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Abstract 11 

There is growing interest in the role of structural variants (SVs) as drivers of local 12 

adaptation and speciation. From a conservation genomics perspective, the 13 

characterisation of SVs in threatened species provides an exciting opportunity to 14 

complement existing approaches that use single nucleotide polymorphisms (SNPs) to 15 

detect adaptive variation, identify conservation units, guide pairing decisions and inform 16 

conservation translocations. However, little is known about whole-genome SV frequency 17 

and size distributions, especially for small populations. To explore the impacts that SV 18 

discovery and genotyping strategies may have on characterisation of SV diversity in non-19 

model organisms, we explore a near whole-species resequence dataset, and long-read 20 

sequence data for a subset of highly represented individuals in the critically endangered 21 

kākāpō (Strigops habroptilus). We demonstrate that even when using a highly contiguous 22 

reference genome, different discovery and genotyping strategies can significantly impact 23 

the type, size and location of SVs characterised, which indicates researchers should 24 

exercise caution when drawing conclusions at the individual-scale. Further, we find that 25 

genotyping SVs discovered with long-read data at the population-scale with short-read 26 

data remains challenging. Despite this, we found that all six strategies used to 27 

characterise SVs in kākāpō reflected similar trends at the population-scale including the 28 
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identification of population structure. We are optimistic that increased accessibility to 29 

long-read sequencing and advancements in bioinformatic approaches (e.g., multi-30 

reference approaches like genome graphs) will alleviate challenges associated with 31 

resolving SV characteristics below the species level and facilitate the characterisation of 32 

population- and individual-level SVs in threatened species around the globe.  33 

Keywords: structural variation, conservation genomics, population genomics, small 34 

population paradigm, Illumina, Oxford Nanopore Technologies 35 

Introduction 36 

The increased accessibility of whole-genome sequencing (WGS) technology has 37 

revolutionised population genetic/genomic studies in non-model organisms, and 38 

continues to provide valuable insights into the mechanisms underpinning genome 39 

divergence during speciation as well as the interplay between mutation, genetic drift, 40 

selection, and gene flow in the context of population demography (Cruickshank and 41 

Hahn 2014; Campbell et al. 2018; Lado et al. 2020; Chueca et al. 2021; Mathur and 42 

DeWoody 2021; Formenti et al. 2022). To date, the vast majority of these studies use 43 

single nucleotide polymorphisms (SNPs) to investigate these processes, yet there is a 44 

growing interest in the evolutionary and adaptive significance of structural variants (SVs), 45 

which are genomic rearrangements that include deletions, duplications, insertions, 46 

translocations, and inversions (Wellenreuther and Bernatchez 2018; Mérot et al. 2020). 47 

SVs have been shown to influence the evolutionary trajectory of populations by 48 

determining traits associated with reproductive strategies (Huynh et al. 2011; Küpper et 49 

al. 2016), local adaptation and adaptive potential (Dorant et al. 2020; Huang et al. 2020; 50 

Cayuela et al. 2021; Kess et al. 2021; Tigano et al. 2021; Berdan et al. 2021). There is also 51 

growing evidence that SVs may lead to speciation (Davey et al. 2016; Todesco et al. 2020; 52 

Funk et al. 2021).  53 

Previous studies exploring SV diversity in natural populations have generally combined 54 

multiple sequencing technologies (e.g., short- and long-read sequencing, optical 55 
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mapping) and large sample sizes (reviewed in Wold et al. 2021). Further, many studies to 56 

date have aimed to identify SVs in close association with specific traits of interest and 57 

subsequently validate them with more traditional approaches (e.g., vonHoldt et al., 58 

2017). There is ample opportunity to develop ‘good’ practice to reliably investigate 59 

population-level differences in SV frequency, location or size distributions in non-model 60 

species. However, agricultural and human genomics studies have identified caveats to 61 

consider before using short-read sequence data to call SVs. For example, we expect to 62 

observe a high false-positive rate and biases in the type and size range of SVs detected 63 

(English et al. 2015; Cameron et al. 2019; Mahmoud et al. 2019; Ho et al. 2020). This is in 64 

part because SV discovery tools commonly use discordant reads (i.e., those that are 65 

improperly aligned and/or depart from expected and observed insert lengths) and read 66 

depth to identify putative variants (Alkan et al. 2011; Rausch et al. 2012; Layer et al. 2014; 67 

Chen et al. 2016; Cameron et al. 2017). Although discordant reads do occur as a result of 68 

‘true’ SVs, they may also arise as the result of mapping/sequencing error or reference 69 

error (Hurgobin and Edwards 2017; Bayer et al. 2020).  70 

Distinguishing between the underlying sources of discordant read mapping generally 71 

requires independent data, such as extensive long-read sequencing, PCR amplification 72 

and Sanger sequencing, or Optical mapping (Ho et al. 2020). Such resource intensive 73 

approaches may not be feasible for many non-model species, especially those of 74 

conservation concern. Given that long-read sequences have been shown to outperform 75 

short-read data for SV discovery (Alkan et al. 2011; Mahmoud et al. 2019; Chaisson et al. 76 

2019; Mérot et al. 2022), researchers may choose to use a strategic approach that 77 

combines long-read sequencing for SV discovery and short-read sequencing for 78 

population-scale genotyping (e.g., Huddleston et al. 2017; Chander et al. 2019; Jun et al. 79 

2021). Guidelines around the application of genotyping SVs with short-read data in non-80 

model species remain somewhat unclear (e.g., target sequence depth, ideal read insert 81 

size distribution, considerations for polyploids). This is in large part due to the lack of 82 
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datasets–excluding human genomic datasets–suitable for benchmarking SV discovery 83 

and genotyping strategies (e.g., Cameron et al. 2019; Kosugi et al. 2019).  84 

The critically endangered kākāpō is a nocturnal ground parrot endemic to Aotearoa New 85 

Zealand. Once widely distributed throughout the North and South Islands of Aotearoa, 86 

kākāpō populations rapidly declined as a result of anthropogenic disturbances and 87 

introduced mammalian predators (Williams 1956; Lloyd and Powlesland 1994; Veltman 88 

1996). Populations continued to decline across the mainland and are believed to have 89 

gone extinct on the North Island in the 1930’s. The last known South Island population 90 

was lost in the 1980’s (Lloyd and Powlesland 1994). A relict population was discovered 91 

on Rakiura (Stewart Island) in 1977 and a translocation of a small handful of kākāpō 92 

found in Fiordland National Park on the West Coast of the South Island was attempted 93 

(Best and Powlesland 1985; Lloyd and Powlesland 1994). However, only one individual 94 

from Fiordland successfully bred with individuals from Rakiura. After intensive 95 

conservation management interventions, the kākāpō population has grown from a 96 

record low of 51 individuals in 1995 to ~200 individuals as of the 2021/2022 breeding 97 

season (Kākāpō Recovery Group 2017; Kākāpō Recovery Group personal 98 

communications). In fact, of the ~200 birds discovered on Rakiura and in Fiordland 99 

National Park, the extant kākāpō population can be traced back to only 35 founding 100 

individuals (Kākāpō Recovery Team personal communications). In an effort to mitigate the 101 

effects of small population size and inbreeding in kākāpō, island translocations are 102 

partially informed by pedigree data and more recently, genomic estimates of 103 

relatedness as a result of the Kākāpō125+ consortium (Guhlin et al. 2022 preprint). 104 

Briefly, as described in Guhlin et al. (2022), to inform kākāpō conservation efforts, the 105 

Kākāpō125+ project was initiated in 2015 to sequence all 125 living kākāpō at the time. 106 

Between 2015 and 2018, whole-genome short-read sequence data for these 125 107 

individuals, and an additional 44 deceased adults and chicks, were generated for a total 108 

of 169 sequenced individuals. The Kākāpō125+ project has established a near-whole 109 

species high-quality variant dataset for a species of conservation concern and presents 110 
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an exciting opportunity to explore strategies for SV discovery and genotyping in a non-111 

model organism. Here, we combine these data with long-read sequence data for a 112 

subset of highly represented individuals, a highly contiguous reference genome (Rhie et 113 

al. 2021), and extensive life history data for all individuals, including verified pedigree 114 

relationships (Bergner et al. 2014; Galla et al. 2021) to compare four short-read and two 115 

long-read SV discovery and genotyping strategies to assess how each impacts inferences 116 

about SV frequency and size distributions in kākāpō. This study represents a critical first 117 

step towards our understanding the eco-evolutionary dynamics of SVs in small 118 

populations (Wold et al. 2021). 119 

Materials and Methods 120 

All details regarding read processing, variant discovery, genotyping and analyses may be 121 

found in the followingGitHub repository: 122 

https://github.com/janawold1/2022_MER_Submission.  123 

Read processing and alignment 124 

A highly contiguous reference genome, assembled by the Vertebrate Genome Project 125 

