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Abstract

The exact solutions of the Riemann problems for the two different perturbed macroscopic production models are
considered and constructed respectively for all the possible cases. It is found that the asymptotic limits of solutions
to the Riemann problem for the first kind of perturbed macroscopic production model do not coverage to those of
the pressureless gas dynamics model, because the delta shock wave in the limiting situation has different propagation
speed and strength from those for the pressureless gas dynamics model. In order to remedy it, the second kind of
perturbed macroscopic production model is proposed, whose asymptotic limits of Riemann solutions are identical
with those of the pressureless gas dynamics model.
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1. Introduction

The fluid-like continuous models [1, 2] haven been extensively used to investigate the high-volume product flows.
At the beginning stage, the model consisting of scalar conservation law was proposed [3] by choosing some suitable
assumptions on the flux function. It is remarkable that the flux function is known as a clearing function for product
flow, which enables us to draw the average of sampled data. Recently, a large amount of works have mainly focused
on the so-called second-order model consisting of two conservation laws in order to cope with the data diffusion.
In particular, the date-fitted second-order macroscopic production model has been recently introduced in [4], which
allows us to predict the production behavior and capture the possible spread based on the observed production data.
In the first task of the present paper, we are concerned with the following perturbed macroscopic production model in

conservative form
{ pf + (pu)x = 05

(ou + gpu), + (pu® + gp’u?), = 0,

(1.1)

where p and u represent the density of product and the velocity of product line respectively, which show the work-
in-progress at the time ¢ and the production stage x (x € [0, 1]). In addition, here x is the degree of completion or
the stage of production instead of a physical position and the parameter & is taken to be a sufficiently small positive
number. For the purpose of explicit study, we shall focus on the Riemann problem for the model (1.1) by considering
the Riemann-type initial data

(o-,u_), x<0,

(o, u)(x,0) = (1.2)

(p+s u+)9 X > O'
It is evident that the Riemann initial data (1.2) should satisfy p. > 0 and u. > 0 as a result of the expected behavior
of a product line.
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If the limit £ — O is taken, then the model (1.1) is formally changed into the following pressureless gas dynamics

model
prt+ (pu)x =0,
{ (pu)t + (P”2)x = 07

which has been extensively investigated such as in [5, 6, 7, 8]. It is of great interest to notice that the system (1.3) has
also been used in [1, 2] to investigate the product flow of queuing networks and supply chains, in which it was valid
for slowly varying influxes and was derived from the closure assumption that parts overtaking each other was a rare
event. It is evident that the model (1.3) is a non-strictly hyperbolic and completely linearly degenerate system, whose
Riemann solution consists of either a delta shock wave when u, < u_ or the combination of two contact discontinuities
with the vacuum state between them when u, > u_. For example, one may refer to [9, 10, 11, 12, 13, 14] about the
related concepts of delta shock wave. In fact, the formation of delta shock wave as well as vacuum state in the
Riemann solutions of (1.3) and (1.2) has been extensively investigated by virtue of the vanishing pressure method
[15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26] and the flux function limit method [27, 28, 29, 30, 31]. However, it is
of great interest to discover that although the limit € — 0 of Riemann solution of (1.1)-(1.2) is still a delta shock wave
for the case u, < u_, but the propagation speed and strength of delta shock wave in the limiting € — 0 situation are
obviously different from those of of delta shock wave solution of the Riemann problem (1.3) and (1.2). That is to say,
the Riemann solutions of (1.1) do not coverage to those of (1.3) under the same Riemann initial condition (1.2) when
the limit € — 0 is taken.
In order to remedy it, we introduce the following perturbed macroscopic production model

(1.3)

pr t (pu)x = O’

(1.4)

(ou + gp’u), + (ou* + %epzuz)x =0,
for the purpose of explicit calculations as far as possible. It is worthwhile to notice that the transient clearing functions
incorporating the different dynamic effects have also been taken into account, for example [2]. In other words, different
transient clearing functions can be used to describe the different transient behaviors of product flows in the study of
production process in the factory. It is interesting to find that the formation of delta shock wave can be captured in
the limit & — 0 of Riemann solution of (1.4) and (1.2) for the case u, < u_ as well as the formation of vacuum state
can also be observed in the limit & — 0 of Riemann solution of (1.4) and (1.2) for the case u, > u_, respectively.
Furthermore, from the theory of hyperbolic conservation laws, it can be verified rigorously that the limit & — 0 of
Riemann solution of (1.4) and (1.2) is indeed identical with the corresponding one of (1.3) and (1.2) when the same
Riemann initial condition (1.2) is taken.

Kinetic and fluid model hierarchies for queuing networks and supply chains was first introduced in [2] analogous
to the compressible Euler gas dynamics system. For the long production line with many steps, it was useful to deal
with the production steps as a continuous variable such that a genuine fluid dynamical description was obtained, in
which the factory was regarded as a pipe and the parts flowing through the factory was treated as a fluid. Recently,
Armbruster and Wienke [1] have also considered the kinetic models and intrinsic timescales by using the simulation
comparison for a second order queueing model. It is worthwhile to notice that Sun [32] has constructed the singular
solutions to the Riemann problem for the macroscopic production model (1.1) without the perturbation. Also see
[33, 34] about the symmetry analysis of this model (1.1). Hence, it is natural and also necessary to investigate the
limits of Riemann solutions for the perturbed macroscopic production model for the actual comparisons of dynamical
behaviors among different macroscopic production models.

