References
(1) Xu, X.; Wang, L.; Wang, J.; Yin, Q.; Dong, S..; Han, J.; Wei, M.,
Hydroxide–ion–conductive gas barrier films based on layered double
hydroxide/polysulfone multilayers. Chem. Comm. 2018;54:7778−7781.
(2) Di Maio, L.; Marra, F.; Bedane, T. F.; Incarnato, L.; Saguy, S.,
Oxygen transfer in co‐extruded multilayer active films for food
packaging. AlChE J. 2017;63: 5215−5221.
(3) Yang, C.; Cussler, E. L., Oxygen barriers that use free radical
chemistry. AlChE J. 2001; 47: 2725−2732.
(4) Adel, P.; Moran, E.; Efrat, E.; Hadar, N. N.; Albert, R.; Israel,
B., A novel hybrid solid dispersion film coat as a moisture barrier for
pharmaceutical applications. J. Drug Delivery Sci. Technol.2017;40:105−115
(5) Dou, Y.; Pan, T.; Xu, S.; Yan,
H.; Han, J.; Wei, M.; Evans, D. G.; Duan, X., Transparent,
ultrahigh-gas-barrier films with a brick-mortar-sand structure.Angew. Chem. Int. Ed. 2015;54:9673−9678.
(6) Seethamraju, S.; Ramamurthy, P. C.; Madras, G., Performance of an
ionomer blend-nanocomposite as an effective gas barrier material for
organic devices. RSC Adv. 2014;4:11176−11187.
(7) Lee, M. E.; Jin, H. J., Nanocomposite films of poly(vinyl
alcohol)-grafted graphene oxide/poly(vinyl alcohol) for gas barrier film
applications. J. Nanosci. Nanotechnol. 2015;15:8348−8352.
(8) Gaume, J.; Taviot-Gueho, C.; Cros, S.; Rivaton, A.; Thérias, S.;
Gardette, J. L., Optimization of PVA clay nanocomposite for
ultra-barrier multilayer encapsulation of organic solar cells.Sol. Energy Mater. Sol. Cells 2012;99:240−249.
(9) Layek, R. K.; Das, A. K.; Min, U. P.; Kim, N. H.; Lee, J. H.,
Layer-structured graphene oxide/polyvinyl alcohol nanocomposites:
dramatic enhancement of hydrogen gas barrier properties. J. Mater.
Chem. A 2014;2:12158−12161.
(10) Zhang, J.; Lei, W.; Schutz, J.; Liu, D.; Tang, B.; Wang, C. H.;
Wang, X., Improving the gas barrier, mechanical and thermal properties
of poly(vinyl alcohol) with molybdenum disulfide nanosheets. J.
Polym. Sci., Part B: Polym. Phys. 2019;57:406−414.
(11) Ham, M.; Kim, J. C.; Chang, J. H., Characterization of poly(vinyl
alcohol) nanocomposite films with various clays. Polym. Korea2013; 37:225–231.
(12) Inagaki, N.; Tasaka, S.; Nakajima, T., Preparation of oxygen gas
barrier polypropylene films by deposition of SiOx films
plasma-polymerized from mixture of tetramethoxysilane and oxygen.J. Appl. Polym. Sci. 2000;78:2389−2397.
(13) Dou, Y.; Zhou, A.; Pan, T.; Han, J.; Wei, M.; Evans, D. G.; Duan,
X., Humidity-triggered self-healing films with excellent oxygen barrier
performance. Chem. Comm. 2014;50:7136−7138.
(14) Wang, L.; Dou, Y.; Wang, J.; Han, J.; Liu, L.; Wei, M.,
Layer-by-layer assembly of layered double hydroxide/rubber multilayer
films with excellent gas barrier property. Compos. Part A Appl.
Sci. Manuf. 2017;102:314−321.
(15) Pan, T.; Xu, S.; Dou, Y.; Liu, X.; Li, Z..; Han, J.; Yan, H.; Wei,
M., Remarkable oxygen barrier films based on layered double
hydroxide/chitosan hierarchical structure. J. Mater. Chem. A2015:3;12350−12356.
(16) Cui, Y.; Kundalwal, S. I.; Kumar, S., Gas barrier performance of
graphene/polymer nanocomposites. Carbon 2015;98:313–333.
(17) Petersen, H.; Jakubowicz, I.; Enebro, J.; Yarahmadi, N.,
Development of nanocomposites based on organically modified
montmorillonite and plasticized PVC with improved barrier properties.J. Appl. Polym. Sci. 2015;133:189−196.
(18) Wang, P.; Wang, H.; Liu, J.; Wang, P.; Jiang, S.; Li, X.; Jiang,
S., Montmorillonite@chitosan-poly (ethylene oxide) nanofibrous membrane
enhancing poly (vinyl alcohol-co-ethylene) composite film.Carbohydr. Polym. 2018;181:885−892.
(19) Cao, P. F.; Li, B.; Hong, T.; Xing, K.; Voylov, D. N.; Cheng, S.;
Yin, P.; Kisliuk, A. M.; Mahurin, S. M.; Sokolov, A. P., A robust and
elastic polymer membrane with tunable properties for gas separation.ACS Appl. Mater. Interfaces 2017;9:26483−26491.
(20) Priolo, M. A.; Gamboa, D.; Grunlan, J. C., Transparent clay-polymer
nano brick wall assemblies with tailorable oxygen barrier. ACS
Appl. Mater. Interfaces 2010;2:312−320.
