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Abstract

In this paper, we study a SIR epidemic model with ratio dependent incident rate function
describing the mechanisms of infectious disease transmission. The proposed model system
explore the impact of vaccination and treatment on the transmission dynamics of the disease.
The treatment control strategies depend on the availability of maximal treatment capacity:
the treatment rate is constant when the number of infected individuals is greater than the
maximal capacity of treatment and proportional to the number of infected individuals when
the number of infected individuals is less than the maximal capacity of treatment. The exis-
tence and stability of the endemic equilibria are governed by the basic reproduction number
and treatment control strategies. By carrying out rigorous mathematical analysis combined
with numerical simulations of the proposed model system, it has been shown that (1) the
sufficiently large value of the preventive vaccination rate can control the spread of disease, (2)
a threshold level of the psychological (or inhibitory) effects in the incidence rate function is
enough to decrease the infective population. It is also obtained that model system undergoes
a transcritical and a saddle-node bifurcations with respect to disease contact rate. Moreover,
in the presence of treatment strategies, the model system have multiple endemic equilibria
and undergoes a backward bifurcation. The maximal capacity of treatment plays important
roles on the disease dynamics of the model system. The number of infected individuals de-
creases with respect to the maximal capacity of treatment and the disease completely dies
out from the system for the large capacity of the treatment when constant treatment strategy
is applied. Further, it is also found that the spread of disease can be suppressed by increas-
ing treatment rate. From sensitivity analysis, we have observed that the transmission and
treatment rates are most sensitive parameters on the model system. Moreover, the effects
of different parameters on the disease dynamics have also been investigated via numerical
simulation.
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1 Introduction

Diseases (communicable and non-communicable) are the big problems of human health and
they have become one of most common causes for death. In a press release in 1996, WHO
claims that out of 52 million death in 1995, more than 17 million were due to infectious dis-
eases [1]. On one side, the mathematical models for the spread of infectious diseases help us to
predict likely behaviours of future outbreaks and to demonstrate past outbreaks, on the other
side, it also make us able to predict the effect of mitigating and intervention strategies. The
model formulation process clarifies assumptions, variables, and parameters; moreover, models
provide conceptual results such as thresholds, basic reproduction numbers, contact numbers,
and replacement numbers [4,5,10]. Mathematical models and computer simulations are useful
experimental tools for building and testing theories, assessing quantitative conjectures, answer-
ing specific questions, determining sensitivities to changes in parameter values, and estimating
key parameters from data. Better understanding of the transmission characteristics of a partic-
ular infectious disease in a community/country can lead to better approaches to reduce/control
the transmission of the disease. For comparing, planning, implementing, evaluating, and opti-
mizing various detection, prevention, therapy, and control programs, mathematical models have
been playing valuable role [4,14,26,27,42]. Thus, suitable mathematical models provide proper
suggestions/information which help to improve preparedness and response against infectious
disease.

A very fruitful modeling paradigm in epidemiology is the so-called compartmental models.
Several compartmental models for the spread of infectious diseases in populations have been
analyzed mathematically and applied to specific diseases [4,5,20]. The rate of new infections
(incidence rate) plays a crucial role in modeling of infectious diseases [6,12]. In most of the
epidemic models (Anderson and May [4]), the incidence rate (the number of new cases per
unit time) takes the mass-action form with bilinear interactions. However, several authors
[2,6,7,12,17,21,32] have suggested for non-linear incidence rate in disease transmission progress.
In particular, incidence rate function g(I)S describes the mechanism of disease transmission i.e.,
rate at which susceptible become infectious [3,28]. Density of population, life style and media
coverage may affect the incidence rate function directly or indirectly [14]. There are many reasons
for using nonlinear incidence rates, for example, psychological effects: for a very large number
of infectives the infection force may decrease as the number of infective individuals increases,
because in the presence of large number of infectives the population may tend to reduce the

number of contacts per unit time [8]; crowding of infective individuals or due to the protection



measures by the susceptible individuals [8]; intervention policies: when infected individuals are
large enough, we perform intervention policies, for example, closing schools, restaurants and
postponing conferences [15].

The general non-linear incidence rate used by Liu et al. [18,19] to incorporate the effect of

the behavioral changes of the susceptible individuals is of the following form:
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Figure 1: Figure depicts per capita incident rate for different value of 1 and h. (a) Unbounded
incidence rate function (1=2,h=1). (b) Saturated incidence rate function (1=1, h=1)
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Figure 2: Figure illustrates per capita incident rate and effect of human behavior on per capita
incidence rate. (a) Non-monotonic incidence rate function (1 =1, h =2). (b) Effect of human
behavior (1 = 1, h = 2). It shows how a (parameter measuring the psychological/inhibitory
effect) impacts per capita incidence rate.



where the parameters | and h are positive constants; k is the probability of transmission per
contact per unit time; « is non negative constant which measures the psychological or inhibitory
effects; kI' measures the infection force of the disease and ﬁ measures the inhibition effect
from the behavioral change of the susceptible individuals when their number increases (or from
the crowding effect of the infective individuals). Psychological effect influences the incidence rate
function. For a very large number of infectives, the infection force may decrease as the number of
infective individuals increases because the population may tend to reduce the number of contacts
per unit time in the presence of large number of infectives [8,33]. In fact, when a new infectious
disease occurs, both the infection and the contact rate probability increase since people have less
knowledge about the disease. However, when the number of infected individuals increases and
the disease becomes more serious, psychological factor leads people to improve their behavior
((e.g., to avoid shaking hands, frequent washing of hands, closure of schools and offices, less
mobility etc.)) and adopt suitable measures to reduce the possibility of contact and infection
probability. Many authors, for instance, Hethcote [3], Xiao and Ruan [33], Derrick and van den
Driessche [34], Hethcote and Levin [35], van den Driessche [36], Ruan and Wang [8], Alexander
and Moghadas [42], Tang et al. [13] and so forth have used specific values for [, h. The nonlinear

incidence function given in (1) could be derived in the following three different forms:

1. In many standard epidemic models [9, 24, 26, 42, 43] bilinear incidence rate have been
expressed as kS(t)I(t) where S(t) and I(t) are the susceptible and infective individual
at time t, respectively and k is the disease contact parameter. For [ > h, the incidence
function is unbounded (cf. Figure 1 (a)). Dynamics of epidemic models with unbounded
incidence rates are similar to those with bilinear incidence rates. Hethcote and van den

Driessche [36] considered bilinear incidence rate by taking | = h + 1.

2. The incidence function may tend to a saturation level as the number of infectious individ-
uals becomes large enough [15,22] (refer the Figure 1 (b)). This is very reasonable because
the number of effective contacts between infective individuals and susceptible individuals
may saturate at high infective levels due to crowding of infective individuals or due to the
protection measures adopted by the susceptible individuals. Capasso and Serio [22] con-

sidered, [ = h = 1 in the saturated incidence function and therefore the incidence function

kI
1+al”

given in (1) takes the form g(I) = They described the dependency of infectives via
nonlinear saturated bounded incidence function for large numbers of infectives. The au-
thors studied the “crowding effect” or “protection measures” while modeling the cholera

epidemics in Bari in 1973. The dynamics of epidemic models with saturated incidence



rates (when 1 = h) have been shown to be very rich and complex. For a SEIRS model
system with 1= h, Hethcote and van den Driessche [36] observed that the threshold concept
becomes more complicated since the asymptotic behavior depends on both thresholds and
the initial values. The model system will have none, one, or two endemic equilibria, and
the disease may die out beyond the threshold for some initial values. Further periodic
solutions also appear through Hopf bifurcation. The results of [36] are analogous to those
obtained by Liu, Hethcote, and Levin [18] for SIRS models with 1 = h (cf. Figure 1 (b)).
The case ] = h = 1 has also been discussed briefly by Gomes et al. [23], who obtained the
existence of backward bifurcation, oscillations, and Bogdanov—Takens bifurcation in SIR

and SIS model systems.

3. Wang [15], Xiao and Ruan [33] introduced non-monotone incidence function by consid-
ering [ < h (cf. Figure 2 (a)). Xiao and Ruan [33] described the psychological effect of
certain serious diseases (for instance, SARS and some sexually-transmitted-diseases) on
the community when the number of infectives become larger. They have also described the
global analysis of the model and studied the stability of the disease-free and the endemic
equilibrium. Further authors concluded that either the number of infective individuals

tends to zero as time evolves or the disease persists.

The Figure 2(b) shows that if we increase the value of «, then the incidence rate saturates at
lower value and also peak point of incidence rate deceases. Thus the incidence rate decrease
with increase in infection cases due to effects of behavioral changes in susceptible population.
Thus one can say that Fig. 2(b) shows that if the number of infected individuals increases then
susceptible individuals start avoiding to contact with infectious individuals (e.g., to avoid shaking
hands, frequent washing of hands, closure of schools etc.) The infection force (g(I)) in Eq. (1)
is function of infective individuals only. However Yuan and Li [37] introduced the transmission
of communicable diseases involving both infective and susceptible individuals. Infection force
ought to depend on the densities of both infective and susceptible individuals and it should take
the form g(I,S). Further, Yuan and Li [37] proposed that the infection force is a function of
ratio of the number of the infectives to that of the susceptible and infection force function takes

the following form:

I k(1/S)
91, S) :g(g) = 1+(a(/I/)S)h (2)

The infectious disease can be removed by using sanitation, antibiotics, and vaccination. In

general, for controlling/preventing the spread of diseases, two tpes of effective methods namely



quarantine [38,39] and vaccination [11,40,62] are used. In particular, in the disease dynamic
model systems, vaccination are used to reduce both the morbidity and mortality of individ-
uals [11,41,42]. Further many researchers (see, for example, [29-31, 46, 53-55, 59]) have also
introduced the importance of treatment in disease dynamic models. Treatment is an important
method to reduce the spread of diseases such as measles, tuberculosis and flu [16,44,45]. In
classical epidemic models, the treatment rate of infected individuals is assumed to be either
constant or proportional to the number of infected individuals [15,30]. However, this assump-
tion does not seem very reasonable, it may require a lot of resources for treatment. In general,
a country/community should have a reasonable capacity for treatment. If it is too large, the
country/community may pay unnecessary cost. If it is too small, the country/community may
face the risk of the outbreak of a particular disease [29,30,46].

