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Abstract: In this work, we investigate the continuum of one-sign solutions of the nonlinear one-
dimensional Minkowski-curvature equation

´
`

u1{
a

1 ´ κu12
˘1

“ λ f pt, uq, t P p0, 1q

with nonlinear boundary conditions up0q “ λg1pup0qq, up1q “ λg2pup1qq by using unilateral global
bifurcation techniques, where κ ą 0 is a constant, λ ą 0 is a parameter g1, g2 : r0,8q Ñ p0,8q are
continuous functions and f : r0, 1s ˆ r´ 1?

κ
, 1?
κ
s Ñ R is a continuous function. We prove the existence

and multiplicity of one-sign solutions according to different asymptotic behaviors of nonlinearity near
zero.
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1. Introduction

In this work we are concerned with the existence and multiplicity of one-sign solutions of the non-
linear boundary value problem

´

´ u1

?
1 ´ κu12

¯1

“ λ f pt, uq, t P p0, 1q,

up0q “ λg1pup0qq, up1q “ λg2pup1qq,

p1.1q

where κ ą 0 is a constant, λ ą 0 is a parameter, f : r0, 1s ˆ R Ñ R is a continuous function
and g1, g2 : r0,8q Ñ p0,8q are continuous functions. This is the one-dimensional versional of the
nonlinear problem associated with the Minkowski curvature equation on an annulus

´div
´ ∇u

a

1 ´ κ|∇u|2

¯

“ λ f p|x|, uq in 0 ă R1 ă |x| ă R2,

u “ λg1puq on |x| “ R1, u “ λg2puq on |x| “ R2.

p1.2q
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It’s well-known that the Minkowski curvature equation play an important role in differential geometry
and in the theory of relativity, see the classical paper of Bartnik and Simon[1], Cheng and Yao[8] and
Grenier[18] and the references contained therein.

Note that some general solvability results and global structure of solutions for (1.1) and (1.2) were
proved under the assumption that f is continuous with the case g1puq “ g2puq “ 0, see [1, 2, 3, 4,
9, 10, 12, 13, 23]. 2009, Bereanug and Mawhin [5] obtained the existence results of solutions for
(1.1) with

?
κ “ 1 and nonhomogeneous linear boundary conditions up0q “ A, up1q “ B under

the condition |B ´ A| ă 1 ([5, Theorem 1]). Yet, as all spacelike solutions are uniformly bounded,
however, there is no little information for the existence of positive solution of (1.1) under the nonlinear
boundary conditions. Therefore, it may be interesting to investigate in such cases the existence of
positive solutions.

When κ “ 0, the problem (1.1) can degenerate to the following nonlinear problem

´ u2 “ λ f pt, uq, t P p0, 1q,

up0q “ λg1pup0qq, up1q “ λg2pup1qq,
p1.3q

which has been studied by Dunninger and Haiyan Wang[16] (the method of lower and upper solu-
tions and degree theory). Second-order ordinary differential equation with different nonlinear bound-
ary value conditions has been studied by many authors using different methods, see Drame and Costa
[15](phase plane analysis), Shivaji et al. [17, 19] (time maps technique, the method of sub-supersolutions),
Ma and Wang [24](degree theory and bifurcation techniques) and their references.

Motivated above papers, we establish the continuum of positive solutions of the problem (1.1) by
the bifurcation theorem under the following assumptions

(C1) f P C
`

r0, 1s ˆ r´ 1?
κ
, 1?
κ
s,R

˘

, and g1, g2 : r0,8q Ñ p0,8q are continuous.

(C2) there exist g0
1, g

0
2 P p 4

π2 , 1q, such that lim
sÑ0

g1psq

s “ g0
1 and lim

sÑ0

g2psq

s “ g0
2.

(C3) f pt, sqs ą 0 for any pt, sq P r0, 1s ˆ r´ 1?
κ
, 1?
κ
s with s ‰ 0, and there exists f0 P r0,8s such

that

f0 “ lim
sÑ0

f pt, sq

s
uniformly for t P r0, 1s.

(C4) f pt, sqs ą 0 for any pt, sq P r0, 1s ˆ r´ 1?
κ
, 1?
κ
s with s ‰ 0, and there exist f̄0, f̄ 0 P p0,8q with

f̄0 ‰ f̄ 0, such that

f̄0 “ lim inf
uÑ0

f pt, uq

u
, f̄ 0 “ lim sup

uÑ0

f pt, uq

u
.