The outline of the article is as follows. In section 2, we first draw our attention on the construction of Riemann
solutions of (1.1) and (1.2) for all the possible cases. Subsequently, we shall focus on the limits £ — 0 of the solutions
to Riemann problem (1.1) and (1.2) under the conditions u, < u_ and u, > u_ respectively. It is not difficult to
investigate the formation of delta shock wave and two-contact-discontinuity solutions, which are different from the
corresponding Riemann solutions of (1.1) and (1.2) under the same initial conditions. In section 3, we are interested
in the construction of Riemann solutions of (1.4) and (1.2) cases by cases. Furthermore, as the limit € — 0 is taken
in the Riemann solution of (1.4) and (1.2), the formation of delta shock wave is analyzed when u, < u_ as well as
the formation of two-contact-discontinuity is derived when u; > u_, which are in accordance with the corresponding



Riemann solutions of (1.1) and (1.2) under the same initial conditions. In the end, the conclusions are also drawn in
section 4.

2. The limiting £ — 0 behaviors of Riemann solutions for the perturbed system (1.1)

In this section, we first draw our attention on the constructions of solutions to the Riemann problem (1.1)-(1.2) for
all the possible cases. Then, we are interested in the limiting &€ — 0 behaviors of solutions to the Riemann problem
(1.1)-(1.2) in detail.

2.1. The Riemann problem for the perturbed system (1.1)

In this subsection, our work is devoted to the properties of elementary waves for the perturbed system (1.1) and
then the constructions of solutions to the Riemann problem (1.1)-(1.2). The perturbed system (1.1) is translated into
the following form

(PSR 1 R prnesiouy 1 R 0Y
+ = , 2.1)
u(l +2ep) p(1 + ep) u ) (1 +2egp) 2pu(l + gp) u 0

so that we have the characteristic equation as follows:
A—u -p
u(d—u)(1 +2ep) p(d—2u)1 + ep)

By means of a simple computation, two real and distinct eigenvalues are taken as
u
Alp,u) = ——, A (p,u) = u. (2.2)
1+e&p

It can be easily seen that 1; < A, holds when £ > 0, u > 0 and p > 0, which means that the perturbed system (1.1) is
strictly hyperbolic in the interior of the quarter (o, u) phase plane. The right-eigenvectors for (1.1) corresponding to
A; and A, are

=0+ep,—ew)', T =(,0". (2.3)

We introduce the notation V = (%, %), a direct computation shows that

VA T = ) (1 +¢&p,—ew)’ = 2eu_ 4 ),

(—_814 1 _2eu
(1+ep)?’ 1+ep I +ep

V73 = (0,1 (1,0)" =0.
Hence, the above computational results demonstrate that the A; characteristic family is genuinely nonlinear and the
A characteristic family is linear degenerate when £ > 0 and p > 0. To be more exact, the elementary wave with
regard to the A; characteristic family is either shock wave or rarefaction wave and the elementary wave related to the

A, characteristic family is contact discontinuity.
We start by considering the rarefaction curve. As usual, we look for the self-similar solutions of the form
X
(o, w)(x, 1) = (p, u)(&), &= 7 2.4
Conventionally, the Riemann problem (1.1)-(1.2) can be formally rewritten as the following boundary value problem
of ODEs
_fp:f + (pu):f = 0’
(2.5)
—&(ou + spzu)§ + (ou® + 8p2u2)§ =0.
For smooth solutions, the equations (2.5) are equivalent to

. e )7 (0) 9
u -1 +2ep) pu-e1+ep) ) u )"\ 0
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It is evident that the trivial solution (p, u) is a constant state, which exists if and only if (dp,du) = (0,0). If
(dp, du) # (0,0), one gets immediately the singular solution that is rarefaction curve in light of a simple calculation.
That is to say, given a left state (o, u_), it suffices to observe that the rarefaction curve can be expressed by

u
1+ep

Ro_,u_): &= 2A1(p,u) = s T+epu=>0+¢ep)u_, p<p-, U>U_. 2.7

d 1+¢ep_)u_ . .
—Z = —% < 0, which means u decreases as p increases

Moreover, a straightforward computation yields that d

for the curve R(p_,u_). It is sufficient to compute that the rarefaction curve R(p_, u_) intersects the positive u-axis at
the point (0, u_(1 + gp-)) in the quarter (p, ) phase plane.
In what follows, we want to discuss the shock curve. The following Rankine-Hugoniot conditions