In particular, Wang and Ruan [30] considered an SIR epidemic model with constant treat-

ment rate. The model system exhibits various types of bifurcations under this treatment strat-
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egy. Zhou and Fan [52] considered Holling type II treatment function given by T'(I) = T

B >0, > 0. The model system exhibits backward bifurcation and Hopf bifurcation with vary-
ing treatment resources and its supply efficiency. De Pincho et al. [62] studied the normalized
version of SIMR model system with medical treatment. In this study, the authors applied the
Hamiltonian Jacobi approach and discussed how minimum time function varies with respect
to perturbations of initial conditions. Li and Cui [47] introduced SIRS model with nonlinear
incidence rate and constant treatment. In [29], Wang explored the following treatment function:

I, ifo<I<I,
=4 U= (3)
K, ifI>I,.

In expression (3), two types of treatment strategies are considered depending on infected pop-
ulation size. First, if infected population size is less than the maximum capacity of treatment
(I.) then proportional treatment is incorporated. Second, if number of the infectives is greater
than the maximal capacity I. then constant treatment is provided. This explains the situation
where the number of hospital beds are limited and patients have to be hospitalized.

In the mathematical model systems referenced above, in general, authors assumed that space
is homogeneous and investigations are confined to a population. However, infectious diseases
spread geographically over time. In addition, in previous studies, the authors have generally
focused on the dynamics of compartmental model systems with a specific type of treatment
function and incidence rate. However, investigating the disease dynamics of an epidemic model

system with nonlinear incidence rate (ratio dependent incidence rate) in the presence of different



treatment functions may provide different useful informations via mathematical and numerical
evaluations.

More importantly, we would be able to compare the model predictions in different cases.
Therefore, the detailed evolution of SIR model system with different incidence rates and treat-
ment functions, makes us curious about the dynamical characteristics of SIR model system with
ratio dependent incidence rate in the presence of different treatment functions. In the presence
of ratio dependent incident rate, we are intended to investigate the role of disease threshold i.e.,
basic reproduction number on the disease dynamic model system for two different treatment
strategies. In the present study, another very important term is the maximal treatment capac-
ity which cure the infectives to prevent the spread of disease. In the presence of ratio dependent
incidence function, we are also interested to analyze the role of maximal treatment capacity for
both the treatment strategies.

In the present study, we consider an SIR epidemic model system with ratio dependent in-
cidence rate and two different treatment rates (i) T'(I) = rl, if 0 < I < I. where r > 0 is a
proportionality constant and I. is some fixed value, and (ii) T'(I) = K, where K is the maxi-
mal capacity of treatment. The question that we want to pose here is the following: (i) How
the ratio dependent incidence rate and maximum capacity of treatment along with the above
two different treatment strategies affect the disease dynamics? Thus in the present work, our
objectives are two fold: (i) to observe that how the endemic coexistence is governed under the
influence of basic reproduction number in two different treatment strategies. (ii) to investigate
how does the ratio dependent incidence rate perturb the previously obtained results.

In epidemiology, the concept of threshold i.e., basic reproduction number is very important in
the spread/control of the spread of disease. Here, we shall examine that what are the parameters
with most sensitivity to the disease threshold. More precisely, we also quantify that which model
parameter is much responsible for endemic coexistence through sensitivity analysis of endemicity.

Rest of the paper is organized as follows. In the next Section, we introduce the mathematical
model with ratio dependent incidence rate. Boundedness of solutions and basic reproduction
number have also been derived. The existence of equilibria under different treatment functions
are discussed in Section 3. Stability of equilibrium points along with some important remarks
are given in Section 4. Bifurcation analysis is demonstrated in Section 5. In Section 6, we present
the local and global sensitivity analysis. Section 7 is devoted to the numerical evaluations of
the model system to validate theoretical findings. The paper ends with detailed discussion and

future scope of the present study.



2 The model and boundedness

Let N(t) denotes the total population size at any time ¢ which is divided into three subclasses-
S(t) : the susceptible population, I(t) : the infected population, and R(t) : the recovered pop-
ulation. Here we consider the following two different treatment functions: (i) T'(I) = rI, if
0 < I < I. where r > 0 is a proportionality constant and I. is some fixed value, and (ii)
T(I) = K, where K is the maximal capacity of treatment. Further, we assume that the infec-
tion force is of the following form:
o18) = o,

which is obtained by taking h = 2 and [ = 1 in Eq. (2). We also consider that a fraction
p of recruited individuals are vaccinated, where p € (0, 1] and these individuals are moved
in recovered class. Therefore, the dynamics of the SIR model with ratio-dependent incidence
rate and treatment function (7°(1)) is governed by the following system of nonlinear ordinary

differential equations:

ds k152

dl kI1S?

i - Sral (d+p)I —T(I), (4)
dR

— = pb+pl—(d+)R+T(D),

whose state space is the first quadrant R ={(S,I,R) : S > 0, > 0,R > 0}. The initial
conditions are given by S(0) = Sy > 0, I(0) = Iy > 0, R(0) = Ry > 0. The biological

descriptions of parameters are given in Table 1.

Parameters | Biological description

k disease contact rate

0% rate at which recovered individuals lose immunity and return to
the susceptible class

recovery rate of infective individuals

fraction of recruited individuals those are vaccinated

natural death rate of each population

recruitment rate of susceptible population

treatment rate

maximal capacity of treatment
psychological or inhibitory effect

oIzl |=

Table 1: Biological meaning of parameters for model system (4).

Further, the total population N(¢)=S(t) + I(t) + R(t) and the growth rate of population at



time t satisfy the following equation

dN

which gives, N(t) — % as t — oo. Therefore, the biological feasible region for the model system
(4) is given by
b
0={(S.LR):0<SLRS+I+R< -}, (5)

which gives the following lemma:
Lemma 2.1. The set Q defined in (5) is positively invariant for the model system (4).

Basic reproduction number (basic reproductive rate) (Ro) is defined as the average number
of secondary infections that occur when one infective is introduced into a completely susceptible
host population [4,5,27]. In recent epidemiological modeling literatures, the basic reproduction
number Ry is often used as the threshold quantity that determines whether a disease can invade
a population. It is really useful because it help us to determine whether or not an infectious
disease can spread through a population. Following the same procedure as discussed in [5,10],
the basic reproduction number (Ry), for our proposed model system (4) can be evaluated as

following:

k

Ro=— .
T Ay

(6)

From expression (6), we observe that Ry depends on parameters k, d, p and r. Moreover R
increases with the increasing disease contact rate k, and decreases with the increasing death rate

d, recovery rate p and treatment rate r.

3 Existence of equilibria

In this section, we consider the model system (4) with the treatment rate (3) and investigate
the existence of equilibrium points. Model system (4) always has a disease-free equilibrium

E° = (89 1°, R?), which can be obtained by putting I = 0 in the following system of equations:

kI1S?
(1—p)b—d5—m+’yR—O, (7&)
k152
S ral? (d+p)I =T(I) =0, (7b)
pb+pl — (d+~v)R+T(I) =0, (7c)



which is given by
Sozb((l—ID)CH‘V)7 =0, RO:Lb. ®)
d(d+) d+ -y
Because of positiveness of model parameters and 0 < p < 1, expression (8) indicates that the
disease-free equilibrium (E°) of system (4) always exists. Therefore, the disease dies out at the
equilibrium level given by Eq. (8).
Now, we compute the interior equilibrium points for the case T(I) = 1,0 < I < I., which

satisfy the following system of equations:

k1S?
k1S?
pb+pl —(d+~y)R+rl =0. (9¢)

The discussion of interior equilibrium point(s) has been presented by the following theorem:

Theorem 3.1. Model system (4) has no interior equilibrium point if Rog < 1. For Ry > 1,

zf( +:lii+7) </ mao and (%) > \/zee, then model system (4) generates unique

interior equilibrium point (for both cases) which are given by E(Si,I1, R1) and E(Ss, I, Rs),

respectively, such that

(1—p)d pby wH+r+d+y 1
1= d * d(d+ ) B d+~ ptr+dty a ’
d-i-’y - Ro—1
1 (1—-pb pby
I =
VT utrrdty a ( i dld+~))’
d+’7 Ro—1
b 1 1—p)b b
Rl:di +siru+r+d+v o <( dp) +d(§+7 ))’
¥ vtk [oe ¥
g _<(1—p)b pby ) 1 w+r+d+-y 1
2 = - )
d d(d d +r+d+ a
(1- )b pby
2= rrds A ’
iy | F (d+7)
pb LK +r (1—p)b pby )
R + .
* < d(d +7)

d+y d+’yu+r+d+v+ /

Proof. From Eq. (9¢), we have

pb w+r

d+~ d+~°

(10)



Further, from Eqs. (9a) and (9b), we obtain
dS=(1-pb+yR—(d+p+r)I =0. (11)

Using (10) in Eq. 11, we find

(I—p)b wb  d+pt+r+y (1 —p)b ~vpb >d+M+T+’VI

S = I>0, if + 12
d d(d+ ) d+ YT d(d + ) d+~ (12)
From Eq. (9b), we have
a
5% = I 13
Ro 1 (13)
Using Eq. (13) in Eq. (12), we obtain the following quadratic equation in
(<u+r+d+’y)2_ o )12_2((1—]))1) pby )(u+r+d+v>1
d+7 (Ro—1) d d(d+r) d+~
(1—pb  pby 2
+( + ) =o. 14
d d(d+ ) (14)
Expression for the roots of Eq. (14) is given by
1 (1—pb  pby
L = 15
S e ( d T dd+y))’ (15a)
d+y Ro—1
1 1—p)b b
b= g a (< dp) * d(f;j )> : (15b)
d+vy + Ro—1 v
Now, using (15a) in Eq. (12), S-coordinate of interior equilibrium point is given by
1—p)b b d 1
Sl:<( dp) +d(§1 )> 1_M+;—|—|: = +r+dty (16)
" i £ v\ Ro=1
Using (15b) in Eq. (12), S-coordinate of interior equilibrium point is given by
1—p)b b d 1
52:<( dp) +d(51 )> 1_M+;—|—|: = +r+dty (17)
v 7 £ oy T/ Ro—T
Using (15a) in Eq. (10), we obtain
pb ptr 1 <(1—p)b pby )
R, = + + . (18)
+r+d+ a
d+ d—i—ﬂyudﬂv_ e d d(d+ )
Further using (15b) in Eq. (10), we obtain
b + 1 1—p)b b
R2 - dz—?i- y * Z—F; ptr+d+y a (( dp) + d(cll)—:/’y)> . (19)
d+’y + Ro—1

We derive the number of interior equilibrium point(s) with the help of Egs. (15a) and (15b).
Egs. (15a) and (15b) assure that the I* does not acquire positive value for Ry < 1 which results
no interior equilibrium point. For Ry > 1, the number of interior equilibrium point(s) have been

discussed as follows:

10



(i) If (%) < (/a1 then (15a) takes negative value and positive value is taken by

(15b). Under this parametric condition, both (16) and (17) are positive. Therefore, using
(17) and (19), model system (4) generates unique interior equilibrium point E(Ss, I, R2).