(VGP), is available for a single female kākāpō, ‘Jane’ (Rhie et al. 2021). As part of the 126 

Kākāpō125+ project, paired-end sequence libraries for 94 males and 75 females were 127 

sequenced to a target depth of 30x coverage on multiple Illumina platforms, including 128 

MiSeq2500, TruSeq Nano, and HiSeqX. Read lengths varied from 125 - 150bp. All 129 

preprocessing of raw sequence data was conducted by JG to maintain consistency 130 

across Kākāpō125+ subprojects. Briefly, reads were trimmed, adaptor content removed, 131 

and overlapped reads were collapsed into a single read using the default quality 132 

thresholds (minimum quality of 2) for fastp v0.20.0 (Chen et al. 2018) and 133 

AdapterRemoval v2.2.4 (Schubert et al. 2016). These processed reads were aligned to the 134 

reference genome and a machine learning program, DeepVariant (Poplin et al. 2018), 135 

employed to generate high quality SNPs for downstream analyses led by the 136 

Kākāpō125+ consortium (Guhlin et al. 2022 preprint). For short-read based SV discovery, 137 
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reads were aligned to the reference genome using Burrows-Wheeler Aligner v0.7.17 138 

(BWA; Li & Durbin, 2009).  139 

In addition to the near-whole species resequence data, ten individuals highly 140 

represented in the extant population (5 male, 5 female), were targeted for long-read 141 

sequencing on the Oxford Nanopore Technologies platform. All individuals were 142 

sequenced on a MinION using R9 flow cells using the PCR-free LSK-110 ligation 143 

sequencing kit. Basecalling was performed using Guppy v6.3.7 (Anon n.d.) using the 144 

‘super’ accuracy model (dna_r9.4.1_450bps_sup). Adapters were trimmed using 145 

Porechop v0.2.4 (Wick 2022), lambda DNA removed using NanoLyse v1.2.0 (De Coster et 146 

al. 2018) and reads were filtered for a minimum Q-score of 10 and read length of 3kb 147 

using NanoFilt v2.8.0 (De Coster et al. 2018). Both the raw and filtered long-read quality 148 

were visualised using NanoPlot v1.39.0 (De Coster et al. 2018). For long-read based SV 149 

discovery, reads were aligned to the reference genome using Winnowmap v2.03 (Jain et 150 

al. 2020). Read mapping quality was assessed for both short- and long-read alignments 151 

using Mosdepth v0.3.3 (Pedersen and Quinlan 2018) and qualimap v2.2.2 (García-Alcalde 152 

et al. 2012), with summaries of outputs from these tools visualised using MultiQC v1.13 153 

(Ewels et al. 2016). A minimum alignment depth of 4x was required for inclusion in long-154 

read-based SV discovery.  155 

The highly contiguous VGP reference genome assembly (Jane’s genome) represents a 156 

female kākāpō and thus includes both the Z and W sex chromosomes. This may be 157 

problematic for SV discovery as the W sex chromosome contains highly repetitive 158 

content homologous with content throughout the genome (Rhie et al. 2020). A 159 

preliminary analysis of SNPs indicated that this homology resulted in sufficient numbers 160 

of reads mapping to the W chromosome that erroneous heterozygous SNP calls were 161 

produced in both females and males (data not shown). Given that males are the 162 

homogametic sex (ZZ) and females are heterogametic (ZW), heterozygous SNP calls on 163 

the W for either sex indicate mis-mapping. To address these challenges, reads were 164 

realigned for all individuals excluding single-end reads and excluding the W 165 
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chromosome from male alignments. Alignment for females also excluded single-end 166 

reads, but included the W chromosome scaffold to ensure that reads belonging to the W 167 

did not interfere with SV discovery on other chromosomes. For joint analyses of the 168 

kākāpō population, the Z and W chromosomes and all unplaced scaffolds were excluded 169 

from downstream analyses due to low confidence in variant discovery for these 170 

scaffolds.  171 

Structural variant discovery and genotyping 172 

Short-read structural variant discovery was conducted with Delly v0.8.7 (Rausch et al. 173 

2012), Manta v1.6.0 (Chen et al. 2016) and the wrapper programme Smoove v0.2.8 174 

(Pedersen et al. 2020a), which implements Lumpy-sv v0.2.13 for SV discovery (Layer et al. 175 

2014), annotates variants with Duphold v0.2.1 (Pedersen and Quinlan 2019) and 176 

genotypes SVs with SVTyper v0.7.0 (Chiang et al. 2015). Long-read SV discovery was 177 

conducted using CuteSV v1.0.11 (Jiang et al. 2020) and Sniffles v2.0.7 (Sedlazeck et al. 178 

2018), and raw individual calls were refined for population genotyping using Jasmine 179 

v1.1.5 (Kirsche et al. 2021).  180 

Each SV discovery tool differs in approach. For the short-read based discovery 181 

approaches, both Delly and Smoove (i.e., Lumpy-sv) implement two algorithms (paired-182 

end and split-read), while Manta implements three (paired-end, split-read and assembly-183 

based). The short-read tools also differ in the suggested strategy for population-level SV 184 

discovery. Both Delly and Smoove iterate through individual samples and subsequently 185 

merge SV calls for individual genotyping, whereas Manta recommends conducting SV 186 

discovery with all available samples at once to increase power (Chen et al. 2016). 187 

However, due to the assembly-based algorithm, Manta is computationally resource-188 

heavy, and running >10 individuals at ~30x sequence coverage set can often exceed 125 189 

Gb RAM (as observed in the Kakāpō125+ data). In instances where computational 190 

resources are limited, samples may be run in batches or individually, although this is not 191 
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recommended due to the loss of power to resolve SVs and the challenges associated 192 

with merging variants called in different sample batches (Anon 2016b; Anon 2016a). 193 

To assess the impacts of using a batched vs. joint calling strategy for SV discovery, Manta 194 

was run in two ways: 1) a batched approach where samples were divided into 14 195 

batches (7 male batches and 7 female batches) with an average of 11 individuals per 196 

batch (Manta-Batch); and 2) a joint approach where all males were run together and all 197 

females were run together. For both datasets, male and female SV discovery was 198 

conducted separately due to the inclusion of the W chromosome in female alignments 199 

(Manta-Joint). In both cases, variants were merged into ‘batched’ and ‘joint’ datasets with 200 

BCFtools v1.12 (Danecek et al. 2021) with the merge -m all flag. 201 

Long-read SV discovery approaches must incorporate methods to account for the low 202 

accuracy associated with long-read sequence data (Sedlazeck et al. 2018; Jiang et al. 203 

2020). The two tools included here (CuteSV and Sniffles) also attempt to address two 204 

challenges associated with alignment-based SV discovery. For example, CuteSV uses 205 

multiple signature extraction methods to distinguish SVs from the background noise of 206 

long-read data, then implements clustering and refinement approaches to increase 207 

sensitivity and identify the signature of heterozygous SVs (Jiang et al. 2020). Sniffles 208 

similarly identifies the signature of different SV classes, but implements additional 209 

methods to resolve nested SVs (Sedlazeck et al. 2018). SV discovery for both tools is 210 

performed on an individual-basis. Jasmine, which implements a modified minimum 211 

spanning forest algorithm, was used to merge SVs detected in individual kākāpō in each 212 

call set in preparation for population-scale genotyping with the available short-read 213 

data.  214 

Regardless of discovery strategy, nominal genotype outputs from SV discovery tools are 215 

generally regarded as unreliable (Chander et al. 2019). To address this, both Delly and 216 

Smoove include genotyping programs (delly genotype, and SVTyper respectively), yet 217 

Manta, CuteSV and Sniffles do not. To genotype these call sets at the population-scale, 218 
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SVs were filtered (as described below) and genotyped using the aligned kākāpō125+ 219 

short-reads with the genotyping tool BayesTyper v1.5 (Sibbesen et al. 2018). BayesTyper 220 

uses alignments of k-mers to a variant graph and reference genome, then implements a 221 

probabilistic model of k-mer counts to genotype individuals. BayesTyper has the benefit 222 

of being able to genotype a wide range of genomic variants (e.g., SNPs, small INDELs and 223 

SVs), in fact the inclusion of SNP data is recommended as it aids in matching relevant k-224 

mers to sequence reads (Anon 2019). Each VCF output from Manta was processed with 225 

the program BayesTyperTools convertAllele to convert symbolic allele notations to REF 226 

and ALT sequences. This step was not necessary for the long-read based call sets as they 227 

already provided REF and ALT sequences. For both Manta call sets (batch and joint), 228 

