References
1. Guan W-J, Ni Z-Y, Hu Y, Liang W-H, Ou C-Q, He J-X, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382: 1708–1720.
2. Karadaş Ö, Öztürk B, Sonkaya AR. A prospective clinical study of detailed neurological manifestations in patients with COVID-19. Neurol Sci. 2020;41: 1991–1995.
3. Wu T, Zuo Z, Kang S, Jiang L, Luo X, Xia Z, et al. Multi-organ Dysfunction in Patients with COVID-19: A Systematic Review and Meta-analysis. Aging Dis. 2020;11: 874–894.
4. Medetalibeyoglu A, Emet S, Kose M, Akpinar TS, Senkal N, Catma Y, et al. Serum Endocan Levels on Admission Are Associated With Worse Clinical Outcomes in COVID-19 Patients: A Pilot Study. Angiology. 2020; 3319720961267.
5. GenÇ AB, Yaylaci S, Dheİr H, GenÇ AC, İŞsever K, ÇekİÇ D, et al. The predictive and diagnostic accuracy of long Pentraxin-3 in COVID-19 Pneumonia. Turk J Med Sci. 2020. doi:10.3906/sag-2011-32
6. Characteristics and Outcomes of Critically Ill Patients with Covid-19 in Sakarya, Turkey: A Single Center Cohort Study. TURKISH JOURNAL OF MEDICAL SCIENCES. 2020. doi:10.3906/sag-2005-57
7. Nalbant A, Kaya T, Varim C, Yaylaci S, Tamer A, Cinemre H. Can the neutrophil/lymphocyte ratio (NLR) have a role in the diagnosis of coronavirus 2019 disease (COVID-19)? Rev Assoc Med Bras. 2020;66: 746–751.
8. Varim C, Yaylaci S, Demirci T, Kaya T, Nalbant A, Dheir H, et al. Neutrophil count to albumin ratio as a new predictor of mortality in patients with COVID-19 ınfection. Rev Assoc Med Bras. 2020;66Suppl 2: 77–81.
9. Clinical course of COVID-19 disease in immunosuppressed renal transplant patients. TURKISH JOURNAL OF MEDICAL SCIENCES. 2020. doi:10.3906/sag-2007-260
10. Ponti G, Maccaferri M, Ruini C, Tomasi A, Ozben T. Biomarkers associated with COVID-19 disease progression. Critical Reviews in Clinical Laboratory Sciences. 2020. pp. 389–399. doi:10.1080/10408363.2020.1770685
11. Muramatsu T, Kadomatsu K. Midkine: an emerging target of drug development for treatment of multiple diseases. Br J Pharmacol. 2014;171: 811–813.
12. Yazihan N. Midkine in inflammatory and toxic conditions. Curr Drug Deliv. 2013;10: 54–57.
13. Horiba M, Kadomatsu K, Yasui K, Lee J-K, Takenaka H, Sumida A, et al. Midkine Plays a Protective Role Against Cardiac Ischemia/Reperfusion Injury Through a Reduction of Apoptotic Reaction. Circulation. 2006. pp. 1713–1720. doi:10.1161/circulationaha.106.632273
14. Zhang R, Pan Y, Fanelli V, Wu S, Luo AA, Islam D, et al. Mechanical Stress and the Induction of Lung Fibrosis via the Midkine Signaling Pathway. Am J Respir Crit Care Med. 2015;192: 315–323.
15. Nordin SL, Andersson C, Bjermer L, Bjartell A, Mörgelin M, Egesten A. Midkine is part of the antibacterial activity released at the surface of differentiated bronchial epithelial cells. J Innate Immun. 2013;5: 519–530.
16. Ostrander M, Fingar H, Seddon A, Böhlen P, Backer J. Anti-viral activity of human recombinant heparin-binding proteins HBNF and MK. Biochem Biophys Res Commun. 1992;189: 1189–1195.
17. Hovanessian AG. Midkine, a cytokine that inhibits HIV infection by binding to the cell surface expressed nucleolin. Cell Res. 2006;16: 174–181.
18. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. The Lancet Respiratory Medicine. 2020. pp. 420–422. doi:10.1016/s2213-2600(20)30076-x
19. Fung S-Y, Yuen K-S, Ye Z-W, Chan C-P, Jin D-Y. A tug-of-war between severe acute respiratory syndrome coronavirus 2 and host antiviral defence: lessons from other pathogenic viruses. Emerging Microbes & Infections. 2020. pp. 558–570. doi:10.1080/22221751.2020.1736644
20. Ibusuki M, Fujimori H, Yamamoto Y, Ota K, Ueda M, Shinriki S, et al. Midkine in plasma as a novel breast cancer marker. Cancer Sci. 2009;100: 1735–1739.
21. Krzystek-Korpacka M, Mierzchala M, Neubauer K, Durek G, Gamian A. Midkine, a multifunctional cytokine, in patients with severe sepsis and septic shock: a pilot study. Shock. 2011;35: 471–477.
22. Muramatsu T. Midkine and Pleiotrophin: Two Related Proteins Involved in Development, Survival, Inflammation and Tumorigenesis. Journal of Biochemistry. 2002. pp. 359–371. doi:10.1093/oxfordjournals.jbchem.a003231
23. Svensson SL, Pasupuleti M, Walse B, Malmsten M, Mörgelin M, Sjögren C, et al. Midkine and Pleiotrophin Have Bactericidal Properties. Journal of Biological Chemistry. 2010. pp. 16105–16115. doi:10.1074/jbc.m109.081232
24. Weckbach LT, Muramatsu T, Walzog B. Midkine in Inflammation. The Scientific World JOURNAL. 2011. pp. 2491–2505. doi:10.1100/2011/517152
25. Horiba M, Kadomatsu K, Nakamura E, Muramatsu H, Ikematsu S, Sakuma S, et al. Neointima formation in a restenosis model is suppressed in midkine-deficient mice. Journal of Clinical Investigation. 2000. pp. 489–495. doi:10.1172/jci7208
26. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. New England Journal of Medicine. 2020. pp. 727–733. doi:10.1056/nejmoa2001017
27. Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, et al. Endothelial cell infection and endotheliitis in COVID-19. The Lancet. 2020. pp. 1417–1418. doi:10.1016/s0140-6736(20)30937-5
28. Cascella M, Rajnik M, Cuomo A, Dulebohn SC, Di Napoli R. Features, Evaluation, and Treatment of Coronavirus. StatPearls. Treasure Island (FL): StatPearls Publishing; 2020.