Let P` “ tu P C1r0, 1s | uptq ě 0, t P r0, 1su and P´ “ tu P C1r0, 1s | uptq ď 0, t P r0, 1su. We also
add the point 8 to the work space R ˆ C1r0, 1s, and denote the closure set of nontrivial solution pair
sets of (1.1) as follows

C :“ tpλ, uq P Rˆ C1r0, 1s | u is a nontrivial solution of (1.1) for some λu.

Then we will prove the following results:
Theorem 1.1 Assume that (C1)-(C3) hold.
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(i) If f0 P p0,8q, then the solution set C contains two subcontinuum C` and C´ bifurcating from
the trivial line at the pπ

2

f0
, 0q, which satisfies Cν Ď pRˆ Pνq Y pπ

2

f0
, 0q and λ|g1pup0qq ´ g2pup1qq| ă 1?

κ

for any pλ, uq P Cνzpπ
2

f0
, 0q, ν “ t`,´u.

(ii) If f0 “ 8, then the solution set C contains two subcontinuum C` and C´ bifurcating from the
trivial line at p0, 0q, which satisfies Cν Ď pR ˆ Pνq Y p0, 0q and λ|g1pup0qq ´ g2pup1qq| ă 1?

κ
for any

pλ, uq P Cνzp0, 0q, ν “ t`,´u.
(iii) If f0 “ 0, then the solution set C contains two subcontinuum C` and C´ bifurcating from the

trivial line at p8, 0q, which satisfies Cν Ď pRˆ Pνq Y p8, 0q and λ|g1pup0qq ´ g2pup1qq| ă 1?
κ

for any
pλ, uq P Cν, ν “ t`,´u.

Theorem 1.1 give the continuum of one-sign solutions of (1.1) according to the nonlinearity f is
asymptotic linear growth, superlinear growth and sublinear growth near at u “ 0, respectively. A
naturally interesting question is that how to bifurcate the one-sign solution subcontinuum Cν when
lim inf

uÑ0

f pt,uq

u ‰ lim sup
uÑ0

f pt,uq

u , i.e. f is jumping near u “ 0. A typical example is that f pt, uq “ |u|

satisfying ´1 “ lim inf
uÑ0´

f pt,uq

u ‰ lim sup
uÑ0`

f pt,uq

u “ 1. The following Theorem gives the continuum

structure of one-sign solutions of (1.1) under the nonlinearity f is jumping near u “ 0.
Theorem 1.2 Assume that (C1)-(C2) and (C4) hold. Then the solution set C contains two sub-
continuums C ν bifurcating from the trivial line at the interval r π

2

f̄ 0 ,
π2

f̄0
s ˆ t0u, which satisfies C ν Ď

pR ˆ Pνq Y tr π
2

f̄ 0 ,
π2

f̄0
s ˆ t0uu and λ|g1pup0qq ´ g2pup1qq| ă 1?

κ
for any pλ, uq P Cνztr π

2

f̄ 0 ,
π2

f̄0
s ˆ 0u,

ν “ t`,´u.
Remark 1.1 Note that the condition λ|g1pup0qq ´ g2pup1qq| ă 1?

κ
is a sufficient condition for the

existence of solutions of (1.1) under the assumption f is continuous, see Corollary 1 of [5]. Therefore,
compared with that the one-sign solution subcontinuum Cν is unbounded in λ-direction under the
homogeneous linear boundary conditions up0q “ 0, up1q “ 0 (see [9, 12, 13, 23]), the subcontinuum
Cν of (1.1) is more complex, not only depend on the nonlinearity f , but also depend on the boundary
function g1 and g2. we should divide more details about g1, g2 to obtain the direction of the connected
branch Cν.

In addition, g0
1, g

0
2 P p 4

π2 , 1q is a restricted condition for the eigenvalues of corresponding eigenvalue
problem of (1.1) don’t depend on the boundary(the more details, see reference [7]), which provides a
sufficient condition for the existence of one-sign solution components Cν of (1.1). The best condition
looks an interesting but difficult problem.
Remark 1.2 Compared with the results of [2, 3, 5, 9], Theorem 1.1 and Theorem 1.2 obtain the con-
tinuum structure of the set of one-sign solutions of (1.1), it gives a clear description of the evolution
process of the components of positive solutions as the parameter λ increases. The study of global be-
havior of the positive solution curves is very useful for computing the numerical solution of (1.1) as
it can be used to guide the numerical work. For example, it can be used to estimate the u-interval in
advance in applying the finite difference method, and it can be used to restrict the range of initial values
we need to consider in applying the shooting method.
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As a first step, we present that problem (1.1) can always be reduced to an equivalent one, where
the singularity on the left of the equation has been removed and the function on the right is bounded,
actually vanishes outside the rectangle r0, 1sˆr´ 1?

k
, 1?

k
s, and agree with f in a neighborhood of s “ 0.