CuteSV and Sniffles, a SNP call set generated with DeepVariant (Guhlin et al. 2022 229 

preprint) was used to aid SV genotyping. All VCFs were normalised, variants left-aligned 230 

and any multiallelic sites split with BCFtools norm prior to merging variants with 231 

BayesTyperTools combine. Finally, BayesTyper requires the generation of large 232 

intermediate files (>2Tb for this dataset) with the tool KMC (Kokot, Długosz, & Deorowicz, 233 

2017). As recommended, KMC v3.1.1 was run with k=55 and singleton k-mers included (-234 

ci1) and a k-mer bloom filter for each individual was generated with BayesTyperTools 235 

makeBloom. Since BayesTyper cannot genotype more than 30 individuals at once, 236 

samples were batched into 5 groups of 30 and 1 group of 19 individuals prior to 237 

identifying variant clusters with BayesTyper cluster and genotyping with BayesTyper 238 

genotype under default settings. 239 

Filtering Parameters 240 

Once SV discovery and genotyping were complete, filtering for each SV dataset was 241 

conducted in two stages for: 1) SV call quality; and 2) individual genotype quality. The 242 

outputs from SV call quality filters were used for comparisons of SV type frequency, size 243 

distributions and location (i.e., frequency per chromosome) between tools (described 244 

further in the Structural variant analyses analyses section below). For comparisons of 245 
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genotype consistency and variability among individual kakāpō, the outputs from 246 

genotype quality filters were used (see Structural variant analyses below).  247 

Upon completion of SV discovery, removal of SVs marked as low quality, and additional 248 

recommended filtering parameters specific to each tool, were implemented using 249 

BCFtools. A standardised filtering approach was not applied to outputs from all three 250 

short-read tools, since each program recommends different statistics to assess the 251 

quality of SVs and genotypes (Pedersen et al. 2020b; Anon 2022a; Anon 2022b). 252 

Structural variant filtering for all short-read tools excluded all breakends, and SVs ≥50kb 253 

in length as these likely represent unresolved complex variants, mapping error, and/or 254 

reference bias. Additional filtering for Delly excluded duplications and inversions 255 

<300bp, and deletions <50bp using the delly merge -m option. All remaining SVs that did 256 

not pass all variant call quality filters were removed with BCFtools (i.e., INFO/FILTER = 257 

“PASS”’). This excludes all SVs where paired-end support was <3 and a MAPQ score <20 258 

(Anon 2022a). Finally, genotype filtering for Delly SVs excluded all sites where <80% of 259 

variable genotypes passed all genotype filters with BCFtools (i.e., FMT/FT=”PASS”).  260 

For Smoove, the lumpy_filter program identifies and discards interchromosomal read 261 

pair mismatches >3, and those with alternative matches, unless the identified split 262 

matches the location of the mate pair. This inbuilt filtering programme also removes 263 

reads where the depth is greater than 1,000x, as well as any orphaned reads. Variants 264 

are then genotyped and ready for annotation with the Smoove annotate programme. 265 

Once these steps were complete, all breakends, deletions that did not have a depth fold-266 

change relative to flanking regions (FORMAT/DHFFC) < 0.7, and duplications that did not 267 

have a depth fold-change relative to bins in the genome with similar GC-content 268 

(INFO/DHBFC) > 1.3  were excluded using BCFtools (Pedersen 2022). For genotype 269 

filtering, an overall Mean Smoove Het Quality (INFO/MSHQ) ≥ 3  was implemented with 270 

BCFtools (Pedersen et al. 2020b). The Smoove Het Quality (INFO/SHQ) metric scores 271 

confidence in individual heterozygous genotypes where 1 is a low confidence call and 4 272 
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is highest, with MSHQ representing the mean score for all heterozygous genotypes 273 

(Pedersen et al. 2020b). 274 

Variants for both the Batch and Joint Manta outputs were filtered using BCFtools to 275 

exclude all variants <50bp in length, all breakend calls and all variants that did not pass 276 

all record-level filters (i.e. INFO/FILTER=PASS). Specifically, this excluded: all sites with a 277 

QUAL score <20; deletions and duplications not consistent with diploid expectations; SVs 278 

with breakpoint depths >3x the median chromosome depth; SVs <1kb in size where 279 

>40% of samples contained a MAPQ score of 0 around either breakend; all SVs that were 280 

significantly larger than the paired-read fragment size and did not have paired-read 281 

support for the alternate allele in any individual; and finally, SVs where no sample 282 

passed all sample-level filters.  283 

Filtering of the CuteSV and Sniffles call sets was relatively simple, with all imprecise sites 284 

excluded from both call sets. However, it is notable that while the CuteSV had sufficient 285 

read depth to filter for SV specificity (i.e., INFO/IS_SPECIFIC=1), Sniffles did not retain any 286 

SVs once this metric was implemented. As a result, the Sniffles call set was not filtered 287 

on SV specificity in this study.  288 

The SV call sets for both Manta datasets, CuteSV and Sniffles were genotyped using 289 

BayesTyper, which implements four ‘hard’ genotype filtering parameters by default. This 290 

includes the exclusion of variants with fixed heterozygous genotypes, alleles with <1 291 

sampled k-mer, genotypes with a posterior probability <0.99, and alleles with k-mer 292 

coverage that fall below 1-e-0.275x. Here, x represents the mean of the negative binomial 293 

distribution for k-mer coverage for a specific sample (Sibbesen, 2018 GitHub). All 294 

variants with >20% genotypes missing and variants where <80% of genotypes passed all 295 

four BayesTyper quality metrics were excluded. Although BayesTyper ships with a 296 

programme for converting allele sequences to symbolic alleles (bayesTyperTools 297 

convertSeqToAlleleID), we found It challenging to resolve the class of all genotyped 298 

variants with this approach (i.e., insertions are incompatible and additional SV classes 299 



 

 

12 

were changed or remained unresolved). To relate genotyping results back to the called 300 

SV class, BCFtools was used to identify the chromosomal positions of the genotyped 301 

variants and compared with the locations of SVs prior to file conversion with 302 

bayesTyperTools convertAllele.  303 

Structural variant analyses 304 

Structural variants were counted for each SV discovery tool prior to and after filtering. To 305 

explore the level of call consensus between these outputs, the number of overlapping 306 

SVs were identified using SURVIVOR v1.0.7 (Jeffares et al. 2017) in 1kb, 500bp, 50bp 307 

windows and for exact overlaps. To count as a consensus call, SV type and strand were 308 

required to match and a minimum variant length of 50bp were required. To assess 309 

whether some chromosomes carried more SVs relative to their size, we estimated the 310 

number of SVs per chromosome and the proportion of base-pairs of each chromosome 311 

within an SV (i.e., the sum of all SV lengths for a given chromosome / chromosome size). 312 

Following SV discovery across the six approaches, all individuals were genotyped using 313 

the aligned kākāpō125+ short-read dataset. The genotype filtered SV data for all six 314 

variant call sets were used for comparisons of individual variability, assessing shifts in 315 

the the number of SVs per generation, and to assess population structure of SVs. When 316 

reporting the number of SVs per individual and number of SVs among kākāpō cohorts, 317 

we use presence or absence of SVs per individual. That is, we consider genotypes as 318 

evidence of whether or not the individual carries the SV (0/1 & 1/1 = carrier; 0/0 = non-319 

carrier). Both Fiordland- and Rakiura-derived birds (herein, founders) were used for 320 

comparisons across three cohorts (n = 1, 3, 4 for Fiordland founders, F1 and F2 and n = 321 

40, 60, 10 for Rakiura founders, F1 and F2 respectively). Due to the lek mating system 322 

and a relatively long lifespan, the kākāpō population has had significant backcrossing 323 

through the generations. Therefore, the F1 and F2 generations represented here 324 

excluded all individuals with backcrossed lineages, as this may bias true generational 325 

patterns in SVs carried by individuals. Finally, to compare variability in the SVs carried by 326 
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individual kākāpō, genotypes from the genotype filtered SV data for all four strategies 327 

was used to conduct a discriminant analysis of principal components (DAPC) with the 328 

adegenet R package (Jombart 2008). Only individuals used for generational comparisons 329 

(n = 118) were used to assess individual variability and SV population structure. 330 

In the absence of a previously validated catalogue of SVs, neither a ‘true’ nor ‘false’ 331 

positive rate of detection could be assessed. Despite not being able to estimate the 332 

precision and accuracy of SVs called in our data, we aimed to test the consistency of 333 

genotyping results using Mendelian Inheritance tests with parent-offspring trios. 334 

