References
Ahiablame, L. M., Engel, B. A., & Chaubey I. (2012). Effectiveness of low impact development practices: Literature review and suggestions for future research. Water Air Soil Pollut , 223 , 4253–4273. https://doi.org/10.1007/s11270-012-1189-2
Anderson, R. S., Rajaram, H., & Anderson, S. P. (2019). Climate driven coevolution of weathering profiles and hillslope topography generates dramatic differences in critical zone architecture[J].Hydrological Processes . 33 (1), 4-19.https://doi.org/10.1002/hyp.13307
Black, P. (1970). Runoff from watershed models. Water Resources Research , 6 , 465-477.
Bryan, R. B., & Luk, S. (1981). Laboratory experiments on the variation of soil erosion under simulated rainfall. Geoderma. 4(26), 245-265.https://doi.org/10.1016/0016-7061(81)90023-9
Cai, R., Mandula, Chai, J. (2017). Research on the performance of sand-based environmental-friendly water permeable bricks. IOP Conference Series: Earth and Environmental Science , 113 (1). https://doi.org/10.1088/1755-1315/113/1/012136
Chapuis, R. P. (2012). Predicting the saturated hydraulic conductivity of soils: a review. Bulletin of Engineering Geology and the Environment, 71, 401-434.https://doi.org/10.1007/s10064-012-0418-7
Debnath, B., & Sarkar, P. P. (2019). Permeability prediction and pore structure feature of pervious concrete using brick as aggregate.Construction and Building Materials , 213 , 643-651. https://doi.org/10.1016/j.conbuildmat.2019.04.099
Dietz, M. E. (2007). Low impact development practices: A review of current research and recommendations for future directions. Water Air Soil Pollut , 186 , 351–363. https://doi.org/10.1007/s11270-007-9484-z
Eckart, K., McPhee, Z., & Bolisetti, T. (2017). Performance and implementation of low impact development–A review. Science of the Total Environment , 607 , 413-432. http://dx.doi.org/10.1016/j.scitotenv.2017.06.254
Etkina, E. (2002). Role of Experiments in Physics Instruction — A Process Approach[J].The Physics Teacher . 40 (6). https://doi.org/10.1119/1.1511592
Fan, Y., Grant, G., & Anderson, S. P. (2019). Water within, moving through, and shaping the Earth’s surface: Introducing a special issue on water in the critical zone. Hydrological Processes . Preface 25 (33). https://doi.org/10.1002/hyp.13638
Gevaert, A. I., Teuling, A. J., Uijlenhoet, R., DeLong, S. B., Huxman, T. E., Pangle, L. A., Breshears, D. D., Chorover, J., Pelletier, J. D., Saleska, S. R., Zeng, X., Troch, P. A. (2014). Hillslope-scale experiment demonstrates the role of convergence during two-step saturation[J]. Hydrology and Earth System Sciences ,18 (9). https://doi.org/10.5194/hess-18-3681-2014
Grant, G. E., &Dietrich, W. E. (2017). The frontier beneath our feet.Water Resources Research . 53 . https://doi.org/10.1002/2017WR020835
Han, X., J Liu, J., Srivastava, P., Mitra, S., & He, R. (2020). Effects of critical zone structure on patterns of flow connectivity induced by rainstorms in a steep forested catchment. Journal of Hydrology . https://doi.org/10.1016/j.jhydrol.2020.125032
Han, X., J Liu, J., Jiang, C., He, D., & Liang, Y. (2016). A weir for simultaneously observing surface flow and interflow on hillside, Copyright no. CN205102879U, China.
Han, X. (2018). Study on surface structures and hydrological connectivity in an experiment catchment in humid region of Southern China. Ph.D. Thesis, Hohai University, China.