Such a reduction, which is achieved by quite elementary estimates, is depending on bifurcation theory.
In fact, we replace the equation in (1.1) by

´u2 “ λ f̃ pt, uqhpu1q, p1.4q

where

hpsq “

#

p1 ´ κs2q
3
2 , if |s| ď 1?

κ
,

0, if |s| ą 1?
κ

p1.5q

has compact support and f̃ is bounded. Note that define the function f̃ : r0, 1s ˆ R Ñ R by setting ,
for any t P r0, 1s,

f̃ pt, sq “

$

’

&

’

%

f pt, sq, if ´ 1?
κ

ď s ď 1?
κ
,

linear, if s P p 1?
κ
, 2?
κ
q Y p´ 2?

κ
, 1?
κ
q,

0, if |s| ě 2?
κ
.

p1.6q

Observe that, with the context of one-sign solutions, problem (1.1) is equivalent to the same problem
with f by f̃ . Indeed, if u is a one-sign solution, then }u1}8 ă 1?

κ
and hence }u}8 ă 1?

κ
. In the sequel

of the proof we shall replace f with f̃ ; however, for the sake of simplicity in the notation, the modified
function f̃ will still be denoted by f . By the similar argument of [9, Theorem 2.3] and [5, Corollary
1], it follows that u P C2r0, 1s is a one-sign solution of (1.1) if and only if it is a one-sign solution of
the following nonlinear problem

´ u2ptq “ λ f pt, uptqqhpu1ptqq, t P p0, 1q,

up0q “ λg1pup0qq, up1q “ λg2pup1qq.
p1.7q

and λ|g1pup0qq ´ g2pup1qq| ă 1?
κ
.

Next, we will show that the one-sign solution branch of (1.1) bifurcate to the trivial line at pπ
2

f0
, 0q and

develop a bifurcation approach to treat the case f0 “ 8 and f0 “ 0, respectively. It’s very crucial to
this approach is that the construction of a sequence of functions f rns which is asymptotic linear growth
at 0 and satisfies

lim
nÑ8

sup
sPr0,8q

| f rnspt, sq ´ f pt, sq| “ 0, p f rnsq0 Ñ 8 presp. p f rnsq0 Ñ 0q uniformly for t P r0, 1s.

By means of the corresponding auxiliary equations, we obtain a sequence of unbounded components
tCrns

` u via a unilateral global bifurcation theorem, see [20, Section 6.4, 6.5,] or [12, 23] and this enables
us to find an unbounded component C` (resp. C` ) satisfying

C` Ă lim sup
nÑ8

Crns

` presp.C` Ă lim sup
nÑ8

Crns

` q

and joining p0, 0q (resp. p8, 0q) with p8, 1?
κ
q. Whereafter, we introduce the one-sign solution compo-

nent of (1.1) bifurcate to the interval r π
2

f̄ 0 ,
π2

f̄0
s ˆ t0u.
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From Theorem 1.1-Theorem 1.2 and above discussion, we give the following existence results of
one-sign solution of (1.1).
Corollary 1 Assume that (C1)-(C3) hold and g1, g2 satisfy one of the following assumptions: (a)
|g1 ´ g2| ą 0; (b) g1 “ g2 is strictly monotone function on r0, 1?

κ
s; (c) g1pup0qq “ g2pup1qq, in this

case, denote 1?
κ|g1´g2|

“ `8.

(i) If f0 P p0,8q and |g1 ´ g2| ă
f0?
κπ2 for any u P r0, 1?

κ
q, then for any λ P pπ

2

f0
, 1?
κ|g1´g2|

q, the
problem (1.1) has at least two one-sign solution u` ą 0 and u´ ă 0 in p0, 1q such that pλ, uνq P Cν,
here ν “ t`,´u.

(ii) If f0 “ 8, then for any λ P p0, 1?
κ|g1´g2|

q, the problem (1.1) has at least two one-sign solution
u` ą 0 and u´ ă 0 in p0, 1q such that pλ, uνq P Cν.