(i) If (%ﬁ) > /71, then (15a) and (15b) are positive. Under this parametric condi-
tion, (16) is negative. Therefore, using (17) and (19), model system (4) has unique interior

equilibrium point FE(Sy, I, Ry).
O]

Thus we observe that the model system (4) with T'(I) = rI, changes its interior equilibrium
point from zero to one, which suggests us to investigate the transcritical bifurcation. We will
provide the threshold value and corresponding transversality condition in bifurcation section.

Now we discuss the equilibria of model system (4) with treatment function 7'(1) = K, I > I..

The equilibrium points satisfy the following system of equations:

kIS?
kI1S?
pb+pl —(d+~v)R+ K =0. (20c)

For interior equilibria E*(S*, I*, R*), from equation (20c), we have

« P+ K B s
R = I 21
d+~v d+v (1)
From Egs. (20a) and (20b), we have
1
S*:g((l—p)bJr’yR*—(d+u)I*—K). (22)
Using Eq. (21) in Eq. (22), we obtain
\ 1 v(pb+K)> <d+7+u> .
st = ~((1—pph-K+ - I*, 23
d<( P) d+7 d+v (23)

b+ K
3 ((-ppp- K428

(d+v+u)
d+y

where K < (1 —p)b+ prj;K), and [* < . Using (21) and (23) in (20a), we

d+

obtain following cubic equation in I*

f(I) = AgI® + A1T? + Aol + A3 =0, (24)

11



with coefficients

A0 = () v aen(Ro- FHE) —atd+ ),

A= g b =) ) 4 mb = K)o ) (Ro — )
(5557 <o)

A — b(l—p)(dd?dvl;r)wb—f(%b(l—p)(dd;rdvl;wb—Kd(u+d+r)(no_ df—;lj—r)
+2Ku;i$7), A3:_K(b(l—p)(d;dvit)vpb—ffd))z_

We describe all possible parametric conditions for the appearance of roots of Eq. (24) in the

following theorem:

Theorem 3.2. (A): If Ry < ditir and %W) < K, then model system (4) has no

interior equilibrium point.

(B): If Ro > gHL, then

Case-1: Choose K < w, then (i) if Ag > 0, then Eq. (24) can exhibit three
positive roots, (i) if Ay <0, then Eq. (24) can exhibit two positive roots.

Case-2: Choose K > %jy)—wpb, then (a) For Ay < 0, (1) Eq. (24) can exhibit two
positive roots if, (i) A1 >0 and Ay <0, (i1) A1 <0 and Ay >0, (ii) Ay > 0 and Az > 0.
(2) Eq. (24) has no positive root if Ay < 0 and Az < 0, (b) For Ag > 0, (1) Eq. (24)
can exhibit unique positive root if, (i) A1 > 0 and Az <0, (i1) Ay > 0 and Ay > 0, (iii)
A1 <0 and Ay < 0. (2) Eq. (24) has three positive roots if A1 < 0 and Ag > 0.

Proof. (A) We notice that the coefficients of cubic equation (24) do not alter its sign for

Ro < dit‘fﬂ and %W < K i.e., all the coefficients Ag, A1, A and Az have

negative sign. Therefore, according to Lemma A.1, Eq. (24) has no positive solution.
As a consequence, Equations (21) and (23) ensure that the system (4) has no endemic

equilibrium under the condition (A) of Theorem 3.2 .

(B) We examine the possible number of positive roots using applying Lemma A.1 in Eq. (24).
In Table 2, we have shown the sign of the coefficients of Eq. (24) under the different
parametric conditions. Therefore, the number of positive roots and number of endemic

fixed points of system (24) can be determined with the help of Equations (21) and (23).

12



Parametric conditions | Ag | A1 | A2 | A3 | Number of positive roots of Eq. (24)
B case-1(i) + | - |+ | - three
B case-1(ii) - -+ | - two
B case-2(a) 1(i) -+ - - two
B case-2(a) 1(ii) - -+ | - two
B case-2(a) 1(iii) -+ + - two
B case-2(a) 2 - - - - nil
B case-2(b) 1(i) + |+ | - - unique
B case-2(b) 1(ii) + |+ |+ | - unique
B case-2(b) 1(iii) + | - - - unique
B case-2(b) 2 + | - |+ | - three

Table 2: Table indicates the sign of coefficients of Eq. (24) under the parametric conditions
mentioned in Theorem 3.2 (B).

O

It is very difficult to express the positive root of Eq. (24) analytically. Therefore, we
are not able to provide the analytical expression for the interior equilibrium point of system
(20). However, we investigate the possible number of interior equilibrium points numerically.
It is identified that the model system (4) possess at most two interior equilibrium points for
particular set of parameters values from [37]. Let us consider the following set of parametric

values for numerical investigation:
p=02b6=09,d=03,a=04,v=04,0=0.01, K =0.04,r =0.2, k = 0.65. (26)

The following points explore the number of interior equilibrium point(s) for the set of parametric

values (26):

(i) For k = 0.4, Eq. (24) has no positive root which results that the model system (4) has no

interior equilibrium point.

(ii) For k = 0.5761804185, Eq. (24) has two positive roots namely, I; = 0.6223, and I, =
8.8150 but Iy does not satisfy the positiveness condition of (23). Hence, the model system
(4) generates unique interior equilibrium E}, = (2.0545,0.6223,0.3232).

(iii) We increase the value of k, and at k& = 0.7, Eq. (24) has three positive roots Iy =
1.1551, Iy = 0.2474 and I3 = 6.4761. However, the positivity of (23) is not satisfied
for I3. Therefore, model system (4) exhibits two interior equilibrium points, namely,

Ef =(1.5142,0.1.1551,0.3308) and Ej = (2.4347,0.2474,0.3178).
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The existence of interior equilibria of model system (4) with both the treatment functions is

summarized in the Table 3:

Treatment | no interior one interior two interior
functions | equilibrium equilibrium equilibria
p) p)
— ptr+d+y ptr+d+y
T(I)—rI Ro <1 ( dty ) < R(?fl ( d+vy ) > R(?fl
and Rg > 1 Ro>1
T(I)=K | Theorem 3.2 Theorem 3.2 Theorem 3.2

Table 3: Existence of interior equilibria for the model system (4).

For T'(I) = K, the parameter k (disease contact rate) has significant impact on the change
of number of endemic equilibrium point(s) of model system (4). Numerically, we prove that
the model system (4) undergoes a saddle node bifurcation with respect to parameter k i.e.,
the number of endemic equilibrium point vary from zero to two with change in parameter

k. Threshold value and transversality conditions of saddle-node bifurcation will be derived in

Section 5.
4 Stability of equilibria

In this section, local and global stability of equilibrium points of model system (4) are studied.

First we show the local stability of E°.

Theorem 4.1. Disease-free equilibrium E° is unstable if Ro > 1 while it is locally asymptotically

stable if Rg < 1.
Proof. We provide the proof in Appendix A.1. O

Theorem 4.2. Local asymptotic stability of interior equilibrium point(s) of model system (4) is

described as follows:

1. For the case T(I) = rl, interior equilibrium E*(S*,I*, R*) (whenever exists), is locally

asymptotically stable if o1 >0, 090 >0, 03 >0, 0109 — 03 > 0.

2. For the case T(I) = K interior equilibrium E*(S*,I*, R*) (whenever exists), is locally

asymptotically stable if o1 > 0, g9 > 0, 03 > 0, 01090 — 03 > 0.

Proof. We have reported the proof and expression o1, o3 and o3 Appendix A.2. O

Theorem 4.3. If Ry < -

b(1—p)(d+vy)+ypb—Kd)
d+p+r and K > d

, then the disease-free equilibrium

E° of model system (4) is globally asymptotically stable.

14



Proof. The proof of Theorem 4.3 is given in Appendix A.3. O

Theorem 4.4. For T(I) = rl, the model system (4) has a unique endemic equilibrium point
E*(S*,I*, R*) when Ry > 1 and it is globally asymptotically stable when min{(2d + p+1r —~v —
ka),(d+~v—p—r—ka)} > 0.

Proof. We have reported the proof of the Theorem 4.4 in Appendix A.4. O

Based on the analysis of existence and stability of disease-free and interior equilibrium points

for both the treatment functions 7'(I) = rI and T'(I) = K, we conclude the following important
results:
Remark 1. Basic reproduction number Ry and the maximal capacity of treatment K are two
critical terms which determine whether model system (4) has an endemicity or not. Theorem
4.3 ensures that for the treatment function T'(I) = rlI, disease-free equilibrium (E°) is globally
asymptotically stable when Rg < 1. For Ry > 1, Theorem 3.1(i) and Theorem 4.2(1) ensure
that a unique endemic equilibrium E*(S*, I*, R*) emerges for the treatment function 7'(I) = r1,
which is locally asymptotically stable when o1 > 0, 02 > 0, 03 > 0, 0102 — 03 > 0.

Remark 2. Theorem 3.2(A) make sure that if Ry < d-(&i-:ir and K > 202 )(dJWd)Jﬂp b-Kd)
d+p

d+p+r

model system (4) has no endemic equilibrium and for Ry < (< 1), model system (4)
exhibits backward bifurcations for the treatment function 7'(I) = K. Thus the large maximal
capacity of treatment K could help the elimination of disease outbreak for the
treatment function 7'(/) = K.

Remark 3. Theorem 4.4 provides sufficient conditions when model system (4) with 7'(I) = rI
may exhibit a unique endemic equilibrium E*(S*, I'*, R*) that is globally asymptotically stable.
The model system (4) with 7'() = K undergoes a saddle-node bifurcation with respect to the

disease contact rate k.
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Treatment T(I) =1l T(I) =K
functions
Parametric | »r =0.25 r = 0.65 K =0.04
values
Ro 0.4902(< 1) 1.2745(> 1) 1.2745(> 1)
Disease-free | E(2.7429,0,0.2571) | E°(2.7429,0,0.2571) | E°(2.7429,0,0.2571)
equilibrium
Eigenvalues | —0.31,—-0.3, —0.26 —0.31,-0.3,0.14
Nature stable unstable unstable
Interior does not exist E*(1.3206,1.0940,0.5854) | E7(1.0505,1.6123,0.3372),
equilibria E3(2.5128,0.3752,0.3186)
Eigenvalues —0.1339, at E7, —
—0.4388 + 0.25714, 0.0077, —0.30, —0.6986,
—0.4388 — 0.2571¢ at
E3,0.3251,—-0.30, —0.70
Nature stable E7 is stable, E3 is saddle

Table 4: Table summarize the existence and stability of equilibria of model system (4) for
different intensity of r (when T'(I) = rI is included) and K (when T'(I) = K is included) and
other parameters values are reported in (26).