Although this does not eliminate the possibility of systematic error, nor does it provide 335 

an indication of the precision or accuracy of SV detection, departures from Mendelian 336 

Inheritance may indicate inconsistency of genotyping within a given SV call. Genotyping 337 

consistency is an important consideration for population studies as patterns of 338 

population structure or inferences about local adaptation may be impacted by 339 

inconsistencies. 340 

To identify SVs that violate Mendelian Inheritance patterns, the BCFtools +mendelian 341 

plugin was used. Pedigree data provided by the New Zealand Department of 342 

Conservation identified 120 parent-offspring trios consisting of 158 unique individuals in 343 

the Kākāpō125+ sequence data. We tested SV genotypes by calculating the proportion of 344 

Mendelian Inheritance errors relative to the number of non-missing genotypes (i.e., GT 345 

!= “mis”). Four thresholds were tested where adherence to Mendelian Inheritance 346 

expectations were either 100%, ≥95%, ≥90% and ≥80% of genotypes passed. It is 347 

important to note that not all 169 sequenced individuals were represented in pedigree 348 

trios, as they may not have descendants or antecedents represented in the short-read 349 

data analysed here. In addition, some individuals are represented multiple times in 350 

different family groups. This bias towards highly represented individuals in the kākāpō 351 

breeding population may not adequately capture all SVs called within the population. As 352 

such, we did not filter SVs using Mendelian Inheritance errors for downstream analysis. 353 
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Rather, these tests may provide some insights into the relative performance of 354 

genotyping approaches among the pipelines used here.  355 

Results 356 

The mean individual mapping depth of short-reads for autosomal chromosomes was 357 

~18x, and ranged from ~9x to ~38x. Of the 10 individuals sequenced using long-reads, 7 358 

met the minimum depth threshold of 4x coverage for long-read SV discovery. The mean 359 

individual mapping depth of long-reads for autosomal chromosomes was ~10x, and 360 

ranged from ~4x to ~16x. There was considerable variability in the number of SVs 361 

initially detected by each of the six approaches (herein datasets), with the most being 362 

the Manta-Batch and fewest being the CuteSV dataset (Table 1). In addition, Inversions 363 

were the most common SV type detected in short-read discovery tools, while Deletions 364 

were more common in long-read SV discovery tools. This pattern was consistent across 365 

call quality and genotype filtering thresholds (Table 1). The proportion of SVs passing call 366 

quality thresholds also varied, with Delly retaining the lowest proportion of SVs (~4%). 367 

Both the Manta-Batch and -Joint call quality filters retained roughly 26% of variants, 368 

whereas 27% of CuteSV and 32% of Sniffles variants were retained. The Smoove call set 369 

retained the highest proportion of SVs with ~68% passing call quality thresholds (Table 370 

1). Although the size distribution for each filtered SV type varied somewhat between 371 

each of the SV discovery tools. It is notable that although a minimum size threshold of 372 

50bp was implemented in Delly, all reported insertions were under this threshold (Table 373 

2). 374 

  375 
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 376 

Table 1. Counts of structural variants (SVs) by type for unfiltered variants, those retained after SV quality 

filters and after genotype quality filters specific to each of the structural variant discovery tools Delly, 

Manta and Smoove. 

  Unfiltered Call Quality Filters Genotype Filters 

Delly 

Breakends 9,672 0 0 

Deletions 5,167 696 57 

Duplications 2,099 73 12 

Insertions 473 441 228 

Inversions 35,397 753 437 

Total 52,808 1,963 734 

Manta - Batch1 

Breakends 71,872 0 0 

Deletions 4,236 1,614 515 

Duplications 1,907 510 70 

Insertions 1,803 749 177 

Inversions 60,434 32,959 342 

Total 140,252 35,832 1,104 

Manta - Joint2 

Breakends 63,740 0 0 

Deletions 2,915 1,194 495 

Duplications 1,246 294 73 

Insertions 1,538 221 74 

Inversions 58,393 30,363 301 

Total 127,832 32,072 943 

Smoove 

Breakends 4,635 0 0 

Deletions 1,899 1,505 1,023 

Duplications 973 435 183 

Insertions N/A N/A N/A 

Inversions 10,068 10,037 2,825 

Total 17,575 11,977 4,031 
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CuteSV 

Breakends 1,048 0 0 

Deletions 3,864 1,209 72 

Duplications 254 138 0 

Insertions 2,972 879 6 

Inversions 18 12 0 

Total 8,156 2,238 78 

Sniffles 

Breakends 5,068 0 0 

Deletions 2,624 2,734 87 

Duplications 99 61 0 

Insertions 3,893 2,339 39 

Inversions 253 95 0 

Total 11,937 5,229 126 

1Samples divided into 14 batches (7 male batches and 7 female batches) for SV discovery 

2Samples divided into a male specific and female specific batch for SV discovery 

 377 

Table 2. Summary of structural variant size characteristics for Delly, Manta and Smoove data sets filtered 

for SV call quality. 

Data 

Structural 

Variant Type Count Size Range (bp) 

Median Size 

(bp) Mean Size (bp) 

Delly 

Deletions 696 49 - 26,273 922 2,181 

Duplications 73 355 - 34,273 3,592 6,476 

Insertions 441 22 - 46 29 30 

Inversions 753 300 - 48,626 369 1,088 

Manta - Batch 

Deletions 1,614 50 - 47,230 623 3,216 

Duplications 510 52 - 40,508 1,976 5,919 

Insertions 749 51 - 1,704 575 461 

Inversions 32,959 51 - 49,035 202 458 

Manta - Joint 

Deletions 1,194 50 - 47,230 329 1,773 

Duplications 294 52 - 44,414 307 4,588 

Insertions 221 56 - 888 315 341 

Inversions 30,363 51 - 49,035 192 383 
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Smoove 

Deletions 1,505 53 - 47,780 696 3,123 

Duplications 435 148 - 47,433 4,108 8,873 

Insertions N/A N/A N/A N/A 

Inversions 10,037 76 - 45,629 686 1,039 

CuteSV 

Deletions 1,209 39 - 47,874 170 847 

Duplications 150 198 - 97,051 9,420 12,380 

Insertions 879 36 - 32,549 151 578 

Inversions 12 258 - 31,628 1,350 6,190 

Sniffles 

Deletions 2,734 49 - 47,873 135 690 

Duplications 61 211 - 87,106 9,118 14,928 

Insertions 2,339 45 - 24,610 130 526 

Inversions 96 50 - 67,769 208 6,452 

Consensus between the six call quality filtered datasets was relatively low, except when 378 

considering the two Manta datasets (~76%, n = 29,219 SVs). The next two tools with the 379 

highest proportion of agreement were the two long-read based call sets for CuteSV and 380 

Sniffles (~17 - 49% agreement, n = 1,099 SVs). The overall agreement between datasets 381 

tends to decrease as more tools are included in comparisons, leaving only 94 SVs (90 382 

deletions, 4 duplications) overlapping in all six datasets (Figure 1). These SVs, ranging in 383 

size from 314bp to more than 20kb, were challenging to consistently genotype. Few 384 

passed genotype thresholds in each dataset, this included twelve deletions and two 385 

duplications in both Manta datasets, five deletions in the Smoove dataset and one 386 

deletion in the CuteSV dataset. It is challenging to glean a pattern in the overall 387 

agreement between datasets given the variability in the number of SVs passing call 388 

quality thresholds. For example, Sniffles tended to have a higher degree of overlap with 389 

short-read based call sets than CuteSV. However, the filtered Sniffles call set was more 390 

than twice the size of the filtered CuteSV call set.  391 
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Figure 1. Counts of consensus calls between SV type and strand within a 50 bp window for the top five 

comparisons and the number of overlapping calls in all of the six datasets (i.e., Delly, Manta - Batch, Manta - 

Joint, Smoove, CuteSV and Sniffles) for kākāpō. The colored barchart on the upper left represents the 

number of SVs passing call-quality thresholds in each of the six datasets. Dark green circles with lines 

between denote which datasets have consensus SV calls. Bars to the right represent the number of SVs 

overlapping between these datasets. See Supplementary Figure 1 for a full comparison of all consensus 

calls and Supplementary Table 1 for a summary of the number and type of overlapping SVs.  

The number of SVs found on each autosomal scaffold correlated with chromosome size 392 

in all six datasets (Figure 2a). This pattern was consistent when considering the 393 

proportion of chromosome base pairs impacted by SVs. However, there appeared to be 394 

variability in the type of SV impacting these chromosomes with inversions tending to 395 

impact the largest proportion of base pairs in the short-read datasets. In contrast, 396 

duplications tended to affect the largest proportion of the smaller chromosomes in the 397 

long-read datasets. Further, there was some variability in which of the smaller 398 

chromosomes were most impacted (Figure 2b). 399 
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Figure 2. Structural variant (SV) counts per chromosome as called in the short-read SV discovery tools 

Delly, Manta-Batch, Manta-Joint and Smoove, as well as the long-read SV discovery tools CuteSV and 

Sniffles. For each, call sets were filtered for SV quality and the number of SVs per chromosome (A), and 

the proportion of chromosome base-pairs impacted by structural variants (B) were estimated. 