(iii) If f0 “ 0 and there exist λ˚ ą 0 such that problem (1.7) has at least four one-sign solution
u`

1 ą 0, u`
2 ą 0, u´

1 ă 0 and u´
2 ă 0 in p0, 1q such that pλ, uνi q P Cν for any λ P pλ˚,8q, here

i “ 1, 2. Moreover, if 1?
κ|g1´g2|

ă λ˚, then problem (1.1) has no one-sign solution; if 1?
κ|g1´g2|

“ λ˚,
then problem (1.1) has at least two one-sign solution u` ą 0 and u´ ă 0 in p0, 1q such that pλ, uνq P Cν
with λ “ λ˚; if 1?

κ|g1´g2|
ą λ˚, problem (1.1) has at least four one-sign solution u`

1 ą 0, u`
2 ą 0,

u´
1 ă 0 and u´

2 ă 0 in p0, 1q such that pλ, uνi q P Cν for any λ P pλ˚,
1?

κ|g1´g2|
q.

Corollary 2 Assume that (C1)-(C2) and (C4) hold. If g1, g2 satisfy one of the following assumptions:
(i) 0 ă |g1 ´ g2| ă

f̄0?
κπ2 ;

(ii) g1 “ g2 is strictly monotone function on r0, 1?
κ

and |g1pup0qq ´ g1pup1qq| ă
f̄0?
κπ2 ;

(iii) g1pup0qq “ g2pup1qq, in this case, denote 1?
κ|g1´g2|

“ `8,

then for any λ P pπ
2

f̄0
, 1?
κ|g1´g2|

q, the problem (1.1) has at least two one-sign solution u` ą 0 and u´ ă 0
in p0, 1q such that pλ, uνq P C ν, here ν “ t`,´u.

Finally, we give some examples to illustrate the main results according to different nonlinear bound-
ary function g1 and g2.

The rest of the paper is organized as follows. In Section 2, we introduce some properties of the
superior limit of a certain infinity collection of connected sets and preliminary results. Section 3
prove Theorem 1.1 and Corollary 1 and give some examples to illustrate the main results according to
different nonlinear boundary function g1 and g2. In Section 4, we prove Theorem 1.2, Corollary 2 and
introduce some examples as application.

2. Preliminaries and superior limit and component

Let E be a real Banach space with norm } ¨ }, and let S be the closure of nontrivial solutions set of
the following equation

u “ λLu ` H0pλ, uq, u P E, p2.1q

where λ varies in R, L : E Ñ E is a linear completely continuous operator, H0 : R ˆ E Ñ E be
completely continuous and H0pλ, uq “ ˝p}u}q at u “ 0 uniformly on bounded λ intervals.

Let Λ denote the set of real eigenvalues of equation

u “ λLu, u P E.
5



Suppose that µ P Λ has geometric multiplicity 1, let E0 be a closed subspace of E such that E “

spantφµu ‘ E0, where φµ is an eigenfunction corresponding to µ with }φµ} “ 1.
We give the bifurcation phenomenon of solutions for (2.1).

Lemma 2.1 ([14, 20, 25]) If µ P Λ isolated and satisfying

degpI ´ pµ´ εqL, Brp0q, 0q ‰ degpI ´ pµ` εqL, Brp0q, 0q for any ε ą 0 small enough,

where Brp0q “ tu P E | }u} ă ru, then pµ, 0q is a bifurcation point for equation (2.1). Moreover,
S possesses a maximal continuum Cµ such that pµ, 0q P Cµ and Cµ can be decomposed into two
sub-continua C `

µ and C ´
µ , such that each of them either

(i) meets infinity in Rˆ E; or
(ii) meets pµ̃, 0q, where µ ‰ µ̃ P Λ; or
(iii) contains a point pλ, vq P Rˆ pE0zt0uq.
Let M be a metric space and tCn | n “ 1, 2, ¨ ¨ ¨ u a family of subsets of M. Then the superior limit D

of tCnu is defined by

D :“ lim sup
nÑ8

Cn “ tx P M | D tnku Ă N, xnk P Cnk , such that xnk Ñ xu. p2.2q

A component of a set M means a maximal connected subset of M, see [11] for the detail.
Lemma 2.2 ([11, Theorem 1.2],[22]) Let E be a Banach space and let tCnu be a family of closed
connected subsets of E. Assume that