5 Bifurcation analysis

In this section, we present the bifurcation analysis of model system (4) with both the treatment
functions T'(I) = rI and T(I) = K. We mainly describe that how the interior equilibrium

point(s) appears or disappears with bifurcation parameters.

5.1 Transcritical bifurcation

In the Section 3 and Section 4, we observe that the unique endemic equilibrium appear for
Ro > 1 and the model system (4) does not possess endemic equilibrium for Ry < 1 when
treatment function 7(I) = rI. We have identified that the disease-free equilibrium (E°) is
stable for Rp < 1 and become saddle point for Ry > 1. Here, model system (4) with T'(I) = rI

produces transcritical bifurcation for parameter & which influences Rg.

Proposition 5.1. The model system (4) undergoes a transcritical bifurcation at kp =d+p+r

and EY changes its stability from stable to unstable (cf. Figure 3).
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Figure 3: It illustrates the transcritical bifurcation with respect to k and parameters value are
reported in (26). Bifurcation parameter k is plotted on horizontal axis and S-component of
equilibrium (disease-free and interior) is plotted on vertical axis. Stable and saddle disease-free
equilibrium are depicted by blue and dotted green colored horizontal lines. Blue colored curve
depicts stable interior equilibrium. Red colored vertical line is the threshold at k7 = 0.51.

We numerically show that the model system (4) undergoes a transcritical bifurcation at kr.
We choose the parameter values same as (26) and see that the model system exhibits a trans-
critical bifurcation at the threshold k7 = 0.51, where disease-free equilibrium switches stability
along with appearance or disappearance of interior equilibria in the presence of treatment strat-
egy T(I) = rI (cf. Figure 3). In Figure 3, left side of kp, no interior equilibria appear and
disease-free equilibrium point is globally stable. In the right side of kp, disease-free equilibrium

looses its stability and become saddle, and unique endemic equilibrium point appears.

5.2 Saddle-node bifurcation

This subsection investigate saddle-node bifurcation with respect to the parameter k for model
system (4) with treatment function 7°(/) = K. In Section 3, we have examined that the pa-
rameter k is responsible for the appearance/disappearance of interior equilibria. Here we derive
the transversality conditions [56] for saddle-node bifurcation induced by the parameter k. Let
ksn be the threshold parameter value of k for saddle-node bifurcation. Therefore, model system
(4) has no endemic equilibrium below kg, and two endemic equilibria beyond kg,. At ks, two

equilibrium points collide to a unique equilibrium and it is denoted by Esy,(Ssn, Isn, Rsn) (cf
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Figure 4). Define F(S,I, R) = [F1(S,I,R), F5(S,I,R), F5(S, I, R)]", where

k1S?
(S, 1 = (1-— — -
1( ) 7R) ( p)b ds SQ +OLI2 +7R7
k1S?
(S, I,R) = ————(d I-T(
2( L] ) SQ—i—aI? ( +/’L) ()7
F3(S,I,R) = pb+pl—(d+~)R+T(I). (27)
Now differentiating F' with respect to k, we obtain
In 53,
Fix(Esn; ksn) _S§n+2o;]3n
Fk’(Esn; ksn) = Foy, (Esn; ksn) = éézz_i%
F3k(Esn; ksn) 0

The transversality conditions for the aforesaid bifurcation are given by

Isnsgn

WTF Egpiksn) = 55
HBmiben) = g2 Val2,

(wg — w),

2kl 10kspn 15, S? 8kgnlsnS2
WTD2F E ;ki V.V _ ( sndsn _ snitsngn sndsngn ) _ 2
[ (Esn; ksn)(V, V)] 5§n+OJ§n (Sszn+04152n)2 (S§n+a13n)3 (wo — wr)vy
6k SZ algy, 8k I3 S22 9
+ ( ST o SN ) o
(2, + al2, 2~ (82, + alz, )1 T 1
Lo 2ksnSsn  4ksnall,Sen + 2ksn S5,
S3, +alZ, (82, + alZ,)?
8k5naI§nS§’n

m) (w2 - wl)’Ul'U2’

where V = (v1,v2,v3)T and W = (w1, wa, w3)” are the eigenvectors of Jacobian matrix J| (g, .k.,.)
and JT|( Euniksn)s T€SPectively. Since it is difficult to find out the analytical expression of en-
demic equilibrium point(s), we numerically validate the saddle-node bifurcation for K = 0.04
and other parameter values are reported in (26). For this set of parameter values, model
system (4) has two endemic equilibrium points given by Ef = (1.0505,1.6123,0.3372) and
E5 = (2.5128,0.3752,0.3186). If we decrease the parameter k, then at threshold value kg, =
0.5761804185, two endemic equilibria collide at E¥, = (2.0545,0.6223,0.3232). Eigenvectors
corresponding to eigenvalue A = 0 for Jacobian matrix J|g,,,x,,) and J |{Esn;ksn) are given by
V = [~1.68654,1.67367,0.01287]" and W = [0.80686,2.21888, 0.62066]", respectively. The first
transversality condition for saddle-node bifurcation is W7 Fy, (Esn; ksn) = 1.134 (# 0) and sec-
ond transversality condition is W [D?F (Egs,; ksn)](V, V) = —3.258 (# 0). Therefore, the model
system (4) undergoes saddle-node bifurcation at k = kg, = 0.87022010232406.
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Figure 4: It depicts the saddle-node bifurcation of model system (4) with the treatment function
T(I) = K for the bifurcation parameter k£ and other parametric values are taken from (26),
where bold curve represents the endemic equilibrium E7 and thin curve represents the endemic
equilibrium Ej.

Further, we investigate the local stability of the both endemic equilibrium (whenever exist)
of model system (4) with treatment function 7T(I) = K. We plot the maximum of real parts of
eigenvalues (max(R()\))) of the both Jacobian matrices corresponding Ef and E3 with respect to
the parameter k and other parametric values are fixed same as (26). In Figure 5, we observe that
max(R(\)) of the Jacobian at E3 is always positive, therefore, endemic equilibrium Ej is unstable
(whenever exists) (see red colored curve). Further, max(R(\)) of the Jacobian at EY is positive

when kg, < k < k, = 0.6459 and is negative when k& > k,. Therefore, for set of parametric values
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same as (26), the endemic equilibrium Ej is stable when kg, < k < k, = 0.6459 and unstable
when k > k.. Further, we observe that model system (4) has a unique endemic equilibrium E7,

at k = kgy, which is always unstable.

0.7

U e T

— | |
0'8.4 0.5 0.6 0.7 0.8 0.9 1

Figure 5: It illustrates the local stability of both endemic equilibrium points of model system
(4) with treatment function 7°(I) = K. The red colored curve represents the max(%(\)) of the
Jacobian at endemic equilibrium E3 and blue colored curve represents the max(R(\)) of the
Jacobian at endemic equilibrium E7.

6 Sensitivity analysis
6.1 Local sensitivity analysis of R,

The sensitivity analysis determines the relative importance of the different parameters in connec-
tion to Ry. The perturbation of fixed point estimation of model parameters and the uncertainty
in the model parameter estimation are the two most commonly used techniques for sensitivity
analysis. The sensitivity of a variable with respect to model parameters is usually measured by
sensitivity index. Sensitivity indices enable us to quantify the relative change in a variable when
a parameter changes. For example if we consider k, which is one of the parameters in Ry and

let § > 0 be a small perturbation corresponding to k, then we have

Ro(k +0) — Ro(k)  OR
6r, = Ro(k+6) — Ro(k) = 6 o +()5 t >z58k°.

We define the normalized sensitivity indices (si) as

_ k ok
Ry Ok

St
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For example, si; = 1 indicates that an increase (decrease) of k by y% increases (decreases) Ry
by y%. On the other hand, siy = —1 indicates that an increase (decrease) of k by y% decreases
(increases) Ry by y%. In this case, k is called a most sensitive parameter. Further, we compute

—d , —p , -

sip=1, sig=——"—"-, Siy="——"—, Slp—=————.
b T At p+r)2 T drp+r)? T d+ptr)?

Consider the parametric values same as (26) and compute the sensitivity indices in the Table 5.

Parameter Sensitivity indices of Ry

k 1

d -0.59512
“ -0.03844
r -0.76893

Table 5: Sensitivity analysis of Ry

The sensitivity indices related to & is positive and remaining three are negative as defined in Table
5. From Table 5, si, = —0.76893; which tells that increasing (decreasing) r by 10% decreases
(increases) Ry by 7.6893%. A highly sensitive parameter should carefully be estimated, because
a small variation in that parameter will lead to large quantitative changes. As it can be easily
observed from Table 5, the basic reproduction number is most sensitive to the transmission rate
k. Therefore an increase in the transmission rate k increases the spread of disease

in the community.

6.2 Global sensitivity analysis

In this section, we perform global sensitivity analysis using the methodology of Latin Hypercube
Sampling (LHS) and partial sensitivity analysis (PRCCs) to examine the dependence of Ry on
parameters. We also perform the sensitivity of parameters on the infected population for both the
treatment functions 7'(I) = rI and T'(/) = K. LHS is a stratified sampling without replacement
technique which allows for an efficient analysis of parameter variations across simultaneous
uncertainty ranges in each parameter [57]. PRCC measures the strength of the relationship
between the model outcome and the parameters, stating the degree of the effect that each
parameter has on the outcome. Thus, sensitivity analysis determines the parameters with the
most significant impact on the outcome of the numerical simulation of the model system. Note
that the PRCC values remains between -1 and 1. Positive (negative) values indicate a positive
(negative) correlation of the parameter with the model output. A positive (negative) correlation
implies that a positive (negative) change in the parameter will increase (decrease) the model

output. The larger the absolute value of the PRCC, the greater the correlation of the parameter
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with the output. To generate the LHS matrices, we assume that all the parameters are uniformly
distributed. Then using the baseline values same as (26), a total 1000 simulations of the system
(4) were carried out. From Figure 6(a), we observe that the disease contact rate k and treatment
rate r are most sensitive parameter and from Figure 6(b), we observe that the disease contact rate
k and maximal capacity of treatment K are most sensitive parameter. Figure 6(c) demonstrates

that the disease contact rate k and treatment rate r are most sensitive parameter on Ry.

