References
Ahiablame, L. M., Engel, B. A., & Chaubey I. (2012). Effectiveness of
low impact development practices: Literature review and suggestions for
future research. Water Air Soil Pollut , 223 , 4253–4273.
https://doi.org/10.1007/s11270-012-1189-2
Anderson, R. S., Rajaram, H., & Anderson, S. P. (2019). Climate driven
coevolution of weathering profiles and hillslope topography generates
dramatic differences in critical zone architecture[J].Hydrological Processes . 33 (1), 4-19.https://doi.org/10.1002/hyp.13307
Black, P. (1970). Runoff from watershed models. Water Resources
Research , 6 , 465-477.
Bryan, R. B., & Luk, S. (1981). Laboratory experiments on the variation
of soil erosion under simulated rainfall. Geoderma. 4(26), 245-265.https://doi.org/10.1016/0016-7061(81)90023-9
Cai, R., Mandula, Chai, J. (2017). Research on the performance of
sand-based environmental-friendly water permeable bricks. IOP
Conference Series: Earth and Environmental Science , 113 (1).
https://doi.org/10.1088/1755-1315/113/1/012136
Chapuis, R. P. (2012). Predicting the saturated hydraulic conductivity
of soils: a review. Bulletin of Engineering Geology and the Environment,
71, 401-434.https://doi.org/10.1007/s10064-012-0418-7
Debnath, B., & Sarkar, P. P. (2019). Permeability prediction and pore
structure feature of pervious concrete using brick as aggregate.Construction and Building Materials , 213 , 643-651.
https://doi.org/10.1016/j.conbuildmat.2019.04.099
Dietz, M. E. (2007). Low impact development practices: A review of
current research and recommendations for future directions. Water
Air Soil Pollut , 186 , 351–363.
https://doi.org/10.1007/s11270-007-9484-z
Eckart, K., McPhee, Z., & Bolisetti, T. (2017). Performance and
implementation of low impact development–A review. Science of the
Total Environment , 607 , 413-432.
http://dx.doi.org/10.1016/j.scitotenv.2017.06.254
Etkina, E. (2002).
Role
of Experiments in Physics Instruction — A Process Approach[J].The Physics Teacher . 40 (6).
https://doi.org/10.1119/1.1511592
Fan, Y., Grant, G., & Anderson, S. P. (2019). Water within, moving
through, and shaping the Earth’s surface: Introducing a special issue on
water in the critical zone. Hydrological Processes . Preface
25 (33). https://doi.org/10.1002/hyp.13638
Gevaert, A. I., Teuling, A. J., Uijlenhoet, R., DeLong, S. B., Huxman,
T. E., Pangle, L. A., Breshears, D. D., Chorover, J., Pelletier, J. D.,
Saleska, S. R., Zeng, X., Troch, P. A. (2014). Hillslope-scale
experiment demonstrates the role of convergence during two-step
saturation[J]. Hydrology and Earth System Sciences ,18 (9). https://doi.org/10.5194/hess-18-3681-2014
Grant, G. E., &Dietrich, W. E. (2017). The frontier beneath our feet.Water Resources Research . 53 .
https://doi.org/10.1002/2017WR020835
Han, X., J Liu, J., Srivastava, P., Mitra, S., & He, R. (2020). Effects
of critical zone structure on patterns of flow connectivity induced by
rainstorms in a steep forested catchment. Journal of Hydrology .
https://doi.org/10.1016/j.jhydrol.2020.125032
Han, X., J Liu, J., Jiang, C., He, D., & Liang, Y. (2016). A weir for
simultaneously observing surface flow and interflow on hillside,
Copyright no. CN205102879U, China.
Han, X. (2018). Study on surface structures and hydrological
connectivity in an experiment catchment in humid region of Southern
China. Ph.D. Thesis, Hohai University, China.
Harman, C. J., & Kim, M. (2018). A low-dimensional model of bedrock
weathering and lateral flow coevolution in hillslopes: 1. Hydraulic
theory of reactive transport. Hydrological Processes , 33 ,
466–475. https://doi.org/10.1002/hyp.13360
Hopp, L., Harman, C., Desilets, S. L. E., Graham, C. B., McDonnell, J.
