Reference
[1] Smith SA, Lynch KW. Cell-based
splicing of minigenes[J]. Methods in Molecular Biology, 2014, 1126:
243-255.
[2] Jourdy Y, Fretigny M, Nougier
C, et al. Splicing analysis of 26 F8 nucleotide variations using a
minigene assay[J]. Haemophilia, 2019, 25(2): 306-315.
[3] Matera AG, Wang Z. A day in
the life of the spliceosome[J]. Nature Reviews: Molecular Cell
Biology, 2014, 15(2): 108-121.
[4] De Conti L, Baralle M, Buratti
E. Exon and intron definition in pre-mRNA splicing[J]. Wiley
Interdiscip Rev RNA, 2013, 4(1): 49-60.
[5] Dufner-Almeida LG, do Carmo
RT, Masotti C, et al. Understanding human DNA variants affecting
pre-mRNA splicing in the NGS era[J]. Advances in Genetics, 2019,
103: 39-90.
[6] López-Bigas N, Audit B,
Ouzounis C, et al. Are splicing mutations the most frequent cause of
hereditary disease?[J]. FEBS Letters, 2005, 579(9): 1900-1903.
[7] Warf MB, Berglund JA. Role of
RNA structure in regulating pre-mRNA splicing[J]. Trends in
Biochemical Sciences, 2010, 35(3): 169-178.
[8] Park E, Cho MH, Hyun HS, et
al. Genotype-Phenotype Analysis in Pediatric Patients with Distal Renal
Tubular Acidosis[J]. Kidney and Blood Pressure Research, 2018,
43(2): 513-521.
[9] Tanner MJ. The structure and
function of band 3 (AE1): recent developments (review)[J]. Molecular
Membrane Biology, 1997, 14(4): 155-165.
[10] Smith AN, Skaug J, Choate
KA, et al. Mutations in ATP6N1B, encoding a new kidney vacuolar proton
pump 116-kD subunit, cause recessive distal renal tubular acidosis with
preserved hearing[J]. Nature Genetics, 2000, 26(1): 71-75.
[11] Yang Q, Li G, Singh SK, et
al. Vacuolar H+ -ATPase B1 subunit mutations that cause inherited distal
renal tubular acidosis affect proton pump assembly and trafficking in
inner medullary collecting duct cells[J]. Journal of the American
Society of Nephrology, 2006, 17(7): 1858-1866.
[12] Stehberger PA, Schulz N,
Finberg KE, et al. Localization and regulation of the ATP6V0A4 (a4)
vacuolar H+-ATPase subunit defective in an inherited form of distal
renal tubular acidosis[J]. Journal of the American Society of
Nephrology, 2003, 14(12): 3027-3038.
[13] Enerbäck S, Nilsson D,
Edwards N, et al. Acidosis and Deafness in Patients with Recessive
Mutations in FOXI1[J]. 2018, 29(3): 1041-1048.
[14] Rungroj N, Nettuwakul C,
Sawasdee N, et al. Distal renal tubular acidosis caused by
tryptophan-aspartate repeat domain 72 (WDR72) mutations[J]. Clinical
Genetics, 2018, 94(5): 409-418.
[15] Jobst-Schwan T, Klämbt V,
Tarsio M, et al. Whole exome sequencing identified ATP6V1C2 as a novel
candidate gene for recessive distal renal tubular acidosis[J].
Kidney International, 2020, 97(3): 567-579.
[16] Zhao X, Lu J, Gao Y, et al.
Novel compound heterozygous ATP6V1B1 mutations in a Chinese child
patient with primary distal renal tubular acidosis: a case
report[J]. 2018, 19(1): 364.
[17] Palazzo V, Provenzano A,
Becherucci F, et al. The genetic and clinical spectrum of a large cohort
of patients with distal renal tubular acidosis[J]. Kidney
International, 2017, 91(5): 1243-1255.
[18] Chen L, Wang HL, Zhu YB, et
al. Screening and function discussion of a hereditary renal tubular
acidosis family pathogenic gene[J]. 2020, 11(3): 159.
[19] Zhang R, Wang C, Lang Y, et
al. Five Novel Mutations in Chinese Children with Primary Distal Renal
Tubular Acidosis[J]. Genet Test Mol Biomarkers, 2018, 22(10):
599-606.
[20] Wang S, Wang Y, Wang J, et
al. Six Exonic Variants in the SLC5A2 Gene Cause Exon Skipping in a
Minigene Assay[J]. Front Genet, 2020, 11: 585064.
[21] Zhang R, Wang J, Wang Q, et
al. Identification of a novel TSC2 c.3610G > A, p.G1204R
mutation contribute to aberrant splicing in a patient with classical
tuberous sclerosis complex: a case report[J]. 2018, 19(1): 173.
[22] Cartegni L, Chew SL, Krainer
AR. Listening to silence and understanding nonsense: exonic mutations
that affect splicing[J]. Nat Rev Genet, 2002, 3(4): 285-298.
[23] Auclair J, Busine MP,
Navarro C, et al. Systematic mRNA analysis for the effect of MLH1 and
MSH2 missense and silent mutations on aberrant splicing[J]. Human
Mutation, 2006, 27(2): 145-154.
[24] Théry JC, Krieger S,
Gaildrat P, et al. Contribution of bioinformatics predictions and
functional splicing assays to the interpretation of unclassified
variants of the BRCA genes[J]. European Journal of Human Genetics,
2011, 19(10): 1052-1058.
[25] Fraile-Bethencourt E,
Valenzuela-Palomo A, Díez-Gómez B, et al. Identification of Eight
Spliceogenic Variants in BRCA2 Exon 16 by Minigene Assays[J]. Front
Genet, 2018, 9: 188.
[26] Zhao X, Cui L, Lang Y, et
al. A recurrent deletion in the SLC5A2 gene including the intron 7
branch site responsible for familial renal glucosuria[J]. Scientific
Reports, 2016, 6: 33920.
[27] Suarez-Artiles L,
Perdomo-Ramirez A, Ramos-Trujillo E, et al. Splicing Analysis of Exonic
OCRL Mutations Causing Lowe Syndrome or Dent-2 Disease[J]. 2018,
9(1).
[28] Sritippayawan S, Kirdpon S,
Vasuvattakul S, et al. A de novo R589C mutation of anion exchanger 1
causing distal renal tubular acidosis[J]. Pediatric Nephrology,
2003, 18(7): 644-648.
[29] Karet FE, Gainza FJ, Györy
AZ, et al. Mutations in the chloride-bicarbonate exchanger gene AE1
cause autosomal dominant but not autosomal recessive distal renal
tubular acidosis[J]. Proceedings of the National Academy of Sciences
of the United States of America, 1998, 95(11): 6337-6342.
[30] Jarolim P, Shayakul C,
Prabakaran D, et al. Autosomal dominant distal renal tubular acidosis is
associated in three families with heterozygosity for the R589H mutation
in the AE1 (band 3) Cl-/HCO3- exchanger[J]. Journal of Biological
Chemistry, 1998, 273(11): 6380-6388.
[31] Littink KW, Pott JW, Collin
RW, et al. A novel nonsense mutation in CEP290 induces exon skipping and
leads to a relatively mild retinal phenotype[J]. Investigative
Ophthalmology and Visual Science, 2010, 51(7): 3646-3652.