PRCC
PRCC

0.5

PRCC
o

05+

Figure 6: (a) PRCC sensitivity on I, for T'(I) = rI. (b) PRCC sensitivity on I, for T'(]) = K.
(c) PRCC sensitivity on Ry.

6.3 Sensitivity analysis of the point of endemic equilibrium

In this subsection, we performed the sensitivity analysis of stable endemic fixed point. We
identify which parameters are important in contributing variability in the outcome of the endemic

fixed point.
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6.3.1 Sensitivity indices of model parameters for T (I)=rI

We demostrate the sensitivity indices of the model prameters when proportional treatment
T(I)=rI is incorporated in the model system (5). In order to determine the sensitivity indices
of the model parameters, we adopt the procedure described in Chitnis et al. [65,66]. To do this,
we replace the variables (S,I,R) to (s1, s2, $3), parameters (p, b, d, k, a, v, u, 1) to (y1, y2, ys3,
Y4, Ys, Y6, Y7, ys) and coexistence fixed point (S*,I*, R*) by (s7,s5,s5). We have the following

equilibrium equation:

fi(s1,52,83;91, Y2, Y3, Y4, U5, Y6, Y7, ¥8) = 0,i=1,2,3.
Y4257
f1(s1,52, 83591, Y2, U3, Y4, U5, Y6, Y7, ys) = (1 —y1)y2 — y3s1 — -5 T Yss3 =0,
51 + Y555
2
Ya5258
Ja(51, 82,835 Y1, Y2, Y3, Y4, Ys, Y6, Y7, Yg) = 2712 — (Y3 +yr)s2 — yss2 = 0,
81+ Y585
f3(51, 52,83, Y1, Y2, Y3, Y4, Y5, Y6, Y7, ¥s) = Y1y2 +y7s2 — (Y3 + ye)s3 + ygs2 = 0. (28)
Let
AX; = - K;, (29)
where
9s] _ofh
ail a2 ai3 9y; By
882 0 2
A= lan ax ay|,X;= |52 K;= _g?’cj ;
a a a ds _0fs
31 G32 ass 873 o
Gy = gy 2wasisi 215557 o1y = Y15 2453”5175
(s5%ys +572)  (s5%ys + 51%)2 (s5%ys + 512)  (s3%ys + 5192
2y4855] 2y4s’2‘s’{3
aiz = 6 a1 = -
v (5325 + 572)  (s5%y5 + 512)2
Yas32 2y4552832ys5 0
a2 = - —Ys —Yr —Yys, a3 =
(s5%ys +512)  (s5%ys + s7°)2
az1 = 0, azx2=yr+ys, asz = —y3— Ye. (30)

Finally, the sensitivity index of the point of coexistence equilibrium, s} , to the parameter, y; is
given by
9s; Y

e

83/]‘ S

)

1<i<3 and 1<j<8. (31)

Sensitivity indices of the model parameters for fixed coexistence point are obtained in the fol-
lowing Table 6. We have provided the details calculation of sensitivity indices in Appendix A.5.
Table 6 assure that most sensitive parameter for S* is k followed by b,r.d,«a,v,p,u; parameter
d is the most sensitive parameter for I'* followed by k,b,r,a,v,p,u; and d is the most sensitive

parameter for R* followed by b.k,v,p,r,a,pu.
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Parameter S* I* R*

p -0.09374999995 | -0.09374999998 | 0.386731146
b 0.9999999990 0.9999999995 1

d -0.2942219741 -1.659768193 -1.359208355
k -1.203713850 1.117714722 0.6267059447
«@ 0.2592614446 -0.2407385555 | -0.1349828189
~ 0.1219480732 0.1219480732 | -0.5030519267
I 0.01790417863 | -0.02761402866 | 0.01121687319
r 0.3580835726 -0.5522805733 | 0.2243374638

Table 6: Sensitivity indices of the parameters of model (5) for the stable endemic equilibrium.

6.3.2 Sensitivity indices of model parameters for constant treatment T(I)=K

We adopt the same procedure to determine the sensitivity indices of the model parameters as
discussed in subsection 6.3.1 when constant treatment is incorporated in the system. For the
parameters value mentioned in (26), we provide the sensitivity indices of the model parameters in

the Table 7. Table 7 indicates that most sensitive parameter for S* is b followed by k,d,a,p,v,K,u;

Parameter S* I* R*
p -0.09115300447 | -0.09869562105 | 0.7555884435
b 0.9722987147 1.052753292 0.8341955399
d -0.4324219700 -1.468574393 -0.5288280417
k -0.64706818917 | 0.4158523772 | 0.02838940343
Q 0.3137635375 -0.2016469285 | -0.01376602928
y 0.06832695962 | 0.07398079478 | -0.5663780515
1 0.01116319934 | -0.02125877872 | 0.06681669006
K 0.02770128601 | -0.05275329155 | 0.1658044602

Table 7: Sensitivity indices of the parameters of model (5) for the stable endemic equilibrium.

parameter d is the most sensitive parameter for I* followed by b.k,a,p,v,K,u; and b is the most

sensitive parameter for R* followed by p,v,d,K,u.k,a.

7 Numerical Simulation

In this section, we perform numerical simulations to validate our theoretical finding. Treatment
strategies, vaccination rate and infectious force function are the important factors to analyze
the disease dynamics of model system (4). Treatments are provided either proportionally or
constantly depending on the availability of infected population sizes. Infection force is affected
by the disease contact rate k and psychological or inhibitory effect parameter «.. Therefore, we

examine numerically how (i) different treatment functions; (ii) varied vaccination rates and (iii)

the disease contact rate parameter in infection force function affect the endemicity. To address
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these questions, we consider the same set of parametric values given in (26).

7.1 Effect of the treatment function and the vaccination rate:

We provide the treatment depending on availability of the infected individuals as described in
Eq. (3). We choose parametric values from the Eq. (26) to investigate the effect of treatment
strategies on the dynamic of model system (4). When the treatment function 7(I) = rI is
incorporated in model system (4), we choose k = 0.25 and other parameter values are fixed from
(26). Under this set of parametric values, for model system (4), the basic reproduction number
Ro = 0.4902 < 1. Therefore according to Theorem 3.1, model system (4) has no interior equilib-
rium point and from Theorem 4.1, there exists a disease-free equilibrium E°(2.7429,0,0.2571),
which is stable. The set of parametric values in (26) also satisfy the sufficient conditions men-
tioned in Theorem 4.3 for global asymptotic stability of disease-free equilibrium point (see,
Figure 7). Therefore, Figure 7 provides a numerical example which shows that disease does
not persist in the model system (4). Next we choose k& = 0.65 and other parametric values
are taken from (26). For this set of parametric values, we obtain Rg = 1.2745 > 1 which
is consistent with Theorem 3.1(i). Therefore, the model system (4) generates one disease-free
equilibrium point E°(2.7429,0,0.2571) which is saddle and a unique interior equilibrium point
E*(1.3206,1.0940, 0.5854) which is stable (cf. Figure 8).

When we take treatment function 7'(/) = K in model system (4), and choose the numerical
values of parameters from (26). The model system (4) has two interior equilibrium points:
E;(1.0505,1.6123,0.3372) which is stable (refer the Fig. 9) and unstable interior equilibrium
point E3(2.5128,0.3752,

0.3186).
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(a) Long term dynamics of soluation of model system (b) Phase poitrait of model system (4).
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Figure 7: It illustrates the global stability of disease-free equilibrium point £9(2.7429,0,0.2571)
of model system (4) when treatment function 7'(I) = rI, where k = 0.25 and other parametric
values are reported in (26) and Ry = 0.4902 < 1. Trajectories with different initial conditions
are approaching to E°.
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(a) Long term dynamics of soluation of model system (b) Phase poitrait of model system (4).

(4).
Figure 8: It depicts the global stability of endemic equilibrium E*(1.3206,1.0940,0.5854) of

model system (4) when Ry = 1.2745 > 1. The numerical value of parameters are given in (26).
All the trajectories with different initial conditions are approaching to E*.
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Figure 9: It shows the local stability of endemic equilibrium E7(1.0505,1.6123,0.3372) of model
system (4) with treatment function 7'(I) = K. The numerical values of parameters are given in

(26).

Figure 10: The bifurcation diagram of infected population size I vs. basic reproduction number
Ro of model system (4) when I, = 4/20 and other parametric values are given in (26). The
blue colored curve denotes stable interior equilibrium; the green colored curve indicates saddle
interior equilibrium; magenta colored horizontal line depicts disease free equilibrium and red

colored line is ..

Figure 10 is the bifurcation diagram of the basic reproduction number R versus infective size

I of model system (4).
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Blue colored curve is stable interior equilibrium, green colored dotted



curve is saddle interior equilibrium point, magenta colored horizontal line is the disease free
equilibrium and red colored horizontal line is I.. In Figure 10, treatment strategy T'(I) = K is
included above the I, line. In this case, model system produces two endemic interior equilibria.
Highly infected equilibrium point is stable. Figure 10 suggests that infection level increases
rapidly for low value of R and further, it is increasing slowly. Treatment function 7°(1) = rI is
included below the I. line. Here, disease persists when Rg > 1 as disease-free equilibrium point

is unstable, and disease die out for Ry < 1.

28



== --y----- [----- [----- p----- p----- 1'I(L);r'|"
0 005 01 015 02 02 03 035 04
|C
(a) Ro = 0.7843137255 < 1

2 T T T T T T T T
|
C -

0 AR Y e Sy G ppegepep == === g pepegegege

Figure 11: The bifurcation diagram of the infected population size of model system (4) vs.
capacity of treatment. The blue colored curve shows the locally stable equilibrium; the green
colored dotted curve indicates the saddle equilibrium; magenta colored dotted line depicts disease
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free equilibrium and red colored line is I..

Figure 11 illustrates bifurcation of the infected population size I vs. capacity of treatment
I. of model system (4). Description of Figure 11 is the same as discussed in Figure 10. Figure
11(a) and Figure 11(b) demonstrate the variation of infected population for Ry < 1 and Ry > 1,

respectively. In Figure 11(a), when Ry < 1, model system (4) has no infection for treatment
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function T'(I) = rI, but disease arises for treatment T'(I) = K. For Ry > 1, disease persists
in the both treatment functions. Figure 11 suggests that infected population decreases with

respect capacity I.. Adopting the high capacity results disease completely die out.
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Figure 12: Dependence of S, I, and R on the parameter r. Other parametric values same as
(26).