J., and Troch, P. A. (2009). Hillslope hydrology under glass:
confronting fundamental questions of soil-water-biota coevolution at
Biosphere 2. Hydrology and Earth System Sciences . 13 ,
2105–2118. https://doi.org/10.5194/hess-13-2105-2009
Jomaa, S., Barry, D. A., Heng, B. C. P., Brovelli, A., Sander, G. C.,
Parlange, J. Y. (2012). Influence of rock fragment coverage on soil
erosion and hydrological response: Laboratory flume experiments and
modeling. Water Resources Research . 5 (48).https://doi.org/10.1029/2011WR011255
Kevern, J.T., Wang, K., & Schaefer, V.R. (2010). Effect of coarse
aggregate on the freeze–thaw durability of pervious concrete.Journal of Materials in Civil Engineering , 5 (22),
469–475. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000049
Kleinhans, M. G., Bierkens, M. F. P., & van der Perk, M. (2010). On the
use of laboratory experimentation: “Hydrologists, bring out shovels and
garden hoses and hit the dirt”. Hydrology and Earth System
Sciences , 14 , 369–382. https://doi.org/10.5194/hess-14-369-2010
Liu, J., Han, X., Liu, L., Liang, Z., & He, R. (2019). Understanding of
critical zone structures and hydrological connectivity: a review.Advances in Water Science . 30 (1),112-122.
https://doi.org/10.14042/j.cnki.32.1309.2019.01.012
Mcmillan, H., Srinivasan, M. (2014). Controls and characteristics of
variability in soil moisture and groundwater in a headwater catchment.Hydrology and Earth System Sciences Discussions , 11 (8),
9475-9517.https://doi.org/10.5194/hessd-11-9475-2014
Nishigaki, M. (2000). Producing permeable blocks and pavement bricks
from molten slag. Waste Management, 20, 185-192.https://doi.org/10.1016/S0166-1116(97)80186-0
Poon, C. S., & Chan, D. (2006). Paving blocks made with recycled
concrete aggregate and crushed clay brick. Construction and
Building Materials , 20 , 569-577.https://doi.org/10.1016/j.conbuildmat.2005.01.044
Rahman, E., Sharbatdar M. K., & Beygi, M. H.A. (2020). The effect of
water-to-cement ratio on the fracture behaviors and ductility of Roller
Compacted Concrete Pavement (RCCP). Theoretical and Applied Fracture
Mechanics, 109, 102753. https://doi.org/10.1016/j.tafmec.2020.102753
Ran, Q., Su, D., Li, P., & He, Z. (2012). Experimental study of the
impact of rainfall characteristics on runoff generation and soil
erosion. Journal of Hydrology , (424-425), 99-111.
https://doi.org/10.1016/j.jhydrol.2011.12.035
Song, S., & Wang, W. (2019). Impacts of Antecedent Soil Moisture on the
Rainfall-Runoff Transformation Process Based on High-Resolution
Observations in Soil Tank Experiments. Water , 11 (2), 296.https://doi.org/10.3390/w11020296
Sriravindrarajah, R., Wang, N.D.H., & Ervin, L.J.W. (2012). Mix design
for pervious recycled aggregate concrete. International Journal of
Concrete Structures and Materials , 4 (6), 239-246.https://doi.org/10.1007/s40069-012-0024-x
Tang, B., Gao, S., Wang, Y., Liu, X., & Zhang, N. (2019). Pore
structure analysis of electrolytic manganese residue based permeable
brick by using industrial CT. Construction and Building
Materials , (208), 697-709.https://doi.org/10.1016/j.conbuildmat.2019.03.066
Wang, J., Meng, Q., Tan, K., Zhang, L., & Zhang, Y. (2018).
Experimental investigation on the influence of evaporative cooling of
permeable pavements on outdoor thermal environment. Building and
Environment , (140), 184-193.
https://doi.org/10.1016/j.buildenv.2018.05.033
Weiler, M., Mcdonnell, J. J., Meerveld, I. T., & Uchida. (2006). T.
Subsurface stormflow, in book: Encyclopedia of Hydrological Sciences.https://doi.org/10.1002/0470848944.hsa119
Wu. X., Ma, H., Wu, N., Shi, C., Zheng, Z., & Wang, Y. (2016).
Nepheline‐based water‐permeable bricks from coal gangue and aluminum
hydroxide. Environmental Progress & Sustainable Energy ,3 (35), 779-785.https://doi.org/10.1002/ep
Zhou, C. (2018). Production of eco-friendly permeable brick from debris.Construction and Building Materials , (188), 850-859.
https://doi.org/10.1016/j.conbuildmat.2018.08.049
Zimmer, M. A., & Gannon, J. P. (2017). Run‐off processes from mountains
to foothills: The role of soil stratigraphy and structure in influencing
run‐off characteristics across high to low relief landscapes.Hydrological Processes . 32 (11).
https://doi.org/10.1002/hyp.11488