(i) there exist zn P Cn, n “ 1, 2, ¨ ¨ ¨ and z˚ P E such that zn Ñ z˚;
(ii) lim

nÑ8
rn “ lim

nÑ8
supt}u} | u P Cnu “ 8;

(iii) for every R ą 0, p
Ť8

n“1 Cnq X BR is a relatively compact of E, BR “ tu P E | }u} ă Ru.
Then there exists an unbounded component C in D and z˚ P C .
Lemma 2.3 ([21, Theorem 3],[11], [12]) Let E be a Banach space and a P R be a constant. Let tCnu

be a family of connected subsets of Rˆ E. Assume that
(A1) Cn X pp´8, as ˆ Eq “ H;
(A2) there exist 0 ă σ ă r ă 8 and b P pa,8q such that

Cn X tpµ, uq | µ ě b ´ σ, r ´ σ ď }u} ď r ` σu “ H; p2.3q

(A3) µk ą a for all k P N, µk Ñ `8 and Cn meets pµn, 0q and infinity in pra,8q ˆ EqzΩb,r, here
Ωb,r :“ pr0,8q ˆ Eqztpµ, uq P rb,8q ˆ E | }u} ă ru;

(A4) for every R ą 0, p
Ť8

n“1 Cnq X BR is a relatively compact of E.
Then there exists an unbounded component C in D such that

(a) both C XΩb,r and C X ppra,8q ˆ EqzΩb,rq are unbounded;
(b) C X tpµ, uq | µ ě b, }u} “ rqu “ H.
Let X “ Cr0, 1s be the Banach space with }u}8 “ max

tPr0,1s
|uptq|.

First, it’s easy to verify that problem (1.7) is equivalent to the integral equation

uptq “ λpRpτpuptqqq ` λ

ż 1

0
Gpt, sq f ps, upsqqhpu1psqqds, p2.4q
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where τ : X Ñ R2 with τpuptqq “ pup0q, up1qq is the trace operator, the operator R : R2 Ñ X is defined
by

Rpx, yq “ g2pyqt ` g1pxqp1 ´ tq, p2.5q

and Gpt, sq is the Green’s function of linear problem ´u2ptq “ 0, t P p0, 1q, up0q “ 0, up1q “ 0 with

Gpt, sq “

#

p1 ´ tqs, 0 ď s ď t ď 1,
p1 ´ sqt, 0 ď t ď s ď 1.

p2.6q

It’s easy to verify that Gpt, sq satisfies the following properties:
(i) Gpt, sq ě 0, @ t, s P r0, 1s and Gpt, sq ą 0, @ t, s P r 1

4 ,
3
4s;

(ii) Gpt, sq ě 1
4Gpz, sq, @ t P r 1

4 ,
3
4s, z, s P r0, 1s;

and the function Rpx, yq satisfies the following properties:
(1) g2pyqt ` g1pxqp1 ´ tq ě 0 @ t P r0, 1s, x, y ě 0;
(2) g2pyqt ` g1pxqp1 ´ tq ď g2pyq ` g1pxq, @ t P r0, 1s, x, y ě 0;
(3) g2pyqt ` g1pxqp1 ´ tq ě 1

4rg2pyqz ` g1pxqp1 ´ zqs, @ t P r 1
4 ,

3
4s, z P r0, 1s, x, y ě 0.

Clearly, (2.4) is equivalent to the fixed point equation

λAu “ u,

where A : X Ñ X is defined by

Auptq “ Rpτpuptqqq `

ż 1

0
Gpt, sq f ps, upsqqhpu1psqqds. p2.7q

Define the cone K “ tu P X | u ě 0u and K1 “ tu P X | u ě 0, min
tPr1{4,3{4s

uptq ě 1
4}u}8u, then K is a

nonnegative cone of X with intK ‰ 0 and K1 is a positive cone of X. It’s not very difficult to verify that
ApKq Ă K1 and A : K1 Ñ K1 is completely continuous, see [16, Lemma 3.2].