Figure 12 describes the influence of the treatment proportionality constant r on dynamics of
model system with T'(I) = rI. Figure 12, depicts that the infected population size I decreases
and susceptible population S increases when treatment rate r increases with time. This sug-
gests that the spread of disease can be decreased by increasing the treatment rate for infected

population.
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Figure 13: Dependence of S, I, and R on the parameter K. Other parametric values are same
as (26).

Figure 13 indicates the effect of treatment function 7'() = K on the dynamics of model
system with the increasing value of K. Population size of S and R are increasing and population
size of I is going down when maximal capacity of treatment K is increasing. Therefore, the

constant treatment function can be used to decrease the spread of disease.
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(26).
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Figure 15: Dependence of S, I, and R on the parameter k. Other parametric values are same as
(26).

Figure 14 shows the effect of vaccination rate p on the populations. It is clear that size of
susceptible population S and infected population I are decreasing with the increasing values
of p, while the recovered population R is increasing which is expected for any type of disease.
Figure 15 shows the variation of population sizes for different values of disease contact rate k
with treatment function 7'(I) = K. Infected population size increases when disease contact rate

k increases i.e. population being more infected which is evident from the Figure 15(b).
7.2 Effects of the infection force function

In this section, we perform the numerical simulation to explore the affect of inhibitory parameter
or crowding effect on the disease for the model system (4) with both treatment functions T'(I) =

rI and T'(I) = K. For both the cases (T'(I) = rI and T'(I) = K), we assume that the infectious

33



force is a function of the ratio of the number of the infectives to that of the susceptibles, given
by % We perform the numerical simulation for the parametric values mentioned in (26).
Figure 16(a) indicates the variation of infected population with T'(I) = rI for different values
of inhibitory parameter o and disease contact rate k. Figure 16(b) indicates the variation of
infected population with 7'(I) = K for different values of inhibitory parameter o and disease
contact rate k. In both the cases, an increase in the value of inhibitory parameter «, decreases
the endemic level of the disease, however, endemic level increases if the disease contact rate k

increases.
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(a) The infected population with repected to various  (b) The infected population with repected to various
values of k and «, where T'(I) = rI. values of k and «, where T'(I) = K.

Figure 16: The Figure shows the effect of force of infection on the endemic level of the disease
and the numerical value of parameters are taken from (26).

7.3 Effect of the treatment and infection force

Here, first we discuss the combined effect of the treatment and infection force in case of T'(I) = rI
(cf. Figure 17) and then the combined effect of the treatment and infection force in case of
T(I) = K (cf. Figure 18). Figure 17(a) shows the endemic level of the disease for different
values of treatment proportionality constant r and disease contact rate k. Infected population
level decreases by increasing the treatment rate, and increases by increasing the contact rate.
Figure 17(b) shows the endemic level for different values of treatment proportionality constant r
and inhibitory parameter «. In this Figure, we observe that infected population level decreases
when inhibitory parameter o and treatment proportionality constant r increase. Figure 18(a)
shows the effect of maximal capacity of treatment and inhibitory parameter o on the level of
endemicity and concludes that infected level decreases when maximal capacity of treatment (K)

and inhibitory parameter («) increase. Figure 18(b) shows that variation of infected population
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size with time for different value of k and K. We conclude that endemic level decreases when

maximal capacity of treatment (K) and increases when disease contact rate (k) increases.
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Figure 17: The Figure depicts the combined effect of the treatment and infection force for
T(I) = rI, where the numerical value of parameters are taken same as (26).
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Figure 18: The Figure depicts combined effect of the treatment and infection force for T'(I) = K,
where the numerical value of parameters are taken from (26).

8 Discussion

In the epidemiological literatures, it has been widely observed that the level of infectious individ-
uals have a great impact on the behavioral changes of susceptible individuals, which is modeled

by incidence rate. The incidence rate with a particular kind of treatment strategy significantly
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influence the outbreak and spread of the concerned infectious disease.

Further, in many instances, the spread and control of infectious diseases in animals or hu-
mans could be modelled by a system of nonlinear differential equations after assuming that the
population is partioned in different classes (e.g., susceptible, infected, recovered, exposed etc.).

In particular, the SIR (Susceptible-Infected—Removed) model system provides significant
theoretical and empirical basis to understand the disease mechanism in animals and humans
and therefore contributing to prevention and control of infectious diseases [4]. In this work,
we have proposed an SIR model system with ratio-dependent incidence rate under preventive
vaccination and different treatment rates. We discussed in detail in introduction that the ratio-
dependence infectious force of infection in the presence of different treatment rates might expose
the complicated dynamics (bifurcations) of proposed model systems. These bifurcations along
with associated bifurcations diagrams will certainly make us able to critically observe different
impacts and repurcussions with regard to disease spread and control.

By performing detailed stability analysis of equilibria, we have investigated the effect of
various treatment functions depending on the endemic level of the disease dynamic model system
(4). The impact of treatment strategies T(I) = rI and T(I) = K have been investigated
extensively. We have also derived the basic reproduction number (Rg) which is influenced by
parameters k, d, u, r. The existence of equilibria and its stability have been discussed in case of
both the treatment functions. Our investigation in Section 3 assures that the model system (4)
exhibits disease-free equilibrium when 7'(I) = r[ is incorporated. Disease-free equilibrium E° is
stable if Ry < 1 and saddle if Rg > 1. Further, we have derived the parametric conditions for
appearance of endemic equilibria governed by the basic reproduction Rg. Model system (4) does
not exhibit endemic equilibria if Ry < 1 and generates unique or multiple endemic equilibria
when Ry > 1 for T'(I) = rI (refer the Theorem 3.1). The model system (4) does not exhibit
any disease-free equilibrium if treatment function 7'(I) = K.

Further, we have investigated the impact of Rg on disease dynamics which is explained in
Figure 10. In Figure 10, endemicity always appear for higher impact of Rq for the treatment
strategy T(I)=K. The spread of disease can be controlled by increasing the maximal capacity of
treatment I.. In Figure 11, we have demonstrated the endemic level with respect to maximal
capacity of treatment I. for Ry < 1 as well as Rg > 1. In Figure 11(a), when Ry < 1,
endemic does not appear for the proportional treatment strategy but model system can persist
disease for constant treatment strategy which can be controlled by providing the large treatment

capacity. The basic reproduction number has significant impact on the disease dynamics of
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model system (4). It determine whether disease persists or die out. We have demonstrated that

disease appear when Ry > 1 and no endemic equilibrium occurs when Ry < 1 for proportional

d+up
d+p+r

treatment strategy. But, for Ry < < 1, endemicity appears when constant treatment
strategy is incorporated in model system. We also investigated the sufficient conditions for global
stability of unique endemic equilibrium of model system (4) using geometric approach of Li and
Muldowney [48,49] in the biologically feasible region €. During the course of bifurcation analysis
in Section 5, we have reported that the model system (4) undergoes a saddle-node bifurcation
for T(I)=K. Moreover, it is also obtained that SIR model exhibits backward bifurcation i.e.,
disease persists in the system even when the basic reproduction number Ry < 1 at low intensity
of I. for treatment function T'(I) = K (refer the Figure 11(a)). In this case, hospitals can not
provide medical treatment continuously in large scale due to limitation of medical sources and
capacity. Disease persists if the admitted infected populations exceed the capacity like bed,
medicine and other necessary medical sources provided by hospitals. Our proposed SIR model
system has multiple endemic equilibrium points when I, lies between T'(I) = K and T'(I) = rl
for Rg > 1 (see the Figure 11(b)).

The endemic population size can be controlled/reduced by applying both the treatment
strategies (T'(I) = K and T'(I) = rI) as we have described in Eq. (6) that R decreases when r
increases. Theorem 3.1 and Figure 12(b) depict that disease could be disappeared by increasing
the treatment rate r i.e., by enhancing the facilities related to medicine, medical equipments and
other medical sources, if infected populations are below the provided capacity of treatment or
availability of infected populations. In addition to this, the effects of vaccination (p) have also
been discussed on the model system (4). We obtained that the infected population size decreases
by increasing vaccination rate (p) (refer the Figure 14). From the expression of Ry, it is also
observed that R increases with the increase of disease contact rate (k) and decreases with the
increase of parameters d, p and r. The impact of disease contact rate (k) on the proposed model
system (4) have been discussed via Figure 15. Interestingly, from the infectious force expression,
disease contact rate leaves positive effect on the infectious force i.e. more susceptible population
would be transmitted into infected population which is also evident from the Figure 15.

We also discussed the impact of parameters K, k, and r on endemic level. Level of endemicity
of the model system (4) decreases with increase in maximum treatment capacity (K). Therefore,
the disease could be controlled /recovered by increasing the maximum treatment capacity. This
result is evident from the Figure 13. Further, we also observe that the value of basic reproduc-

tion number (Rg) decreases with treatment rate (r). This result shows that disease could be
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controlled by increasing the treatment rate (refer the Figure 12).

We have examined the impact of different treatment functions on the dynamic model with
fixing incident function (cf. Figure 12 and 13). We have also plotted the bifurcation diagrams
for different treatment functions depending on endemic size which are given in Figure 10 and
Figure 11.

Yuan and Li [37] proposed an SIR model system with infectious force as a function of the
ratio of the number of the infectives to that of the susceptible i.e., #ggﬂ Authors found
that if the natural death rate of the population and the recovery rate of infective individuals
are small enough, then bistability exists; in contrast, if they are large enough, then the disease
disappears. When the level of ratio of number of infective to that of susceptible is low or large
enough, the infectious force increases slowly. There are some existing works [33,37,46,47], with
nonlinear incidence and treatment rates. However, in our work, we have considered specific
ratio-dependent incidence rate, vaccination for new susceptible individuals with two different
treatment rates. We clearly discussed the impacts of different significant parameters/factors
(like, treatment rates, infectious force, vaccination rate, contact rate) on disease outbreak and
its eradication via different bifurcations, stability and basic reproduction number. Moreover, we
have made an attempt to study the comparative dynamics of existing works with our proposed
SIR model system in Table 8. We hope that different dynamical behaviour discussed in this
present study will provide us better insight of impacts of different treatment functions and
change of human behaviours during a pandemic or epidemic threat. In turn, it we could be able
to improve the disease mitigation strategies and propose the suitable health policies.