Chromosomes are ordered left to right by size, excluding the Z and W sex chromosomes. The largest 

chromosome, chromosome 1, consistently carried the highest number of SVs detected in all six datasets. 

However, the smallest chromosomes consistently had the highest proportion of base pairs impacted by 

SVs (i.e., sum of all SV lengths / chromosome size) in all six datasets.  

 400 
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The results reported thus far have focused on the SVs retained after overall ‘call quality 401 

filtering’, or those SVs that passed quality thresholds irrespective of individual genotype 402 

quality. Figure 3 summarises the results of SVs that passed both call quality thresholds 403 

and genotype quality thresholds.  404 

 

Figure 3. Overview of structural variant (SV) discovery and genotyping strategies in the Delly, Manta-Batch, 

Manta-Joint and Smoove call sets for kākāpō. Delly and Smoove each have their own in-built genotyping 

programs, while Manta, CuteSV and Sniffles do not. Variants called by Manta, CuteSV and Sniffles were 

genotyped using the BayesTyper genotyping software package. Data were analysed in two steps: 1) An 

initial filtering threshold(s) for call quality used for comparisons of SV type, size distributions and overlaps 

(in gold); and 2) genotype quality threshold(s) used to explore variability in number of SVs carried by 

individuals and genotype consistency among tools (in green). The proportion of SVs passing Mendelian 

Inheritance were estimated across a range of thresholds (Table 3). 

Overall, the relative proportion of SV classes that pass genotype filtering thresholds 405 

followed a similar pattern to those that passed SV call quality thresholds with the most 406 

SVs being retained on the largest chromosomes. While the size distribution of SVs was 407 

somewhat similar to those filtered for call quality (Supplementary Figure 2 and 408 

Supplementary Table 2), the proportion of individual chromosomes impacted was no 409 

longer consistent among tools and did not follow a clear pattern (Supplementary Figure 410 
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3). Of the genotyped filtered datasets tested for Mendelian Inheritance, Sniffles had the 411 

highest proportion of genotypes pass all parent-offspring trios tested for Mendelian 412 

Inheritance while the Delly dataset had the lowest proportion of SV pass at this 413 

threshold (Table 3). As the stringency of the Mendelian Inheritance tests were relaxed, 414 

the proportion of passing SVs increased for all datasets (Table 3). 415 

Table 3. Number of SVs by type adhering to Mendelian Inheritance expectations in 100%, 95%, 90% and 

80% of trios tested. Conversion of BayesTyper genotypes from long sequence format to symbolic alleles 

could only resolve a subset of all genotypes reported. As such, the exact proportion of these SVs 

exhibiting Mendelian Inheritance patterns could not be reported. Smoove does not call or genotype 

insertions. 

 Deletions Duplications Insertions Inversions Total 

Delly Genotype Filtered Counts 57 12 228 437 734 

100% trios pass 16 2 15 1 34 

≥95% trios pass 48 6 25 420 499 

≥90% trios pass 54 8 27 436 525 

≥80% trios pass 56 10 28 437 531 

Manta / BayesTyper - Batch 

Genotype Filtered Counts 

515 70 177 342 1104 

100% trios pass 320 30 122 190 662 

≥95% trios pass 513 50 177 335 1075 

≥90% trios pass 515 56 177 341 1089 

≥80% trios pass 515 62 177 342 1096 

Manta / BayesTyper - Joint 

Genotype Filtered Counts 

495 73 74 301 943 

100% trios pass 311 33 64 159 567 

≥95% trios pass 490 54 74 289 907 

≥90% trios pass 494 57 74 300 925 

≥80% trios pass 495 63 74 301 933 

Smoove Genotype Filtered 

Counts 

1023 183 N/A 2825 4031 

100% trios pass 347 44 N/A 56 447 

≥95% trios pass 772 90 N/A 2556 3418 

≥90% trios pass 894 115 N/A 2700 3709 

≥80% trios pass 965 148 N/A 2800 3913 

CuteSV / BayesTyper - Genotype 

Filtered Counts 

72 0 6 0 78 

100% trios pass 36 0 3 0 39 
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≥95% trios pass 71 0 6 0 77 

≥90% trios pass 72 0 6 0 78 

≥80% trios pass 72 0 6 0 78 

Sniffles / BayesTyper - Genotype 

Filtered Counts 

87 0 39 0 126 

100% trios pass 57 0 25 0 82 

≥95% trios pass 87 0 39 0 126 

≥90% trios pass 87 0 39 0 126 

≥80% trios pass 87 0 39 0 126 

 416 

In general, the individual kākāpō that carried the highest number of SVs in one dataset 417 

also appeared to carry a relatively high number of SVs in other datasets (Figure 4). 418 

Depending on the dataset, there appeared to be either high variability in the number of 419 

SVs per individual (Delly & Smoove), or relatively little variability (both Manta datasets, 420 

CuteSV and Sniffles). Another interesting note is variability in SV type underlying these 421 

individual differences. For example, inversions are the dominant SV type among 422 

individuals carrying the most SVs in the Delly datasets, whereas deletions dominate in 423 

both Manta datasets, CuteSV and Sniffles. For the Smoove data, inversions are the most 424 

common SV type in individuals carrying the most SVs, despite deletions being more 425 

consistently observed across the population. 426 

 427 
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Figure 4. Relative counts of putative SV types carried by individual kākāpō. Individual kākāpō along the x-

axis are in the same order in all four plots. There is some agreement among the four data types as to 

individual kākāpō  carrying the highest number of SVs. For example, the individual carrying the highest 

number of SVs in the Delly dataset (A), is the same individual carrying the second highest number of SVs 

in the Smoove dataset (D). Upon closer inspection we found that the 3 individuals that consistently carried 

the most SVs in the Delly and Smoove datasets were not read mapping outliers (22.8x, 23.12x and 26.5x). 

When evaluating generational trends in the number of SVs observed, there appears to 428 

be some agreement between the six datasets (Figure 5). Kākāpō that are descended 429 

from the individual successfully recovered from Fiordland tend to carry more SVs overall 430 

than birds with only Rakiura lineages. However, the number of SVs carried by Fiordland 431 

lineage kākāpō appears to decrease with each subsequent generation in both Manta 432 

datasets and Sniffles, while the number of SVs carried by Rakiura generations remains 433 

relatively stable.  434 
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Figure 5. Distribution of SV counts per individual across kākāpō generations. Of the 41 founding 

individuals, only one originates from the mainland of New Zealand (Fiordland founder; Richard Henry). The 

sole representative of the Fiordland population had three offspring (Fiordland F1 Generation), one of 

which had four offspring (Fiordland F2 Generation). In contrast, the 40 founding individuals discovered on 

Rakiura have had a cumulative 60 offspring (Rakiura F1 Generation), who have in turn had 10 offspring 

(Rakiura F2 Generation) represented in this figure. First (F1) and second (F2) generation individuals exclude 

any backcrossed individuals. 

Finally, the results of each discriminant analysis of principal components (DAPC) 435 

indicated that PC1 was driven by high variability among a few individuals for all six 436 

datasets. This variability largely reflected individuals of Fiordland lineage becoming more 437 

similar to Rakiura lineages with each successive generation. This pattern was consistent 438 

in both the CuteSV and Sniffles datasets, despite many fewer SVs passing genotype 439 

filtering thresholds (Table 1; Figure 6).  440 
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Figure 6. Genotypes from the genotype filtered data for Delly, Manta-Batch, Manta-Joint, Smoove, CuteSV 

and Sniffles datasets were used to construct a discriminant analysis of principal components (DAPC). 

Fiordland lineage birds form separate cluster(s) in each DAPC, but become more similar to Rakiura lineage 

birds with each successive generation. 