Harman, C. J., & Kim, M. (2018). A low-dimensional model of bedrock weathering and lateral flow coevolution in hillslopes: 1. Hydraulic theory of reactive transport. Hydrological Processes , 33 , 466–475. https://doi.org/10.1002/hyp.13360
Hopp, L., Harman, C., Desilets, S. L. E., Graham, C. B., McDonnell, J. J., and Troch, P. A. (2009). Hillslope hydrology under glass: confronting fundamental questions of soil-water-biota coevolution at Biosphere 2. Hydrology and Earth System Sciences . 13 , 2105–2118. https://doi.org/10.5194/hess-13-2105-2009
Jomaa, S., Barry, D. A., Heng, B. C. P., Brovelli, A., Sander, G. C., Parlange, J. Y. (2012). Influence of rock fragment coverage on soil erosion and hydrological response: Laboratory flume experiments and modeling. Water Resources Research . 5 (48).https://doi.org/10.1029/2011WR011255
Kevern, J.T., Wang, K., & Schaefer, V.R. (2010). Effect of coarse aggregate on the freeze–thaw durability of pervious concrete.Journal of Materials in Civil Engineering , 5 (22), 469–475. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000049
Kleinhans, M. G., Bierkens, M. F. P., & van der Perk, M. (2010). On the use of laboratory experimentation: “Hydrologists, bring out shovels and garden hoses and hit the dirt”. Hydrology and Earth System Sciences , 14 , 369–382. https://doi.org/10.5194/hess-14-369-2010
Liu, J., Han, X., Liu, L., Liang, Z., & He, R. (2019). Understanding of critical zone structures and hydrological connectivity: a review.Advances in Water Science . 30 (1),112-122. https://doi.org/10.14042/j.cnki.32.1309.2019.01.012
Mcmillan, H., Srinivasan, M. (2014). Controls and characteristics of variability in soil moisture and groundwater in a headwater catchment.Hydrology and Earth System Sciences Discussions , 11 (8), 9475-9517.https://doi.org/10.5194/hessd-11-9475-2014
Nishigaki, M. (2000). Producing permeable blocks and pavement bricks from molten slag. Waste Management, 20, 185-192.https://doi.org/10.1016/S0166-1116(97)80186-0
Poon, C. S., & Chan, D. (2006). Paving blocks made with recycled concrete aggregate and crushed clay brick. Construction and Building Materials , 20 , 569-577.https://doi.org/10.1016/j.conbuildmat.2005.01.044
Rahman, E., Sharbatdar M. K., & Beygi, M. H.A. (2020). The effect of water-to-cement ratio on the fracture behaviors and ductility of Roller Compacted Concrete Pavement (RCCP). Theoretical and Applied Fracture Mechanics, 109, 102753. https://doi.org/10.1016/j.tafmec.2020.102753
Ran, Q., Su, D., Li, P., & He, Z. (2012). Experimental study of the impact of rainfall characteristics on runoff generation and soil erosion. Journal of Hydrology , (424-425), 99-111. https://doi.org/10.1016/j.jhydrol.2011.12.035
Song, S., & Wang, W. (2019). Impacts of Antecedent Soil Moisture on the Rainfall-Runoff Transformation Process Based on High-Resolution Observations in Soil Tank Experiments. Water , 11 (2), 296.https://doi.org/10.3390/w11020296
Sriravindrarajah, R., Wang, N.D.H., & Ervin, L.J.W. (2012). Mix design for pervious recycled aggregate concrete. International Journal of Concrete Structures and Materials , 4 (6), 239-246.https://doi.org/10.1007/s40069-012-0024-x
Tang, B., Gao, S., Wang, Y., Liu, X., & Zhang, N. (2019). Pore structure analysis of electrolytic manganese residue based permeable brick by using industrial CT. Construction and Building Materials , (208), 697-709.https://doi.org/10.1016/j.conbuildmat.2019.03.066
Wang, J., Meng, Q., Tan, K., Zhang, L., & Zhang, Y. (2018). Experimental investigation on the influence of evaporative cooling of permeable pavements on outdoor thermal environment. Building and Environment , (140), 184-193. https://doi.org/10.1016/j.buildenv.2018.05.033
Weiler, M., Mcdonnell, J. J., Meerveld, I. T., & Uchida. (2006). T. Subsurface stormflow, in book: Encyclopedia of Hydrological Sciences.https://doi.org/10.1002/0470848944.hsa119
Wu. X., Ma, H., Wu, N., Shi, C., Zheng, Z., & Wang, Y. (2016). Nepheline‐based water‐permeable bricks from coal gangue and aluminum hydroxide. Environmental Progress & Sustainable Energy ,3 (35), 779-785.https://doi.org/10.1002/ep
Zhou, C. (2018). Production of eco-friendly permeable brick from debris.Construction and Building Materials , (188), 850-859. https://doi.org/10.1016/j.conbuildmat.2018.08.049
Zimmer, M. A., & Gannon, J. P. (2017). Run‐off processes from mountains to foothills: The role of soil stratigraphy and structure in influencing run‐off characteristics across high to low relief landscapes.Hydrological Processes . 32 (11). https://doi.org/10.1002/hyp.11488