In general, in literature, we frequently come across different types of theoretical dynamics
and significant computations (bifurcations, stability of equilibrium, basic reproduction number,
k number etc.) of considered epidemic model system. Further, it is also very much true that the
observations related to these dynamics may provide important suggestions in eradication of the
concerned disease. However, it is rarely discussed that how a particular epidemic or outbreak
could be described as a consequence of such a nonlinear dynamics, except, some significant
attempts: refer, Hu et al. [31] for SARS outbreak in Toroonto, Canada in 2003 [60], Greenhalgh
and Griffiths for BSRV and Aujesky’s diseases [61]. The present study may provide useful
insight about the dynamics of diseases, for instance, flu, measles, SARS, MERS, and COVID
19 in which treatment and/or change in human behaviour play significant role.

Future Scope: This particular study provide plenty of future works in the related area.

Here, we discuss some of them specifically in three different direction: (i) Model system with
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social intervention (like, media coverage and social distancing): epidemic models to an infec-
tious disease with social distancing, quarantine, and isolation show a much more comprehensive
range of dynamical behaviours with complexity. These behaviours are controlled by the vari-
ous parameters which are related to social distancing, quarantine, and isolation. Here, we plan
to propose and study an extension of the present epidemic model with different human inter-
vention strategies in the homogeneous host population to control the spread of the epidemic
disease. (ii) Delay induced SIR model system: In fitting the model system against the real data,
we need to take into account the various types of delays between data and infection dynamics.
For example, in general, confirmed cases are reported after a significant delay, which includes
an incubation period and a delay between the actual test, its evaluation, and its appearance
in the reported statistics. Therefore, model system with such delay effects would be an inter-
esting realistic problem to be dealt. (iii) Model system with heterogeneities: The response of
people to the introduction of different intervention strategies essentially vary among different
communities and countries, which ultimately decides the impact of such public interventions.
For this, heterogeneity in host population may be one of reasons. The role of heterogeneity
in populations and their mobility have long been recognized as driving forces in the spread of
the epidemics [63,64]. The social contacts among the different age-group populations are also
accounted by the multi-group epidemic model systems. In the case of an epidemic, generally,
we observe different transmission rates in various cities and territories, depending on the cities
connectivity and density of the population of a particular city. Hence, it is much clear that
the heterogeneity of the host population also plays a vital role in the spread of the epidemic.
Here, we plan to develop a multi-group model system by structuring the host populations into

different groups according to their demographies and ages.
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Exisitng model

Model descripsion

Conclusion

Dongmei  Xiao,
Shigui Ruan [33]

Global analysis of an
epidemic model with
nonmonotone incidence
rate

Psychological effect when the number of
infectives is getting larger.

Sanling Yuan, Bo
Li [37]

Global Dynamics of an
epidemic model with a
ratio-dependent nonlin-
ear incidence rate

Psychological effect when the ratio of the
number of infectives to that of the suscep-
tibles is getting larger. Also studied the
persistence and disappearance of disease
with time.

T. K. Kar [46]

Modeling and analysis
of an epidemic model

with non-monotonic
incidence rate under
treatment

Existence and stability of equilibria are in-
vestigated for treatment strategies under
non-monotonic incidence rate. Impact of
maximum capacity of treatment on epi-
demic model.

Junhong Li, Ning
Cui [47]

Dynamic behavior for
an SIRS model with
nonlinear incidence rate
and treatment

Explored the impact of constant treat-
ment on infected population. Model sys-
tem undergoes a Hopf bifurcation and a
limit cycle exists.

Our
study

proposed

Complicated  dynam-
ics of an SIR model
with  ratio-dependent
incidence rate under
preventive vaccination
and treatment controls

1. Treatment strategies influence the dis-
appearance and persistence of equilibria
which are described in Theorem 3.1, 3.2
and the nature of stabilities which are de-
scribed in Theorem 4.2.

2. Basic reproduction number Ry in Eq.
(6) as threshold value determine the exis-
tence and stability of equilibria in Section
3 and 4.

3. Model system (4) exhibits backward
bifurcation which is evident from Figure
10.

4. Model system (4) undergoes a saddle-
node bifurcation.

5. We introduced some important remarks
of model (4) system in Section 4.

6. We perform the sensitivity analysis of
embedding parameters of basic reproduc-
tion number Ry. We also determine the
sensitivity indices of model parameters of
the endemic point of equilibrium. This
investigation assure that the disease con-
tact rate is the most sensitive parameter
for susceptible level of endemic equilib-
rium and natural death of population is
the most sensitive parameter for infected
and recovered population.

Table 8: Comparison of the findings of proposed SIR epidemic model system (4) with previously
existing work.
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A Appendix

Lemma A.1. (Descartes’ rule of signs [51]) Let P(X) = Y"1 ;a;X; be a polynomial of degree
n with real coefficients that has exactly w positive real roots, counted with multiplicities. Let
v = wvar(ag,a, ...,an) be the number of sign variations in its coefficient sequence. Then v > w

and v = w(mod2). If all the roots of P(X) are real, then v = w.

A.1 Proof of Theorem 4.1

Proof. Jacobian matrix evaluated at disease-free equilibrium point E° is given by

—d —k vy
Jpo = 0 k—d—p—r 0
0 I —d—7
Eigenvalues of the Jacobian matrix Jgo are Ay = —d, Ao =k —d —p —r and A\3 = —d — 7.

Clearly eigenvalues A1, Ay are negative due to positiveness of parameter d and . Here, A3 =

(d+ p+7r)(Ro—1). Clearly eigenvalue A3 is negative if Ry < 1. O
A.2 Proof of Theorem 4.2

Proof. The Jacobian matrix for the model system (4) is given by

d 2akST3 kS2(S2—al?)
0T e (S Fal?)? Y
3 — /
T=| s, BT d-p-T() 0 | (A1)
0 p+ T,(I) —d—

Characteristic equation at endemic equilibrium E* = (S*, I*, R*) is given by A3 4+ 01\? + g9\ +
o3 = 0, where
20kST? N kS?(al? — S?)
(S2 + al?)? (S% + al?)?
kS%(al? — 5?)
R rarT }[2d+u] + [d+
kS%(al? — S?)
(8% + al?)?

o1 = 3d+ +u+T )+,

20k S T3
(S2 + al?)?

2a0kST3
(8% + al?)? [

- [ }[2d+ﬂ+’y+T/]+[d+M+T/][d+’Y]7

o3 = d(d+'y)[ +d+u+T'}+ d(d+ p+T') + ~d. (A.2)
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After a little algebraic calculation, we obtain

20k ST3 N kS?(al? — S?)
(S?2 4+ al?)? (S%2 4 al?)?

20kST3
4ol +9] +dy[3d+

[0 3 ’
i+ T+ [y + e T+ )

kS2(al? — S2)
(52 + al2)?

0109 — 03 = [3d+

d(d+7) |24+ +u+T' (D) +9),

20k ST3 N kS?(al? — S?)
(82 + al?)? (82 + al?)?

QOékSIg / ’

Sl (d T') |24 T +4]. (A3
@ rappdtatT) |2+ +u+T (47| (A3)
Furthermore, the stability properties of different equilibria of model system (4) with both the

treatment functions (for the parameter value (26)) have been demonstrated in Table 4.

A.3 Proof of Theorem 4.3

We obtained that for the treatment rate T(I), the disease-free equilibrium E° = (S° 0, R?)
of model system (4) is locally asymptotically stable whenever Ry < 1. We apply comparison
principal [58] to show that I(t) — 0 as t — co when Ry < 1. Since (5,1, R) € R3, from the

second equation of model system (4), we observe that

dl kI1S?
— = — 1 - 1)1 A4

The linear comparison model of (A.4) is given by

% — (d+ p+ ) (Ro — 1), 1(0) = I(0). (A.5)

If Ry < 1, f(t) — 0 as t — oo. By comparison principal, I(t) — 0 as t — oo. Hence, for any
small € > 0, there exists ¢y > 0 such that for all ¢ > ¢y, I(t) < €. From the third equation of

model system (4), we obtain

dR
E:pb—i-/d—(d+’y)R+TI<pb—|—(u+r)€—(d+’y)R. (A.6)

The linear comparison model of (A.6) is given by

A~

% = pb+ (u+r)e — (d+ )R, R(0) = R(0), t > to. (A7)

From Eq. (A.7), we have R(t) — % as t — oo. Using the comparison principal [58], we obtain

R(t) — % as t — oo. Hence, for any small ¢ > 0 and t > ty, we obtain R(t) < % + . From

the first equation of model system (4), we obtain

s kIS

pb
S 1 pb—dS — 2
g~ pb—dS -

+7R<(1—p)b—d$+’y<ﬁ+a>. (A.8)
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The linear comparison model of (A.8) is given by
s

= (-pb-ds +fy(p—b +¢). $(0) = S(0). (A.9)

d+v

From Eq. (A.9), S(t) — 11 -pb+ %) as t — 0o. Using the comparison principal, we obtain
St) <21 -po+ %). Hence, for any small € > 0, and t > to, we obtain S(t) < (1 —p)b+

ypb
d+y

if Rg < 1.

) + €. Therefore, the disease-free equilibrium E° = (89,0, R?) is globally asymptotic stable

A.4 Proof of Theorem 4.4

We apply the geometric approach method of Li and Muldowney [48,49] to study the global
stability of an endemic E* = (S*,I*, R*) of model system (4) in the feasible region €. Let the
map = — f(z) be a C! function from an open and simply connected subset  C R” to R™ and

x(t) is the solution of the following differential equation
= f(z). (A.10)

Each solution z(t) of Eq. (A.10) is uniquely determined by its initial value z(0) = z¢ and
denoted by x(t, ). We formulate the problem with the following assumptions:

H1: There is a compact absorbing set I' C 2.
H2: Eq. (A.10) has a unique equilibrium z* in 2.

We find condition under which the global stability of z* with respect to € is implied by its local
stability [49].
Consider a nonsingular (}) x (}) matrix valued function  — A(z) which is C! class in Q. Under

the assumptions H1 and H2, if A~1(x) exists and is continuous for = € T, the set

2]
Z=A;A" + A%A‘l, (A.11)
X

where, the matrix Ay is the matrix obtained by replacing each a;; in A by its directional

derivative in the direction of f and is defined as

daij

(aij) = ( T )T-f(x) = Aaj;.f(x),

%:] is the second additive compound matrix of the Jacobian matrix % of f. Thus, define a

quantity @) by

@ = lim sup 1/0 w(Z(x(s,x0)))ds, (A.12)

Tr—00 moer
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where w(Z) is the Lozinskii measure [49] of Z is defined by

. T+6z]-1
1) = Jim EEE=

where 7 is the identity matrix of the same dimension as Z, € is a real positive number and |.| is

the induced matrix norm.