Discussion 441 

We explored six strategies for SV discovery and genotyping with short- and long-read 442 

data in the critically endangered kākāpō. We found that the choice of SV discovery tool 443 

heavily impacted the overall count, location, and size distribution of SV types 444 

characterised. Further, the proportion of SVs retained after filtering for SV call quality 445 

and genotype quality varied across all six datasets. Finally, after leveraging a 446 

meticulously curated pedigree, we also found that each genotyping tool had variable 447 
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success in consistently genotyping high quality SVs. As a result, the number and type of 448 

SVs carried by individual kakāpō also differed. Nevertheless, there was some agreement 449 

between datasets as to which individuals carried a relatively high number of SVs. The 450 

general consensus among datasets was also reflected in the consistency of the number 451 

of SVs carried by each generation. Our combined results indicate that whereas 452 

inferences about population-scale trends are appropriate for kākāpō, direct 453 

comparisons between individuals birds are best avoided. 454 

Implications of SV discovery strategies 455 

The six SV discovery tools used here vary in the overall number of SVs detected, SV type, 456 

and their location. This variability may indicate that all six tools are sensitive to different 457 

mapping characteristics within the kākāpō short-read data, and suggests some 458 

complementarity between tools. Further, the lack of complete overlap in the location of 459 

SVs between the Manta datasets is interesting given the overall similarity in the number 460 

of SVs per chromosome and the overall counts of each SV type. The strategies used to 461 

call SVs with Manta differ only in the way that individuals were grouped during the initial 462 

SV discovery (i.e., samples divided into 14 batches, versus all males analysed jointly 463 

together and all females analysed jointly). Given that Manta incorporates local assembly 464 

of reads when detecting SVs, it is possible that different read sets have therefore led to 465 

differences in both the power and precision to accurately locate SVs in these analyses. 466 

Randomisation of sample batches would have aided in resolving this, however this was 467 

not possible due to computational resource limitation. Given the lack of consensus on 468 

the total number, location, or size of SVs called between methods, caution should be 469 

exercised when drawing conclusions about the specific characteristics of SVs identified 470 

here (e.g., size, relative frequency, proximity to genes/gene regions). Further work is 471 

needed to resolve the relative precision of each tool to identify population trends and 472 

the potential impacts of merging outputs from multiple tools.  473 
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All four short-read call quality filtered datasets had a very high prevalence of inversions. 474 

Both the individual-based strategy implemented by Delly and Smoove, as well as the 475 

multi-sample approach implemented by Manta, likely over-represented the number of 476 

inversions relative to other SV types. This is not surprising given the challenges 477 

associated with resolving inversion breakpoints, even after the merging of a consensus 478 

call set (Mahmoud et al. 2019; Ho et al. 2020). In addition, no clear filtering approach for 479 

consistently resolving well-supported inversion breakpoints emerged for the tools used 480 

here. It is notable that very few inversions are retained after genotype filtering, 481 

suggesting that this SV type may be particularly challenging to genotype using short read 482 

data. In some cases, this may be due to an inability to differentiate between one large 483 

inversion and overlapping inversion haplotypes when using short-read data (e.g., Kim et 484 

al. 2017; Knief et al. 2017; Hallast et al. 2021). 485 

Overall, long-read based discovery strategies retained a relatively higher number of 486 

insertions than short-read discovery tools. This is not surprising given the known 487 

limitations of short-read data when characterising insertions (Delage et al. 2020). 488 

Another interesting observation from this study was the lack of duplications and 489 

inversions that passed genotyping quality thresholds in both long-read based callsets, 490 

despite overlaps between short- and long-read based discovery tools. On one hand, the 491 

long-read data may better characterise insertions and duplications, while genotyping 492 

these variants with short-read data may be somewhat problematic due to the low 493 

precision around variant breakpoints as a result of small long-read sample size and/or 494 

sequencing depth. Despite the small sample size used for long-read SV discovery, these 495 

approaches appear useful for assessing SV diversity of small populations.  496 

When considering relative levels of individual SV diversity, there is some concordance 497 

between Delly and Smoove when identifying individuals with the highest number of SVs. 498 

However, it is notable that the SV type largely driving this pattern are inversions, which 499 

occur at a much lower frequency in the long-read datasets overall. This is surprising 500 

given that the long-read data should better resolve more complex variants like 501 
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duplications, insertions and inversions (Alkan et al. 2011; Mahmoud et al. 2019; Chaisson 502 

et al. 2019; Mérot et al. 2022). Further work is needed to determine whether the small 503 

sample size and relatively low sequence depth for the long-read data impeded discovery 504 

of inversions, or whether these calls are largely false-positives in the short-read based 505 

datasets. However, the three kākāpō (two male, one female) that consistently had the 506 

most SVs in the Delly and Smoove datasets did not have obvious read-depth, or insert-507 

length differences and were not outliers in the DAPCs presented here as they each 508 

clustered with their respective cohorts (Fiordland F2, Rakiura F1).  509 

Addressing the challenges associated with quantifying and characterising individual SV 510 

diversity is important for kākāpō conservation. For example,we are able to infer 511 

population structure between the only founding individual successfully recovered from 512 

Fiordland, and his descendents, from Rakiura lineage birds. This is notable as it is 513 

consistent with SNP-based analyses (Guhlin et al. 2022 preprint). While this individual 514 

carries a higher number of SVs on average than birds solely from Rakiura lineages, our 515 

ability to detect and genotype SVs for this lineage may partly be accounted for by the 516 

fact that the kākāpō reference genome was assembled using a bird with pure Rakiura 517 

lineage. The high number of SVs detected in the Fiordland founder may be attributable 518 

to the comparison of groups of more- and less- related birds against a single reference. 519 

Given that the Fiordland founder is the only individual without direct relation to the 520 

Rakiura lineage, it is likely that he carries more genetic differences in comparison to the 521 

reference genome, and these differences are likely to be inherited by his descendents. A 522 

key question for ongoing conservation efforts is whether there are a number of SVs 523 

unique to the Fiordland lineage that have been lost in subsequent generations. 524 

Conservation implications 525 

One significant challenge for studying SVs in many species of conservation concern is 526 

the lack of resources available to generate independent data for SV validation (e.g., PCR 527 

amplification and Sanger sequencing, Optical Mapping). Without the ability to estimate a 528 
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false-discovery rate, or verify the accuracy of specific tools, it is challenging to interpret 529 

these results or draw conclusions about the frequency and/or size of SVs in non-model 530 

species. However, we have been able to leverage the extensive pedigree data for kākāpō 531 

to assess the proportion of SVs adhering to Mendelian inheritance. Although 532 

concordance across all (100%) trios was low for some tools, it is promising to note that 533 

call and genotype-filtered SVs had between 72-100% concordance in at least 80% of 534 

trios. Where pedigree data is available, as will be the case for many intensively-managed 535 

threatened species, this additional filtering step is likely to enrich a SV set for true 536 

positives.  537 

It remains difficult to draw reliable conclusions about the SVs characterised in any of the 538 

six datasets described here, but there is preliminary evidence that the overall number of 539 

SVs may be relatively stable from one generation to the next within the Rakiura 540 

individuals. This is exciting as the generations captured in this study cover the duration 541 

that the extant kākāpō population has been under active management. To date, 542 

conservation practitioners actively use pedigree and genetic/genomic data to inform 543 

translocations to off-shore islands, increase offspring contributions from relatively 544 

underrepresented lineages, and prioritise nests that are from relatively unrelated 545 

pairings (Cresswell 1996). As a result, the maintenance of genetic diversity in terms of 546 

overall SV counts per individual may be reflecting these efforts (Guhlin et al. 2022 547 

preprint). Promisingly, these preliminary results suggest that SVs may provide a sensitive 548 

metric for monitoring the impacts of conservation actions on genome-wide diversity in 549 

species of conservation concern.  550 

Future Directions 551 

The factors driving reduced costs associated with generating short-read WGS data are 552 

also increasing the accessibility of long-read sequence data. Further, with advancements 553 

in bioinformatic approaches, such as pangenomes and genome graphs, many of the 554 

challenges associated with SV discovery with short-read data may be alleviated 555 
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(Hurgobin and Edwards 2017; Bayer et al. 2020; Ebler et al. 2020; Eizenga et al. 2020). For 556 

SV studies in species of conservation concern, it may be more economical to target a 557 

subset of highly represented individuals for long-read sequencing and the construction 558 

of genome graphs for SV discovery. Similar approaches are underway to better inform 559 

breeding and selection in agriculturally significant species such as cattle, soybean and 560 

tomato (Alonge et al. 2020; Cappetta et al. 2020; Liu et al. 2020; Talenti et al. 2022). 561 

Population-scale and individual-scale genotyping may then be possible with short-read 562 

data and assessments of population diversity may include both SNPs and SVs to better 563 

inform conservation management. In parallel with the increased application of these 564 

sequencing and bioinformatic approaches, we anticipate the inclusion of metrics 565 

tailored to SVs and their characteristics (e.g., size, type, location, genotype) into 566 

estimates of genome diversity across threatened individuals and populations, and any 567 

associated fitness consequences will be an area of active research with broad 568 

applicability to the conservation genomics space.  569 

Data accessibility and benefit sharing 570 

This research was undertaken as part of the Kākāpō125+ Project that includes research 571 

partnerships between the University of Canterbury’s Conservation, Systematics and 572 