{U[P] = [pul,

(2.8)
olou + ep’ul = [pu* + gp*u?],

can be established, in which [p] = p —p_ and o = % represent the jump across the discontinuity and the speed of the
discontinuity, respectively. If o = 0, then we can infer immediately that (o, u) = (o—, u-). Otherwise, if o # 0, then
eliminating o in (2.8) and simplifying the result lead to

pp—(u — u){(u — u_) + e(pu — p_u_)} = 0. 2.9)
In a word, given a left state (o_, u_), the shock wave and the contact discontinuity can be written respectively as

Sou): o=PrTP M G hepu=(lfepyu, p>po, u<u, (2.10)

p—p-
Jo_,u): T=u=u_. 2.11)

It is obvious that the shock curve S (p_, u_) has the positive p-axis as its asymptote. Furthermore, the monotonicity of
the shock curve S (p_, u_) is the same as that of the rarefaction curve R(o_, u_).

p

(o, u-)

0 Uu- u-(1+ep-) u

Fig.1 The elementary wave curves starting from the given left state (o_,u_) are demonstrated in the quarter (p, u)
phase plane for the Riemann problem (1.1)-(1.2).

As shown in Fig.1, according to the formulae (2.7), (2.10) and (2.11), the shock curve S (o_, u_), the rarefaction
curve R(p_, u_) and the line of contact discontinuity J(p-, u_) divide the quarter phase plane into three parts, namely
I, I and Ill. More specifically, for a fixed left state (o_, u_), the solutions of Riemann problem (1.1)-(1.2) are expressed
as S +J,R+ Jand R + Vac + J if and only if the varying right state (o, u,) is situated in I, Il and Il respectively. It
is noteworthy that S + J denotes a shock wave S followed by a contact discontinuity J, etc.

2.2. The limiting behavior of Riemann solutions for (1.1) as € — 0
As shown in Fig.1, the solution of the Riemann problem (1.1)-(1.2) consists of a 1-shock wave and a 2-contact
discontinuity when u_ > u, and ¢ is sufficiently small. In this section, we are going to obtain the limit € — 0 of
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above solution for the situation u_ > u,. Let us use (p., u.) to denote the intermediate state between the 1-shock wave
S and the 2-contact discontinuity J, (see Fig.2(a)). It is obvious to show that (o_, #_) and (p., u.) are jointed by the
1-shock wave §'| with the speed o7, and then (p., u.) and (o4, ;) are jointed by the 2-contact discontinuity J, with
the speed 7,. More exactly, we have

S1: o= M, (I +ep)u, = +ep)u_, p.>p-, U, <u-, (2.12)
Psx — P-
J2 : T) = Uy = Usy. (213)
By virtue of (2.12) and (2.13), we immediately get
u-(1+ep-)—u;
(o) u
U,

(0s, 1) = (2.14)

In what follows, we briefly give some conclusions which are related to the limiting £ — 0 behavior of Riemann
solution for the case u_ > u,. It is clear from (2.14) that

(I +¢&p-)— -
limp, = lim A= ¥ &) Tue _u- T 2.15)
-0 e—0 EU, -0  EUy
Furthermore, it can be deduced from (2.12) that
limo; = lim 2% — P i (u* + 'M) —u, =1, (2.16)
=0 e>0 P, —p- -0 P — P-

which implies that the 1-shock wave S| and the 2-contact discontinuity J;, coincide with each other on the line x = u, ¢
in the limiting & — 0 situation (see Fig.2(b)). Let us use the following lemma to describe the formation of singularity
on the line x = u,tas € — 0.

[‘ t
(-, u-)

(04> u4)

(@ €>0 b £=0

Fig.2 The perturbed solution and the limiting situation are demonstrated for the Riemann problem (1.1)-(1.2) for the
case u_ > uy.

Lemma 2.1. Let us denote o5 = u., then the following limiting relations can be established as

lim(ry = o)p, = p-(u- = 1) = Tolp] = [pul, (2.17)
lim(rz = 071 )(putts + gptu.) = p_u_(u- — uy) = oslpul — [pu’l, (2.18)

in which [p] = p+ — p- denotes the jump of p.

Proof. Owing to the fact lin(l) P« = +oo, it can be derived from (2.12) and (2.13) that

. . Pills — P_U_ . (s —u_)
| - e =1 - p. =1 —u, - ——\p,
= lim pup- (- — us) = p_(u_ — uy) = Tslp] - [pul. (2.19)
&0 Psx — P



Subsequently, the second equation of (2.8) also yields
O 1(0ults + €021, — p_t— — 802U_) = put® + gp2u> — p_u> — gpu?,
{ To(pslts + EPTUL — pulty, — EP2,) = paii + EpUT — pou — gplul,
which enables us to get
l%(rz — 01l + 8,0314*) = E_I,%(_O_lp—”— + 1o Uy — Ulsp%u_ + Tzspiqu
+p_u* +gp*u* — pout — gpu’
= —Tsp_t_ + Tspstty +p_i> — poil = Tslpul — [pu?]. (2.20)

In addition, in term of (2.14), one also has liné £p = % Which, together with (2.20), yields