(21) Hagen, D. A.; Lauren, S.; Grunlan, J. C., Controlling effective
aspect ratio and packing of clay with ph for improved gas barrier in
nanobrick wall thin films. ACS Appl. Mater. Interfaces2014;6:22914−22919.
(22) Song, Y.; Gerringer, J.; Shuang, Q.; Grunlan, J. C., High oxygen
barrier thin film from aqueous polymer/vlay slurry. Ind. Eng.
Chem. Res. 2018;57:6904−6909.
(23) Zhai, X.; Li, Z.; Zhang, J.; Shi, J.; Zou, X.; Huang, X.; Zhang,
D.; Sun, Y.; Yang, Z.; Holmes, M.; Gong, Y.; Povey, M., Natural
biomaterial-based edible and ph-sensitive films combined with
electrochemical writing for intelligent food packaging. J. Agric.
Food. Chem. 2018;66,12836−12846.
(24) Dou, Y.; Xu, S.; Liu, X.; Han, J.; Yan, H.; Wei, M.; Evans, D. G.;
Duan, X., Transparent, flexible films based on layered double
hydroxide/cellulose acetate with excellent oxygen barrier property.Adv. Funct. Mater. 2014;24:514−521.
(25) Holder, K. M.; Spears, B. R.; Huff, M. E.; Priolo, M. A.; Harth,
E.; Grunlan, J. C., Stretchable gas barrier achieved with partially
hydrogen-bonded multilayer nanocoating. Macromol. Rapid Commun.2014;35:960−964.
(26) Xiang, F.; Ward, S. M.; Givens, T. M.; Grunlan, J. C., Super
stretchy polymer multilayer thin film with high gas barrier. ACS
Macro Lett. 2014;3:1055−1058.
(27) Xiang, F.; Givens, T. M.; Ward, S. M.; Grunlan, J. C., Elastomeric
polymer multilayer thin film with sustainable gas barrier at high
strain. ACS Appl. Mater. Interfaces 2015;7:16148−16151.
(28) Shuang, Q.; Song, Y.; Floto, M.; Grunlan, J. C., Combined high
stretchability and gas barrier in hydrogen-bonded multilayer nanobrick
wall thin films. ACS Appl. Mater. Interfaces 2017;9:7903−7907.
(29) Priolo, M. A.; Gamboa, D.; Holder, K. M.; Grunlan, J. C., Super gas
barrier of transparent polymer-clay multilayer ultrathin films.Nano Lett. 2010;10:4970−4974.
(30) Zhao, M. Q.; Zhang, Q.; Huang, J. Q.; Wei, F., Hierarchical
nanocomposites derived from nanocarbons and layered double
hydroxides-properties, synthesis, and applications. Adv. Funct.
Mater. 2012;22:675−694.
(31) Guo, X.; Zhang, F.; Evans, D. G.; Duan, X., Layered double
hydroxide films: synthesis, properties and applications. Chem.
Commun. 2010;46:5197−5210.
(32) He, S.; An, Z.; Wei, M.; Evans, D. G.; Duan, X., Layered double
hydroxide-based catalysts: nanostructure design and catalytic
performance. Chem.Commun. 2013;44:5912−5920.
(33) Zi, G.; Atherton, J. J.; Zhi, P. X., Hierarchical layered double
hydroxide nanocomposites: structure, synthesis and applications.Chem. Comm. 2015;51:3024−3036.
(34) Wang, Q.; O’Hare, D., Recent advances in the synthesis and
application of layered double hydroxide (LDH) nanosheets. Chem.
Rev. 2012;112:4124−4155.
(35) Dong, S.; Jia, Y.; Xu, X.; Luo, J.;
Han, J., Crystallization and
properties of poly(ethylene terephthalate)/layered double hydroxide
nanocomposites. J. Colloid Interface Sci. 2018;539:54−64.
(36) Wang, J.; Pan, T.; Zhang, J.; Xu, X.; Yin, Q.; Han, J.; Wei, M.,
Hybrid films with excellent oxygen and water vapor barrier properties as
efficient anticorrosive coatings. RSC Adv. 2018;8:21651−21657.
(37) Wang, J.; Xu, X.; Zhang, J.; Chen, M.; Dong. S.; Han, J.; Wei, M.,
Moisture-permeable, humidity-enhanced gas barrier films based on
organic/inorganic multilayers. ACS Appl. Mater. Interfaces2018;33:28130−28138.
(38) Stockton, W. B.; Rubner, M. F., Molecular-level processing of
conjugated polymers.4.layer-by-layer manipulation of polyaniline via
hydrogen-bonding interactions. Macromolecules 1997;30:2717−2725.
(39) Yang, S. Y.; Rubner, M. F., Micropatterning of polymer thin films
with ph-sensitive and cross-linkable hydrogen-bonded polyelectrolyte
multilayers. J. Am. Chem. Soc. 2002;124:2100−2101.
(40) Cho, C.; Xiang, F.; Wallace, K. L.; Grunlan, J. C., Combined ionic
and hydrogen bonding in polymer multilayer thin film for high gas
barrier and stretchiness. Macromolecules 2015;48:5723−5729.
(41) Ji, N. M.; Jun, O. M.; Ho, C. J.; Yu, J. C.; Woo-Jae, K.; Juhyun,
P.; Chang, Y. W.; Yoo, P. J., Layer-by-layer assembled multilayers of
charged polyurethane and graphene oxide platelets for flexible and
stretchable gas barrier films. Soft Matter. 2018;35:960−964.