Evolutionary Research Team (ConSERT, including JRW,TES), Genomics Aotearoa 573 

(including AWS, JGG, PKD, TES), New Zealand Department of Conservation (DOC) and Te 574 

Rūnanga o Ngāi Tahu (TRONT). The goal of the Kākāpō125+ Project is to facilitate the 575 

development and implementation of conservation management strategies to enhance 576 

the recovery of this critically endangered taonga, or treasured, species. Approval to 577 

access the Kākāpō125+ short-read data used in this study was granted to TES and her 578 

research team by DOC and TRONT. The Kākāpō125+ Project short-read data is stored in 579 

the Aotearoa Genomic Data Repository (AGDR): https://data.agdr.org.nz/ and is is 580 

subject to the Kākāpō125+ Genomics Data Sharing Terms and Conditions described 581 

here: https://www.doc.govt.nz/our-work/kakapo-recovery/what-we-do/research-for-the-582 

future/kakapo125-gene-sequencing/request-kakapo125-data/ . The generation of the 583 

https://data.agdr.org.nz/
https://www.doc.govt.nz/our-work/kakapo-recovery/what-we-do/research-for-the-future/kakapo125-gene-sequencing/request-kakapo125-data/
https://www.doc.govt.nz/our-work/kakapo-recovery/what-we-do/research-for-the-future/kakapo125-gene-sequencing/request-kakapo125-data/
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long-read data was conducted under DOC authorisation (authorisation number: 97814-584 

FAU) and enabled by High Quality Genomes and Population Genomics at Genomics 585 

Aotearoa. In accordance with FAIR and CARE data principles (Carroll et al. 2020; Carroll et 586 

al. 2021; Mc Cartney et al. 2022), the long-read data is also stored in the AGDR and data 587 

sharing subject to approval by DOC and TRONT.  588 
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Supplementary Figure 1. Counts of consensus calls between SV type and strand within a 50 bp 

window for the all comparisons between Delly, Manta - Batch, Manta - Joint, Smoove, CuteSV 

and Sniffles in kākāpō. Here, the colored barchart on the upper left represents the number of 

SVs passing call-quality thresholds in each of the six datasets. Dark green circles with lines 

between denote which datasets have consensus SV calls. Bars to the right represent the number 

of SVs overlapping between these datasets. 
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Supplementary Figure 2. Size distribution for SVs that passed call quality thresholds. Due to the high level 

of variance in SV size, a log transformation using the natural log was used to visualise the size distribution.  
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A)  

B)  

Supplementary Figure 3. Number of SVs per chromosome passing genotype quality thresholds (A), and 

the proportion of each chromosome impacted by SV type (B). As with Figure 2, all chromosomes are 

ordered by size from largest to smallest (left to right). The Z and W sex chromosomes are excluded.    
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Supplementary Table 1. Overlaps of SVs passing genotype thresholds. Comparisons were made for exact 

matches (0bp), 50bp, 500bp and 1kb. Here, D denotes the Delly dataset, B is Manta - Batch, J is the Manta - 

Joint, S is Smoove, C is CuteSV and Sn is Sniffles. 

Comparison Total Deletions Duplications Insertions Inversions 

allvall_0bp 0 0 0 0 0 

allvall_1000bp 0 0 0 0 0 

allvall_500bp 0 0 0 0 0 

allvall_50bp 0 0 0 0 0 

BvC_0bp 0 0 0 0 0 

BvC_1000bp 47 47 0 0 0 

BvC_500bp 47 47 0 0 0 

BvC_50bp 47 47 0 0 0 

BvCvSn_0bp 0 0 0 0 0 

BvCvSn_1000bp 8 8 0 0 0 

BvCvSn_500bp 8 8 0 0 0 

BvCvSn_50bp 8 8 0 0 0 

BvJ_0bp 0 0 0 0 0 

BvJ_1000bp 709 451 56 53 149 

BvJ_500bp 711 453 56 53 149 

BvJ_50bp 712 453 56 53 150 

BvJvC_0bp 0 0 0 0 0 

BvJvC_1000bp 46 46 0 0 0 

BvJvC_500bp 46 46 0 0 0 

BvJvC_50bp 46 46 0 0 0 

BvJvCvSn_0bp 0 0 0 0 0 

BvJvCvSn_1000bp 7 7 0 0 0 

BvJvCvSn_500bp 7 7 0 0 0 

BvJvCvSn_50bp 7 7 0 0 0 

BvJvS_0bp 0 0 0 0 0 

BvJvS_1000bp 381 338 28 0 15 

BvJvS_500bp 380 338 28 0 14 

BvJvS_50bp 356 325 26 0 5 
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BvJvSn_0bp 0 0 0 0 0 

BvJvSn_1000bp 17 17 0 0 0 

BvJvSn_500bp 17 17 0 0 0 

BvJvSn_50bp 17 17 0 0 0 

BvJvSvC_0bp 0 0 0 0 0 

BvJvSvC_1000bp 33 33 0 0 0 

BvJvSvC_500bp 33 33 0 0 0 

BvJvSvC_50bp 32 32 0 0 0 

BvJvSvCvSn_0bp 0 0 0 0 0 

BvJvSvCvSn_1000bp 1 1 0 0 0 

BvJvSvCvSn_500bp 1 1 0 0 0 

BvJvSvCvSn_50bp 1 1 0 0 0 

BvJvSvSn_0bp 0 0 0 0 0 

BvJvSvSn_1000bp 3 3 0 0 0 

BvJvSvSn_500bp 3 3 0 0 0 

BvJvSvSn_50bp 3 3 0 0 0 

BvS_0bp 0 0 0 0 0 

BvS_1000bp 436 375 33 0 28 

BvS_500bp 435 375 33 0 27 

BvS_50bp 396 359 29 0 8 

BvSn_0bp 0 0 0 0 0 

BvSn_1000bp 21 21 0 0 0 

BvSn_500bp 21 21 0 0 0 

BvSn_50bp 21 21 0 0 0 

BvSvC_0bp 0 0 0 0 0 

BvSvC_1000bp 33 33 0 0 0 

BvSvC_500bp 33 33 0 0 0 

BvSvC_50bp 32 32 0 0 0 

BvSvCvSn_0bp 0 0 0 0 0 

BvSvCvSn_1000bp 1 1 0 0 0 

BvSvCvSn_500bp 1 1 0 0 0 
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BvSvCvSn_50bp 1 1 0 0 0 

BvSvSn_0bp 0 0 0 0 0 

BvSvSn_1000bp 3 3 0 0 0 

BvSvSn_500bp 3 3 0 0 0 

BvSvSn_50bp 3 3 0 0 0 

CvSn_0bp 0 0 0 0 0 

CvSn_1000bp 21 20 0 1 0 

CvSn_500bp 21 20 0 1 0 

CvSn_50bp 21 20 0 1 0 

DvB_0bp 0 0 0 0 0 

DvB_1000bp 12 9 3 0 0 

DvB_500bp 12 9 3 0 0 

DvB_50bp 11 8 3 0 0 

DvBvC_0bp 0 0 0 0 0 

DvBvC_1000bp 0 0 0 0 0 

DvBvC_500bp 0 0 0 0 0 

DvBvC_50bp 0 0 0 0 0 

DvBvCvSn_0bp 0 0 0 0 0 

DvBvCvSn_1000bp 0 0 0 0 0 

DvBvCvSn_500bp 0 0 0 0 0 

DvBvCvSn_50bp 0 0 0 0 0 

DvBvJ_0bp 0 0 0 0 0 

DvBvJ_1000bp 12 9 3 0 0 

DvBvJ_500bp 12 9 3 0 0 

DvBvJ_50bp 11 8 3 0 0 

DvBvJvC_0bp 0 0 0 0 0 

DvBvJvC_1000bp 0 0 0 0 0 

DvBvJvC_500bp 0 0 0 0 0 

DvBvJvC_50bp 0 0 0 0 0 

DvBvJvCvSn_0bp 0 0 0 0 0 

DvBvJvCvSn_1000bp 0 0 0 0 0 
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DvBvJvCvSn_500bp 0 0 0 0 0 