(12 —o)p.u(l + gp.)  limeo(72 — 01) (0t + £ptu,)

lim(t; — o1)p.u, = lim
&0 &0

1 +&p, B lim,_o(1 + £0.)
= T2
= T2 s ), a1)
1+ -
and
lin(l)(‘rz —o)ep’u, = lina(‘rg — 0Pl - EPx = lin(l)(‘rz — O 1)Pslly - lin(l) EPx
u-—u
= Pty (- = us) - = (-~ us) (2.22)
+
The proof is finished. 0

As aresult of (2.17), the strength of delta shock wave obtained from the limit £ — 0 of Riemann solution of (1.1)
and (1.2) can be calculated by

_ Tot
Bs(@) = lin(])f Pxdx = p_(u- — uy)t. (2.23)
£ ot

In brief, for the case u, < u_, the delta shock wave solution obtained from the limit & — 0 of Riemann solution of
(1.1) and (1.2) can be summarized as

(o, u-), X < Ugt,
(0, w)(x, 1) = (B5(D6(x — ust),uy), x = ut, (2.24)
(04, Uy), X > uyt,

which is obviously different from the delta shock wave solution for the Riemann problem (1.3) and (1.2) in the from

(5]

(o, u-), X < Ost,
(o, w(x, 1) =1 (BO)S(x — o51), us(1)), x =0, (2.25)
(p+, I/t+), x> O—ﬁt’
in which
%=w@=i%%;%?i B(t) = Np—p(u_ — ). (2.26)

It is evident to see that the propagation speed and strength of delta shock wave are different from the limits € — 0
of the perturbed system (1.1) here and the perturbed gas dynamical system in [15]. In fact, it is not surprising to
see that different approximations yield the different over-compressive entropy conditions u, = o5 < u_ here and
u, < os < u_in [15], which leads to the different propagation speeds and strengths of delta shock waves respectively.
Here, it can be still verified rigorously that the constructed delta shock wave solution (2.24) also satisfies the system
(1.3) in the weak sense of distributions.



Theorem 2.2. Let u,. < u_ and & be sufficiently small, then the Riemann problem (1.1)-(1.2) has a solution consisting
of a 1-shock wave and a 2-contact discontinuity. When & — 0, the solution converges to the delta shock wave solution
(2.24) in the sense of distributions. Besides, it is shown that

limp = p_ +[plH(x ~ Tst) + 1(Ts]p] = [pul)é(x — T50), (2.27)
lim(ou + gp*u) = p_u_ + [pulH(x — Tst) + (o5 pul — [pu*])6(x — Ts1). (2.28)

Proof. For € adequately small under the case u, < u_, the Riemann solution consisting of a 1-shock wave and a
2-contact discontinuity gives immediately

(p—,u—)’ —00 <§<0—1a
(o, u)(€) =1 (P, ), 0 <E<T2, (2.29)
(P+7 I/l+), 7-2 < § < +OO,

in which (p., 1) is given by (2.14). The solution (2.29) obeys the following weak forms

- f PE(UE) = &) (E)dE + f p)P&)dé = 0, (2.30)
and
- f (PEu(@) + ep*(OuE))(u(€) — £)¢’ (€)d€ + f (P©u(@) + ep*(©u(€))p(&)dé = 0, (2.31)

for any ¢(§) € C’(—o0, +00).
Decomposing the first term in (2.31), it can be seen that

f (PEUE) +ep(EUE)WE) ~O)P (©)dé =( f + f + f )(,O(f)u(é")+8p2(§)u(§))(u(§)—é“)(ﬁ'(é“)df- (2.32)

Combining the first and last integrals of (2.32), it is sufficient to have

tim [ (@) + spOuE) ) - O €)dé -+ lim f (OO + 5P EUENWE) — )9 ©de
“tim [ (o + st - )0 (@ + lim f (Outts + P21 )ty — O E)dE

= lim (- + £p2u)p(01) = (o= + 92U )T 1$(01) = (Puisl + P )P(T) + (patts + £02UIT2(T2)  (2.33)
+(p_u_ +&p°u_) f7 PE)dE + (pruy + spruy) f ¢(§)d§)

= (@slpul = [pu’] $(@s) + f (p-u— + [pulH(& — 05))p(£)dE.

Similarly, due to Lemma 2.1, the second part of (2.32) yields

lim f (PEUE) + ep*(EUE@)wE) - P (©)dé

T2

=lim | (ouu. + 82w ), — E)¢' (€)dé

-0

" (2.34)
o) = o)) mabley) = o)y | Ly, 9o)de )

T2 =01 T2 =01 T2 =01

= lim(p,u, + £p%u,)(T2 — 0'1)(”*(
&—0

= @slpul = [pu?] \Ts¢' (@s) = To¢' @5) = 9(@5) + (@) = O,
7



where we take into account the facts that ¢(&) € Ci'(—o0, +00) and lin(l) o= lin(l) T, = lir% Us = Uy,
Substituting (2.33), (2.34) into (2.31) indicates that

lim f (p@Eu@) + ep*OuE)) = (p-u_ + [pulH(E = To))E)dE = @ slpul — [pu*PTs).

