked nucleic acid-modified small interfering
RNA in vitro and in vivo. Mol Cancer Ther2007;6 (3):833-843.
33. Liu YC, Kuo RL, Shih SR.
COVID-19: The first documented coronavirus pandemic in history.Biomed J 2020;43 (4):328-333.
34. Jomah S, Asdaq SMB, Al-Yamani MJ.
Clinical efficacy of antivirals against novel coronavirus (COVID-19): A
review. J Infect Public Health 2020;13 (9):1187-1195.
35. Hu B, Weng Y, Xia XH, Liang XJ,
Huang Y. Clinical advances of siRNA therapeutics. J Gene Med2019;21 (7):e3097.
36. Levanova A, Poranen MM. RNA
Interference as a Prospective Tool for the Control of Human Viral
Infections. Front Microbiol 2018;9 :2151.
37. Li T, Zhang Y, Fu L, Yu C, Li X,
Li Y, et al. siRNA targeting the leader sequence of SARS-CoV inhibits
virus replication. Gene Ther 2005;12 (9):751-761.
38. Lu A, Zhang H, Zhang X, Wang H,
Hu Q, Shen L, et al. Attenuation of SARS coronavirus by a short hairpin
RNA expression plasmid targeting RNA-dependent RNA polymerase.Virology 2004;324 (1):84-89.
39. Zhang Y, Li T, Fu L, Yu C, Li Y,
Xu X, et al. Silencing SARS-CoV Spike protein expression in cultured
cells by RNA interference. FEBS Lett2004;560 (1-3):141-146.
40. He ML, Zheng B, Peng Y, Peiris
JS, Poon LL, Yuen KY, et al. Inhibition of SARS-associated coronavirus
infection and replication by RNA interference. JAMA2003;290 (20):2665-2666.
41. Tang Q, Li B, Woodle M, Lu PY.
Application of siRNA against SARS in the rhesus macaque model.Methods Mol Biol 2008;442 :139-158.
42. Li BJ, Tang Q, Cheng D, Qin C,
Xie FY, Wei Q, et al. Using siRNA in prophylactic and therapeutic
regimens against SARS coronavirus in Rhesus macaque. Nat Med2005;11 (9):944-951.
43. Chen W, Feng P, Liu K, Wu M, Lin
H. Computational Identification of Small Interfering RNA Targets in
SARS-CoV-2. Virol Sin 2020;35 (3):359-361.
44. Rothe D, Wade EJ, Kurreck J.
Design of small interfering RNAs for antiviral applications.Methods Mol Biol 2011;721 :267-292.
45. Lam JK, Liang W, Chan HK.
Pulmonary delivery of therapeutic siRNA. Adv Drug Deliv Rev2012;64 (1):1-15.
46. Khaitov MR, Shilovskiy IP,
Nikonova AA, Shershakova NN, Kamyshnikov OY, Babakhin AA, et al. Small
interfering RNAs targeted to interleukin-4 and respiratory syncytial
virus reduce airway inflammation in a mouse model of virus-induced
asthma exacerbation. Hum Gene Ther 2014;25 (7):642-650.
47. Nikonova A, Shilovskiy I,
Galitskaya M, Sokolova A, Sundukova M, Dmitrieva-Posocco O, et al.
Respiratory syncytial virus upregulates IL-33 expression in mouse model
of virus-induced inflammation exacerbation in OVA-sensitized mice and in
asthmatic subjects. Cytokine 2020:155349.
48. Santos A, Veiga F, Figueiras A.
Dendrimers as Pharmaceutical Excipients: Synthesis, Properties, Toxicity
and Biomedical Applications. Materials (Basel)2019;13 (1).
49. Luo K, Li C, Wang G, Nie Y, He B,
Wu Y, et al. Peptide dendrimers as efficient and biocompatible gene
delivery vectors: Synthesis and in vitro characterization. J
Control Release 2011;155 (1):77-87.
50. Kozhikhova KV, Andreev SM,
Shilovskiy IP, Timofeeva AV, Gaisina AR, Shatilov AA, et al. A novel
peptide dendrimer LTP efficiently facilitates transfection of mammalian
cells. Org Biomol Chem 2018;16 (43):8181-8190.
51. Eggimann GA, Blattes E, Buschor
S, Biswas R, Kammer SM, Darbre T, et al. Designed cell penetrating
peptide dendrimers efficiently internalize cargo into cells. Chem
Commun (Camb) 2014;50 (55):7254-7257.
52. Wu J, Huang W, He Z. Dendrimers
as carriers for siRNA delivery and gene silencing: a review.ScientificWorldJournal 2013;2013 :630654.
53. Braasch DA, Corey DR. Locked
nucleic acid (LNA): fine-tuning the recognition of DNA and RNA.Chem Biol 2001;8 (1):1-7.
54. Meng Z, Lu M. RNA
Interference-Induced Innate Immunity, Off-Target Effect, or Immune
Adjuvant? Front Immunol 2017;8 :331.
55. Jackson AL, Linsley PS.
Recognizing and avoiding siRNA off-target effects for target
identification and therapeutic application. Nat Rev Drug Discov2010;9 (1):57-67.
56. Elmen J, Thonberg H, Ljungberg K,
Frieden M, Westergaard M, Xu Y, et al. Locked nucleic acid (LNA)
mediated improvements in siRNA stability and functionality.Nucleic Acids Res 2005;33 (1):439-447.
57. Paavilainen H, Lehtinen J,
Romanovskaya A, Nygardas M, Bamford DH, Poranen MM, et al. Topical
treatment of herpes simplex virus infection with enzymatically created
siRNA swarm. Antivir Ther 2017;22 (7):631-637.
58. Bitko V, Musiyenko A, Shulyayeva
O, Barik S. Inhibition of respiratory viruses by nasally administered
siRNA. Nat Med 2005;11 (1):50-55.
59. Zou X, Chen K, Zou J, Han P, Hao
J, Han Z. Single-cell RNA-seq data analysis on the receptor ACE2
expression reveals the potential risk of different human organs
vulnerable to 2019-nCoV infection. Front Med2020;14 (2):185-192.
60. Youngren-Ortiz SR, Gandhi NS,
Espana-Serrano L, Chougule MB. Aerosol Delivery of siRNA to the Lungs.
Part 1: Rationale for Gene Delivery Systems. Kona2016;33 :63-85.
61. Munoz-Fontela C, Dowling WE,
Funnell SGP, Gsell PS, Riveros-Balta AX, Albrecht RA, et al. Animal
models for COVID-19. Nature 2020;586 (7830):509-515.
62. Tostanoski LH, Wegmann F,
Martinot AJ, Loos C, McMahan K, Mercado NB, et al. Ad26 vaccine protects
against SARS-CoV-2 severe clinical disease in hamsters. Nat Med2020;26 (11):1694-1700.
Table 1. The suppression of luciferase activity by siRNA in
Hep-2 cells consecutively transfected with plasmid coding SARS-CoV-2
genes fused with firefly luciferase gene and specific or nonspecific
siRNAs.