DvBvJvCvSn_50bp 0 0 0 0 0 

DvBvJvS_0bp 0 0 0 0 0 

DvBvJvS_1000bp 11 9 2 0 0 

DvBvJvS_500bp 11 9 2 0 0 

DvBvJvS_50bp 10 8 2 0 0 

DvBvJvSn_0bp 0 0 0 0 0 

DvBvJvSn_1000bp 0 0 0 0 0 

DvBvJvSn_500bp 0 0 0 0 0 

DvBvJvSn_50bp 0 0 0 0 0 

DvBvJvSvC_0bp 0 0 0 0 0 

DvBvJvSvC_1000bp 0 0 0 0 0 

DvBvJvSvC_500bp 0 0 0 0 0 

DvBvJvSvC_50bp 0 0 0 0 0 

DvBvJvSvSn_0bp 0 0 0 0 0 

DvBvJvSvSn_1000bp 0 0 0 0 0 

DvBvJvSvSn_500bp 0 0 0 0 0 

DvBvJvSvSn_50bp 0 0 0 0 0 

DvBvS_0bp 0 0 0 0 0 

DvBvS_1000bp 11 9 2 0 0 

DvBvS_500bp 11 9 2 0 0 

DvBvS_50bp 10 8 2 0 0 

DvBvSn_0bp 0 0 0 0 0 

DvBvSn_1000bp 0 0 0 0 0 

DvBvSn_500bp 0 0 0 0 0 

DvBvSn_50bp 0 0 0 0 0 

DvBvSvC_0bp 0 0 0 0 0 

DvBvSvC_1000bp 0 0 0 0 0 

DvBvSvC_500bp 0 0 0 0 0 

DvBvSvC_50bp 0 0 0 0 0 

DvBvSvCvSn_0bp 0 0 0 0 0 
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DvBvSvCvSn_1000bp 0 0 0 0 0 

DvBvSvCvSn_500bp 0 0 0 0 0 

DvBvSvCvSn_50bp 0 0 0 0 0 

DvBvSvSn_0bp 0 0 0 0 0 

DvBvSvSn_1000bp 0 0 0 0 0 

DvBvSvSn_500bp 0 0 0 0 0 

DvBvSvSn_50bp 0 0 0 0 0 

DvC_0bp 0 0 0 0 0 

DvC_1000bp 0 0 0 0 0 

DvC_500bp 0 0 0 0 0 

DvC_50bp 0 0 0 0 0 

DvCvSn_0bp 0 0 0 0 0 

DvCvSn_1000bp 0 0 0 0 0 

DvCvSn_500bp 0 0 0 0 0 

DvCvSn_50bp 0 0 0 0 0 

DvJ_0bp 0 0 0 0 0 

DvJ_1000bp 12 9 3 0 0 

DvJ_500bp 12 9 3 0 0 

DvJ_50bp 11 8 3 0 0 

DvJvC_0bp 0 0 0 0 0 

DvJvC_1000bp 0 0 0 0 0 

DvJvC_500bp 0 0 0 0 0 

DvJvC_50bp 0 0 0 0 0 

DvJvCvSn_0bp 0 0 0 0 0 

DvJvCvSn_1000bp 0 0 0 0 0 

DvJvCvSn_500bp 0 0 0 0 0 

DvJvCvSn_50bp 0 0 0 0 0 

DvJvS_0bp 0 0 0 0 0 

DvJvS_1000bp 11 9 2 0 0 

DvJvS_500bp 11 9 2 0 0 

DvJvS_50bp 10 8 2 0 0 
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DvJvSn_0bp 0 0 0 0 0 

DvJvSn_1000bp 0 0 0 0 0 

DvJvSn_500bp 0 0 0 0 0 

DvJvSn_50bp 0 0 0 0 0 

DvJvSvC_0bp 0 0 0 0 0 

DvJvSvC_1000bp 0 0 0 0 0 

DvJvSvC_500bp 0 0 0 0 0 

DvJvSvC_50bp 0 0 0 0 0 

DvJvSvCvSn_0bp 0 0 0 0 0 

DvJvSvCvSn_1000bp 0 0 0 0 0 

DvJvSvCvSn_500bp 0 0 0 0 0 

DvJvSvCvSn_50bp 0 0 0 0 0 

DvJvSvSn_0bp 0 0 0 0 0 

DvJvSvSn_1000bp 0 0 0 0 0 

DvJvSvSn_500bp 0 0 0 0 0 

DvJvSvSn_50bp 0 0 0 0 0 

DvS_0bp 0 0 0 0 0 

DvS_1000bp 47 39 4 0 4 

DvS_500bp 46 38 4 0 4 

DvS_50bp 35 29 4 0 2 

DvSn_0bp 0 0 0 0 0 

DvSn_1000bp 0 0 0 0 0 

DvSn_500bp 0 0 0 0 0 

DvSn_50bp 0 0 0 0 0 

DvSvC_0bp 0 0 0 0 0 

DvSvC_1000bp 0 0 0 0 0 

DvSvC_500bp 0 0 0 0 0 

DvSvC_50bp 0 0 0 0 0 

DvSvCvSn_0bp 0 0 0 0 0 

DvSvCvSn_1000bp 0 0 0 0 0 

DvSvCvSn_500bp 0 0 0 0 0 
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DvSvCvSn_50bp 0 0 0 0 0 

DvSvSn_0bp 0 0 0 0 0 

DvSvSn_1000bp 0 0 0 0 0 

DvSvSn_500bp 0 0 0 0 0 

DvSvSn_50bp 0 0 0 0 0 

JvC_0bp 0 0 0 0 0 

JvC_1000bp 46 46 0 0 0 

JvC_500bp 46 46 0 0 0 

JvC_50bp 46 46 0 0 0 

JvCvSn_0bp 0 0 0 0 0 

JvCvSn_1000bp 7 7 0 0 0 

JvCvSn_500bp 7 7 0 0 0 

JvCvSn_50bp 7 7 0 0 0 

JvS_0bp 0 0 0 0 0 

JvS_1000bp 420 361 31 0 28 

JvS_500bp 417 361 30 0 26 

JvS_50bp 381 346 27 0 8 

JvSn_0bp 0 0 0 0 0 

JvSn_1000bp 17 17 0 0 0 

JvSn_500bp 17 17 0 0 0 

JvSn_50bp 17 17 0 0 0 

JvSvC_0bp 0 0 0 0 0 

JvSvC_1000bp 33 33 0 0 0 

JvSvC_500bp 33 33 0 0 0 

JvSvC_50bp 32 32 0 0 0 

JvSvCvSn_0bp 0 0 0 0 0 

JvSvCvSn_1000bp 1 1 0 0 0 

JvSvCvSn_500bp 1 1 0 0 0 

JvSvCvSn_50bp 1 1 0 0 0 

JvSvSn_0bp 0 0 0 0 0 

JvSvSn_1000bp 3 3 0 0 0 
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JvSvSn_500bp 3 3 0 0 0 

JvSvSn_50bp 3 3 0 0 0 

SvC_0bp 0 0 0 0 0 

SvC_1000bp 36 36 0 0 0 

SvC_500bp 36 36 0 0 0 

SvC_50bp 34 34 0 0 0 

SvCvSn_0bp 0 0 0 0 0 

SvCvSn_1000bp 1 1 0 0 0 

SvCvSn_500bp 1 1 0 0 0 

SvCvSn_50bp 1 1 0 0 0 

SvSn_0bp 0 0 0 0 0 

SvSn_1000bp 4 4 0 0 0 

SvSn_500bp 4 4 0 0 0 

SvSn_50bp 4 4 0 0 0 
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Supplementary Table 2. Summary of structural variant size characteristics for Delly, Manta and Smoove 

datasets filtered for genotype quality. 

Data 

Structural 

Variant Type Count Size Range (bp) Median Size (bp) Mean Size (bp) 

Delly 

Deletions 57 49 - 18,651 756 1977 

Duplications 12 456 - 19,889 1459 4366 

Insertions 228 22 - 45 31 32 

Inversions 437 300 - 48,437 359 705 

Manta-Batch 

Deletions 515 50 - 41,963 578 1820 

Duplications 70 66 - 26,442 3246 5527 

Insertions 177 51 - 1,042 505 441 

Inversions 342 59 - 10,746 462 799 

Manta-Joint 
Deletions 495 54 - 41,963 577 1842 

Duplications 73 52 - 41,193 1978 5478 
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Insertions 74 84 -888 317 354 

Inversions 301 59 - 7,093 463 841 

Smoove 

Deletions 1023 53 - 47,780 781 2696 

Duplications 183 335 - 47,433 2748 5793 

Insertions N/A N/A N/A N/A 

Inversions 2825 76 - 30,347 445 729 

CuteSV 

Deletions 72 49 - 7,497 199 910 

Duplications 0 0 0 0 

Insertions 6 51 - 73 55 58 

Inversions 0 0 0 0 

Sniffles 

Deletions 87 49 - 30,711 62 456 

Duplications 0 0 0 0 

Insertions 39 50 - 539 68 93 

Inversions 0 0 0 0 
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