More precisely, according to formulae (2.21) and (2.22), we have

lim f POUOENE = lim fo f f JEuEBE)dE

= lim f P-u_0E)dE + lim f pand(@de +lim [ po(ede

T2 gl

7|

~tim (o [ o@de +pons [ 00de) + impa(ez - o)

—00

I o(©)dé

T, — 01

= f (p-u- + [pulH(& — 7s))P(£)dE + p_ur(u- — u)p(0s),

lim f P’ (Ou)pE)dg = lim ( f + f + f Jep* ©u@d(&)dé

= lim f " gp%u_¢(§)d§+1ir% f wspiu+¢(§)d§+hr% f b epu, p(&)de

and

I #(©)dé

-0

= p_(u- — u )’ ¢(Ts).

= lim spzu*(‘rz —-01)
=0

Furthermore, using the same method on (2.30) leads to

lim f (&) = (o + [pIH(E = 05))P(E)dE = (Ts[p] = [pul) ¢(07).

(2.35)

(2.36)

(2.37)

(2.38)

Our goal is to get the limits of p and pu + gp?u as & — 0. Let y(x, 1) € Cy (R X R,), then (2.35) gives rise to

lim fo - [ :o(pu + epzu)(f)w(x, 1dxdt

= lim Omt( f :O(p(f)u(f)+8p2(§)u(é‘))l/f(§t, de)dt

- fomf(gig% f j(p(f)u(f)+ap2<§>u(§>)lp(§r, 1dé)d1

) fom / I:o(p—“- + lpul HE = T, ndé + @slpul = [pu]) w(@st, 0)dt

= fo (! f (p-u_ + [pul H(E = Ta)W(x, Ddx + @slpul - [pu]) w(@st,0)dr

= f ) f (p-u_ + [pul H( — T5))(x, dxdi + f " (@ lpul - (o) Wit s,
0 —co 0



which allows us to establish the limiting relation (2.28). In terms of (2.36) and (2.37), one further has

-0

+00 +00 X
lim f pu(—)tp(x, tdxdt
0 —o0 t

f f :‘ [F”]Ii(é g 6))110(;6’ l)d.;fdl f l(p_u+(l/{ —Uu )) W(O'ét t)dt
0 —00 0 + ) s
aIld

fim [ f h spzu(f)lp(x,t)dxdtz f - Ho_(u- — uy)?) W(@st, t)dt.
0 —0c0 t 0

&0

In addition, by virtue of (2.38), one also has

IML j‘AQMMMW=L f m+wm&ﬁmMmmmﬂ£r@mrmwwamm

-0

which leads to the limiting relation (2.27). The proof is finished. O
t

| ’\

b) e=¢go

(c) O<e<eg d €=0

Fig.3 The perturbed solution and the limit solution are demonstrated for the Riemann problem (1.1)-(1.2) for the case
Uy > u_.

In what follows, we shall focus on the limiting & — 0 behavior of Riemann solution of (1.1) and (1.2) when

uy > u_. Let us introduce the critical value gy = u;') — = pased on u_(1 +ep-) = uy. If € > g, then it is easy to

_U_
obtain that the Riemann solution of (1.1) and (1.2) includes a 1-rarefaction wave R; and a 2-contact discontinuity J

with non-vacuum intermediate state (p., u#.) in the form (see Fig.3(a))

(p—au—)7 —OO<§< “{lt—éﬂ’

Uu_

R, <&<
1+ &0 1+ o,
(0, 0)(€) = up P (2.39)
(Ps, ), T+ ep. <&<u,,

(1, 1y), Uy <& < o0,
9



in which
u-(1+ep-)—u;

(,0*, M*) = ( ,l/l+).

Euy

It is worthy mentioned that a composite wave RJ is formed at the critical value € = &, in which the wave front of
the 1-rarefaction wave R; coincides with the 2-contact discontinuity J; in the (x, r) plane (see Fig.3(b)). Furthermore,
if 0 < & < g, then the 1-rarefaction curve R;(p_, u_) intersects the positive u—axis at the point (0, ) in the quarter
(p, u) phase plane, in which u, = u_(1 + gp_). As a consequence, it suffices to find that there exists vacuum state in
the Riemann solution of (1.1) and (1.2) as follows (see Fig.3(c)):

u_
1+ep_

(o_,u-), —-oo<é<

Ry, U- e <u (1 By
@ =] Thep. =&=uliter) (2.40)
Vacuum, u_(1+ep_)<&<uy,

(O, Us), Uy <E < Foo.

In the end, it is noticeable from (2.7) that

lim 4y (- u-) = lim - il lim (0, = lim, = lim(1 + sp_Ju- = u.. (2.41)

which enables us to infer that the 1-rarefaction wave R; degenerates to be the 1-contact discontinuity J; : u = u_
when ¢ tends to 0 and the region between two contact discontinuities J; and J is filled up with the vacuum state (see
Fig.3(d)).