Lemma A.2. Under the assumptions (H1) and (H2), the unique equilibrium z* of model system
(A.10) is globally asymptotically stable in Q if there exists a function A(x) and the Lozinskii

measure w such that Q < 0.

Proof. Under the condition provided in Theorem (3.1), model system (4) has a unique endemic
equilibrium E* = (5%, I*, R*) in the interior of 2. Thus model system (4) satisfies assumption
(H2). From [48,49], it is easy to observe that the model system (4) is uniformly persistent i.e.,
there is a constant € > 0 such that every solution (S(t),(t), R(t)) of model system (4) with
initial value (S(0), 1(0), R(0)) in the interior of € is given by (5), and satisfy

lim inf |(S(¢), I(t), R(t))| > €.

t—o0
It shows the existence of a compact set I' which is absorbing set in the interior of €2. This also
verifies the assumption H1. The second additive compound matrix for the Jacobian matrix of

model system (4) at E* is given by

2] _ ofF _

Jll = g =
20k ST3 kaS?(S?—al?)
—2d — (S2a+a12)2 + (S2+al®)? w—=r 0 -
20kST3(S%2—al?) 2 kS2(S2—al?)
u+r T (5% tal®)? -7 o *2 (S2t+al?)?
20kSI3 kS2(S2—al?)
0 %tal?)? T@rarz 2 -p-r—y

Choose a compound matrix A by A:%Ig and

Z Z 3
—1_ _1ldl _ -1 2 A-1 _ 11 412 _ 20kST
AfA™ = —3 5 T3 and Z = Ay A + AJRIA-Y = [ T Zom } where Z11 = —d — (52‘1#2)2 +
kaS?(S%—al? 2
a(s2(+a126;2 = e Z12 = (0,=7), Za1 = p+ 1 and
kS? 20kST3 kS?(S?—al?)?
g0 _ | BT A=Y T mrape T ey ~ (S tal)?
2= 2akSI3 k2 kS2(S2—al?)?
S24al?)? T (S%+al?)? S2Farzz — 477
Let the vector norm in R? is given by
(21, 22, 23)| = max{|z1], |za| + |2s[}. (A.13)

Lozinskii measure w(Z) with respect to |.| can be estimated as
w(Z) < sup{g1, g2} = sup{w(Z11) + [ Z12|,w(Z22) + | Za |},
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where |Z13|, |Z21| are the matrix norms with respect to w norm. Hence we obtain

20kST3 kaS?(S?% — al?) kS?
g =wlZn)+|Zef=—d= (52 4 al?)? + (S2 +al?)? (52 +al?)? oy ka
kS?
= —<d+m) Tt ka

I/
§—7+’y—2d—u—r+ka

I
<7~ Qdtptr—q—ka),

g2 =w(Za)+ |Za]
etk = isoiﬂ)z)’ N iscjﬂ)? ! ki?;?Si;;gz)Q rAEb ey
S—II/—(d—F'y—u—r—ka). (A.14)
Therefore,

I/
w(Z) < sup{g1,92} = —7 - min{(2d +p+r—v—ka),(d+~v—p—r—ka)},
which holds along any solution (S(t), I(t), R(t)) of model system (4) with (S(0), 1(0), R(0)) €
, where 2 is the compact absorbing set. Thus, we have,

I 1, I(0)
t/o w(Z)dI < ;logm —c,

by taking limit as ¢ — co, we get
Q=i ! t(ZM[< <o
= lim supsup - ; w < -3 .

From Lemma A.2, it implies that E* = (S* I*, R*) is globally asymptotically stable in the
interior of €. This completes the proof. O

A.5 Sensitivity indices

For the parameters value given in (26) model (5) has stable endemic equilibrium
E*(1.320622933,1.094026316, 0.5853507518). Matrix A is Jacobian matrix Jg« which is given

by as follows:

—0.4819968139 —0.2903076924 0.4
A= 0.1819968138 —0.2196923076 0 (A.15)
0 0.21 -0.7

In order to find the solution of linear system (29), we have to calculate the vector K for

j=1,2,..8.
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Sensitivity index of p

For j=1, vector K; can be obtain as follows:

-0.9
=10
0.9

—0.6190419994
—0.5128248355
1.131866835

—hn
Ki=1]0
Y1
Now, using (A.16) and (A.15) in (29), we get solution vector
sy
dy1
0s3
X1 = 3y? -
dst
Oy

Sensitivity index of p is obtained as follows:

* Os* Y1 0.2
o= L =[-0.6190419994] |
Tp dy1 st { M 1320622033

* os* Y1 0.2

s5 2

= = [—0.5128248355] | ——

ks g1 sy | ] [1.094026316

. dst 1 0.2

2= 30 = [1.131866835] |~
P Dy, " 5% : } 05853507518

Sensitivity index of b

For j=2, vector K» can be obtain as follows:

1-— Y1 0.8
Ky = 0 =10
Y1 0.2
Now, using (A.19) and (A.15) in (29), we get solution vector
0s}
T 1.467358813
Xp= | 2| = | 1.215584795
Os3 0.6503897243
Oya

Sensitivity index of b is obtained as follows:

s as7 Yo 0.9
1 1
- 22 1.467358813] | ——
™ By st [ ] [1.320622933
s% 0s5 Y2 0.9
2 2
- 22 1 215584795) | ——>
o By 55 [ ] [1.094026316
sk 0s5 Y2 0.9
3 2
- 2 10.6503897243] | 0
o By 5% [ ] [0.5853507518

Sensitivity index of d

For j=3, vector K3 can be obtain as follows:

ng —SS =

—1.320622933
—1.094026316
—.2853507518
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] = —0.09374999995.
] = —0.09374999998.

} = 0.3867311460.

] = 0.9999999990.

] = 0.9999999995.

|-t

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)

(A.22)



Now, using (A.22) and (A.15) in (29), we get solution vector

o —1.295187621
X3 = | 52| = | —6.05276694 (A.23)
0} —2.652045442
Jys
Sensitivity index of d is obtained as follows:
Yl = gz;gj = [~1.295187621] [1_32(;)6'32933} = —0.2942219741.
v 92 W 16 o5am6604) [03] — —1.659768193
d dy3 " s ' 1.094026316 ' '
V5= 92 W 1 erona5a49) [03} — —1.359208355
d dys " s ' 0.5853507518 ‘ '

Sensitivity index of k

Taking j=4, vector K4 is given by as follows:

—sThem | [~0.8583808788
Ky=| _si%5 | = | 0.8583898788 (A.24)
812+y5852 O
0

Now, using (A.24) and (A.15) in (29), we get solution vector
Os7

9 —2.445618639

Xy= | 52| = | 1.881245107 (A.25)
0s5 0.5643735322
0Ya

Sensitivity index of k is obtained as follows:

st 0s] ya 0.65
1 1
= = [—2.445618639] | = | = —1.20371385.
Tk ys st [ ] [1.320622933}
s% 053 Y4 0.65
2 2
= 2 = [1.881245107] | | = 1.117714722.
Tk Oys s [ ] {1.094026316]
st 0s3 Y4 0.65
3 2 _ _
= 2 = [0.5643735322 = 0.6267059447.
Tk Oys " sh [ ] [0.5853507518}

Sensitivity index of «

For j=5, vector K5 takes the following form:

*2  x3

e 0.3004364576
Ky = |__wmsi®s3® | = [ —-0.3004364576 (A.26)
(51‘2+y53;2)2 0
0

Now, using (A.26) and (A.15) in (29), we get solution vector

Os¥
T 0.8559665236
X5 = |52 | = |-0.6584357876 (A.27)
055 —.1975307363
0ys
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Sensitivity index of « is obtained as follows:

st 0s] ys 0.4

v g 053 Y5 _ [—0.6584357876] [0'4] = —0.2407385555.
Oys s5 1.094026316

NS = Os5 Y5 _ [—0.1975307363] [0'4} = —0.1349828189.
Oys 85 0.5853507518

Sensitivity index of ~

For j=6, vector K¢ can be determined as follows:

s 0.5853507518
Ke=|0 | = 0 (A.28)
—55 —0.5853507518

Now, using (A.28) and (A.15) in (29), we get solution vector

9ok
0s}

706 0.4026185553

X = |52 | = | 03335360033 (A.29)
053 —0.7361545587
Jys

Sensitivity index of v is obtained as follows:

* 0sT e 0.4
51 1
= .— =0.4026185553| | ———————=| = 0.1219480732.
Rt dys st | ] [1.3206229332]
5= 92 Y6 g a5ama60033] |2k | Z 0.1219480732
v dye s 1.094026316 | '
% OS5 U5 107361545587 |~k | = 05030519267
™ By 5% ' 0.5853507518 ' '
(A.30)
Sensitivity index of u
For j=7, vector K7 can be obtained as follows:
0 0
Kr=|—s5| = |-1.094026316 (A.31)
53 1.094026316
Now, using (A.31) and (A.15) in (29), we get solution vector
0s7
7 2.364466889
X7 = |52 | = |-3.021047405 (A.32)
Os3 0.6565805155
Oy7

Sensitivity index of p is obtained as follows:

* sy yr 0.01

= L 20— 19 364466889] | —————— | = 0.01790417863.
T Byr st [ I 1320622933

x sy yr 0.01

Sg 2

= 2L = [-3.021047405] | ————— | = —0.02761402866.

T sy L ] [1.094026316}

x 0s% yr 0.01

po= 2.5 =[0.6565805155] | ——————| = 0.01121687319.
Ta sy | /| 05853507518
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For

Sensitivity index of r

j=8, vector Kg can be obtained as follows:

0 0
Kg= |—s3| = | —1.094026316 (A.33)
s 1.094026316

Now, using (A.33) and (A.15) in (29), we get solution vector

8*
e 2.364466889
Xg= | 52| = |-3.021047405 (A.34)
053 0.6565805155
Oys

Sensitivity index of r is obtained as follows:

o ds* 0.2
S 821.%5 — [2.364466889] [1320622933} = 0.3580835726.
8 91 .

v o= 028 1 g 001047405] | — 02| Z _.5522805733.
Dys 55 1.094026316

2= 9% 88 10 6565805155] | ——02 | — 0.204337463s.
Dys 55 0.5853507518
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