3. The limiting £ — 0 behaviors of Riemann solutions for the system (1.4)

In this section, we are mainly concerned with the limiting & — 0 behaviors of solutions to the Riemann problem
(1.4) and (1.2) in detail. More precisely, we take a step further to discuss the formation of delta shock wave as well
as the formation of vacuum state when the limits & — 0 are taken in the solutions to the Riemann problem (1.4) and
(1.2) for all the possible cases.

3.1. The Riemann problem for the system (1.4)
The system (1.4) is converted into the following form

(PSR 1 K pnempneny 1 R Y
+ , 3.D
u(l +2¢ep) p(1 +éep) u ), (1 +3gp)  pu(2 +3ep) u ), 0

whose characteristic equation is written as

A—u —p
Au(l +2ep) — (1 + 3ep)  Ap(1 + £p) — pu(2 + 3ep)

One can obtain explicitly two eigenvalues

Aip,u) = u(1 - /1 ipsp), Aop,u) = u(1 + /1 ipgp). (3.2)

The system (1.4) is strictly hyperbolic as a consequence of 1; < A, when p > 0 and & > O are satisfied. The
corresponding right-eigenvectors are given by

= (—p,u 1 f—pgp)T’ N (p,u V1 f—psp)T' G-




Introducing the notation V = (%, %), one has

T
VA, -1 = —&u - [ep \ (_ u [ ep
F (2(1+8p)\/8p(1+8p) 1+8p)( P 1+8p)
-y |- £P 1 i)
- 1+Sp(2(1+gp)+l 1+gp)¢0’
T
Vi 1 = u 1+ D\ (pu |22
o QU+&ﬂ%wﬂ+q0 V1+@J (o V1+q)
_ .y, [£p 1 P
- 1+wba+wﬂ*+ T;5ﬁﬂ,

provided that p > 0 and u# > 0 are required and ¢ is taken to be a sufficiently small positive number. Indeed, the
above-mentioned results inform us that the A4, and A, characteristic families are genuinely nonlinear under the above
suitable assumptions. More precisely, owing to the above results, it is sufficient to show that the elementary waves are
either shock waves or rarefaction waves.

Let us consider the rarefaction curves in the following. Hence, we shall focus on settling the self-similar solutions
of the form

(o, w)(x, 1) = (p, u)(&), &=-. 34

The Riemann problem (1.4) and (1.2) is equivalent to

—&pe + (pu)e =0,
3.5
—&(pu + 8p2u)§ + (ou® + %8p2u2)§ =0.
From the viewpoint of smooth solutions, (3.5) can be interpreted as
[ s Caaen U0 L0) 09
(1 +3ep) — éu(l +2egp)  pu(2 + 3ep) — Ep(1 + &p) u ), 0) ’

In particular, we have the trivial solution that (p, u) is a constant state if and only if (dp, du) = (0, 0). Otherwise, if
(dp,du) # (0,0), then one has to prove that the singular solution is rarefaction curve. To be more precise, given a left
state (o_, u_), it is easy to conclude that the rarefaction curves are expressed by

£=pw=u(l- |7355),

1+ep
. 0
Rilo—u-): Inu—-lnu_=- —\/E ds, (3.7
- Als(1 + &)
p<p-, u>u,
and
- _ &p
£= g =i+ \[1).
. 0
Rop-,u-): Inu—Inu_ :f —\/E ds, (3.8)
p- As(1 + &5)
p>p-, u>u_.
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Fig.4 The elementary wave curves are demonstrated in the quarter (o, #) phase plane for the Riemann problem (1.4)
and (1.2) with the given left state (o_, u_).

Let us turn to the shock curves, which should satisfy the following Rankine-Hugoniot conditions

alpl = lpul,
2 2,3 29 (3.9)
olpou + ep“ul = [pu” + Esp u],
in which [p] = p—p_and o = % are similar as those in (2.8). In particular, if o = 0, then it is evident that
(0, u) = (p—,u_). Otherwise, if o # 0, then the elimination of o from (3.9) brings about
3 3
(pu = p_u_Ypu + epu = p_u_ — ep>u_) = (p = p_)(pu® + Eepzuz —p-ul — 58/33”3),
which enables us to show immediately that
po-(ep + gp_ + 2)(u — u_)? - (epu2 + sp_u%)(p —,0_)2 =0. (3.10)
That is to say, given a left state (o_, u_), the shock curves can be expressed by
2 2 2
—p_u_ + gp_ - p-
Sty o= AT \/(Sp” s PN u<u 3.11)
p—p- pp-(ep +ep- +2)
and
2 2 2
—p_U_ + ep- - p-
So(o_,u_): a':w, U=u_— \/(gpu &p-1=)p — p-) s P<p_, u<u_. (3.12)
p—p- pp-(&p + &p- +2)

It can be shown, from (3.7), (3.8), (3.11) and (3.12), that the shock curves S | (o_, u-), S2(p—, u_) and the rarefaction
curves R (o, u_), Ry(p—, u_) divide the quarter (p, u) phase plane into four regions, namely 7, /I, Ill and IV (see Fig.4).
In other words, for a static left state (o_, u_), the solutions of Riemann problem (1.4) and (1.2) are given by S| + S,
Ry + 85,81+ R, and R| + R, if and only if the right state (p., u.) is located in the regions I, I, Ill and IV respectively,
in which the representation of symbol is the same as before.

3.2. Formation of delta shock wave

When u_ > u,, it suffices to get that the solution of Riemman problem (1.4) and (1.2) includes two shock waves
(see Fig.5(a)) provided that € is adequately small. In this subsection, we draw our attention on the limiting £ — 0
behavior of two-shock-wave solution of Riemman problem (1.4) and (1.2) when the condition u_ > u, is fulfilled.
Let us define (p., u.) be the intermediate state between two shock waves, then it can be easily shown that (o_, u_)
and (p., u,) are connected by a 1-shock wave S| with the speed o as well as (o., u.) and (o, u,) are connected by a
2-shock wave S, with the speed o, respectively. To be more exact, one arrives at
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U, — O_U_
oy = Lol =P

— )
*

SUY L Cu - \/(sp*ui+sp_u3)(p*—p_)2 (3.13)
T pp-(eps +Ep-+2)
P« > p-, U, < u_,
and ot — pot
Y o s S i L)
o2 = P+ — Px ’
Saiy _ L [(epaid + ep.ad) (s — p.) (3.14)
o p+p<(ps + 0 +2) 7
P+ < P, Ur < Us.

It follows from the second equations of (3.13) and (3.14) that

\/ (gp.ui? + gp_u” )(p. — p-)° \/ (ep. 16 + £p2)(ps = pu)
U_ —uy = +

(3.15)

Pp-(Eps + Ep— +2) P+p(Ep+ + EPx +2)

Lemma 3.1. The limiting relations are established as follows:
: : . 2p_po(u_ — u,)?

lim p, = +oo, limgp, = 0, limep? = , (3.16)

-0 -0 &— (u_ \/,I +u, \/p_+)2

u_+\p-+u
limo = lim o = limu, = =Y Ve (3.17)
&0 £—0 £—-0 \Vo- + o+

Proof. Let us first assume that hm 1 is bounded, namely hm 10, = a € (max(p_,p+), +c0). Then, taking the limit

of (3.15) as ¢ — 0 yields u_ — u+ = 0, which must v101ate the fact u- > u,. Therefore, it is easily inferred that
lim p, = +oo. Owing to the fact hmp* = 400, one has (see Fig.5(b))

-0
. . P*M* _pJ/L . . . P+u+ _P*M* .
limoq = lim —— =limu,, limo, = lim ——— = limu,.
-0 >0 P, —p_ >0 -0 -0 04 — Py >0
Taking into account lim0 P« = +00, it is easy to arrive at
&>
lim (sp*uf + sp_uz)(p* —,0_)2 B 1 im spfuf
£—0 pip-(Eps + 80 +2) A= e-0 \gp, +2°
. (sp+u + £p12) (P4 — Pi) 1 . gplu?
lim = Slim 4 [ ———.
&0 P+P:(Ep+ + &P« +2) Vo+ 20 N Epi +2
As aresult, we takes a step further in (3.15) to get
sp%uf 1 . 5p§u§ 1 . sp%uf
U- —uy = + . =

—— - lim lim = + )
\VP= =0 \ ep, +2 o -0 \ go. +2 - [ 50 0. +2

212 _ - u_ —uy)\p-
N IR el TSt R R 2 (3.13)
e-0 \ gp. +2 1 + \p- + o+
P+

N

which brings about
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In terms of (3.13) and (3.18), we can immediately verify that

.  (epai® + gp_u®)ps — p_)? 1 gp2u?

limu, = u_ — lim =u_— lim

£—0 &0 Psp—(Epx +Ep— +2) Vo= -0 \ gp +2
(u- —u)\p-ps (- —u)\pr  u_~p-+u\ps

- —u - - = 7s. 3.19
S o Y Y R sy Y =y G2

It follows from (3.18) and (3.19) that

&p? lim ep2u? . 1 (- —u)p-p+ ' Vo-+ AP+ (u-—u) \p-p+
ep+2 &0 \ep, +2 limgou. \Vo- + o+ U_\p- + Uy O+ u_\/p__+u+\/p_+’

which means that

2p_p(u_ — u,)?

limep, =0,  limep; = : 3.20
e 0 P T U=+ tty PL (20
The proof of lemma is established. O
Lemma 3.2. The limits € — 0 of mass and momentum between the two shock waves are as follows:
g
1im0f p:dé = oslpl — [pul, (3.21)
& (o]
02
lim f pattodé = os[pul — [pu?]. (3.22)
£— o

Proof. By virtue of the first equation of the Rankine-Hugoniot conditions (3.9), it follows from the two shock waves
S| and S, mentioned in (3.11) and (3.12) that

104 = p-) = Pl = p-U-,
{0'2(P+ — Ps) = Prlly — Pills,
which leads to
lim(e; — oo, = im(oaps = 01p- = patts +poti-) = 0slp] = pul. (3.23)
As before, for the second equation of (3.9), we also obtain
o1 (ults + EP7U, — p_ti_ — EP7U_) = pu> + %spfuf —p_u® - %spgu%,
{ Ca(ptts + P2t = pit, = ep) = poiid + gl — puai - Jepic,
which suffices to identify that

lirr(l)(a'z — 0Py = limo(oqspfu* - o-zapfu* —T1p_U_ + TP Uy — o-lsp%u, + o-zspiqu
&£ fomd
3 3
+p_u* + Espzu% —p+ui - Espiui
= —oip_u + oapsus + poiid — poi = oslpul - [pu’]. (3.24)

Hence, it suffices to observe that Lemma 3.2 can be achieved directly from (3.23) and (3.24). O
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(o u-)

(o4, U4)

(@) >0 b) =0

Fig.5 The perturbed solution with € > 0 in (a) and the limiting solution with £ = 0 in (b) are demonstrated for the
Riemann problem (1.4) and (1.2) under the case u_ > u,.

Theorem 3.3. Let u, < u_ and & be sufficiently small, then the Riemann problem (1.4) and (1.2) exists a solution
consisting of two shock waves. If € — 0, then the solution converges exactly to the delta shock wave solution of the
Riemann problem (1.3) and (1.2) in the sense of distributions. In addition, it follows immediately that

lifép = p- + [p]H(x — o6t) + t(oslp] — [puD)é(x — o751), (3.25)
ling)pu = p_u_ + [pu]lH(x — ost) + t(os[pu] — [puz])d(x — osb). (3.26)

The proof of Theorem 3.3 is completely similar to that of Theorem 2.2 and thus the details are omitted here.

3.3. Formation of vacuum state

In this subsection, we shall turn our attention to concern the case u, > u_. When ¢ is sufficiently small, it suffices
to obtain that the Riemann solution of the system (1.4) includes two rarefaction waves (see Fig.6(a)). The vacuum
state is formed in the limit € — 0 of solution to the Riemann problem (1.4) and (1.2) under the case u, > u_. To be
more specifical, if (o, u.) is the intermediate state between two rarefaction waves, then it can be easily seen that

£= . =ull = | 7755):

o mm—mm:_j“__fi_ﬁ (3.27)
Px < P, U, > U_,
and
£=hip.w=ull + \[1L),
R (3.28)

P+ \/E
Inu, —Inu, = f —ds,
o sl +&s)
P+ > P, Uy > Us.
Theorem 3.4. Let u_ < u, and & be sufficiently small, then the Riemann problem (1.4) and (1.2) exists a solution
consisting of two rarefaction waves. If € — 0, then the solution converges to a two-contact-discontinuity solution with

vacuum state between them, which is the same as that for the Riemann problem (1.3) and (1.2) with the same Riemann
initial data.
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o+, u4) (s uy)

(a) €>0 b =0
Fig.6 The perturbed solution with € > 0 in (a) and the limiting solution with £ = 0 in (b) are demonstrated for the
Riemann problem (1.4) and (1.2) under the case u; > u-.

Proof. With the help of the fact p, < min(p_, p,), it follows from the second equations of (3.27) and (3.28) that

fﬂi —\/E ds + " —\/E ds
p. AS(1 +é&s) . As(l +&s)

Inu, —Inu_

. —1 d s)

- 1
< Vo [ s
( o APl + €py) oo A1 + &ps)
Ve Ve

(- = ps +pr —ps) <

V(1 + £p.) V(1 + &ps)

If liII(l) ps« > 0, then it is easy to check that u, — u_ = 0 from the above result, which contradicts with the fact u_ < u,.
E—

(o- +p+) (3.29)

Hence, one has lin(l) p« = 0. That is to say, the intermediate state turns out to be vacuum state as € — 0. As a result,
E

we take a step further to get

lin(l) A(o—,u) = lir%/ll(p*,u*) =u_, liII(l) (0s, Us) = lin(l)/lg(p+,u+) =u,, (3.30)

which infer us to verify that the rarefaction waves R; and R, degenerate to the contact discontinuities J; and J,
separately, in which the velocities are u_ and u, respectively as € — 0 (see Fig.6(b)). The proof is finished. O

4. Conclusions

In the present work, we carefully investigated the limiting behaviors of Riemann solutions to the macroscopic
production model as the stacking product vanishes. For the case u, < u_, it is of great interest to notice that the limits
of Riemann solutions to the two different perturbed systems exactly converge to the delta shock wave solution of the
pressureless gas dynamics model (1.3) under the different over-compressive entropy conditions u, = o5 < u_ and
uy < oy < u_ respectively. During the process of taking the limit, the singularities of all the solutions are analyzed
in fully explicit forms and then some interesting nonlinear phenomena are discovered. In each of the two limiting
processes, the formation of vacuum state can also be observed and investigated in details. Oh the one hand, in the
actual system of industry production, different approximations may be used to illustrate different production situations.
On the other hand, in the theory of hyperbolic conservation laws, different approximations usually lead to different
over-compressive entropy conditions and thus obtain the delta shock wave solutions with the different strengths and
speeds in the limiting situations.
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