Let ρ ą 0 is a constant and let us consider the linear eigenvalue problem

´ u2ptq “ λρuptq, t P p0, 1q,

up0q “ λg0
1up0q, up1q “ λg0

2up1q.
p2.8q

It’s easy to verify that (2.8) has only trivial solution u ” 0 if λ ď 0, and (2.8) has the nontrivial
solutions φkptq “ sinpkπtq which changes its sign k ´ 1 on p0, 1q with λ “ λk “

pkπq2

ρ
, k “ 1, 2, ¨ ¨ ¨ if

λ ą 0. In addition, it’s not difficult verify that if λ “ 1
g0

1
, then the boundary value condition degenerates

to up0q P R, up1q “ 0, (2.8) has nontrivial solution if and only if 1
g0

1
“ pkπq2 or 1

g0
1

“ p
p2k´1qπ

2 q2,

k “ 1, 2, ¨ ¨ ¨ ; if λ “ 1
g0

2
, then the boundary value condition degenerates to up0q “ 0, up1q P R, (2.8) has

nontrivial solution if and only if 1
g0

2
“ pkπq2.

Thus, under the condition (C2), g0
1, g

0
2 ą 4

π2 implies that 1
g0

1
, 1

g0
2

ă π2

4 , which means that (2.8) has

no other eigenvalues except for λ “ λk. Especially, the principal eigenvalue of (2.8) is π
2

ρ
and the

corresponding eigenfunction φ1ptq “ sin πt ą 0, t P p0, 1q. The more general spectrum results of (2.8),
we refer to the reference [7].
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3. The continuum bifurcate from point in the case of f is linear near zero

Let E “ C1r0, 1s denote the Banach space equipped with the norm }u} “ maxt}u}8, }u1}8u.
Let Lρ : E Ñ E be the linear operator

Lρuptq “ R0pτpuptqqq `

ż 1

0
Gpt, sqρupsqds, t P r0, 1s,

here R0pτpuptqqq “ g0
2up1qt ` g0

1up0qp1 ´ tq, ρ ą 0 is a constant. Then Lρ : E Ñ E is completely
continuous and the linear eigenvalue problem (2.8) is equivalent to the operator equation

u “ λLρpuq,

so that the eigenvalues of the problem (2.8) are precisely the characteristic values of Lρ.
Now we give the important proposition of the bifurcation from trivial solution axis.

Proposition 3.1 Suppose that (C1)-(C3) hold. If f0 P p0,8q, then the pair pπ
2

f0
, 0q is a bifurcation point

of problem (1.7). Moreover, there exist two unbounded continua C ` and C ´ of the set of nontrivial
solutions of problem (1.7) in Rˆ E bifurcating from pπ

2

f0
, 0q, such that C ν Ď rtpπ

2

f0
, 0qu Y pRˆ Pνqs.

Proof Let ζ P Cpr0, 1s ˆ R, Rq and ξ1, ξ2 P CpR,Rq such that

f pt, uq “ f0u ` ζpt, sq, g1puq “ g0
1u ` ξ1puq, g2puq “ g0

2u ` ξ2puq. p3.1q

Clearly, lim
|s|Ñ0

ζpt,sq

s “ 0 uniformly for t P r0, 1s. Let ζ̃pt, uq :“ max
0ď|s|ďu

|ζpt, sq| for any t P r0, 1s, then ζ̃ is

nondecreasing with respect to u and lim
|s|Ñ0

ζ̃pt,sq

s “ 0 uniformly for t P r0, 1s. It follows that

ˇ

ˇ

ˇ

ζpt, uq

u

ˇ

ˇ

ˇ
ď
ζ̃pt, |u|q

|u|
ď
ζ̃pt, }u}q

}u}
Ñ 0 as }u} Ñ 0.

Note that (C2) implies that lim
|s|Ñ0

ξipsq

s “ 0, i “ 1, 2. Denote R̃pτpuqq “ Rpτpuqq ´ R0pτpuqq, then

R̃pτpuqq “ ξ2pup1qqt ` ξ1pup0qqp1 ´ tq Ñ 0 as u Ñ 0. Let us set, for convenience, kpvq “ hpvq ´ 1 for
v P R. It’s easy to see that

lim
vÑ0

kpvq

v
“ 0. p3.2q

Define the operator H : C1r0, 1s Ñ C1r0, 1s as follows

Hpuptqq “ R̃pτpuptqqq `

ż 1

0
Gpt, sqr f0ukpu1q ` kpu1qζps, uq ` ζps, uqsds. p3.3q

It’s easy to verify that lim
}u}Ñ0

}Hpuq}

}u}
“ 0.

Let us consider the problem

uptq “ λRpτpuptqqq ` λ

ż 1

0
Gpt, sq f ps, upsqqhpu1psqqds

“ λrR0pτpuptqqq `

ż 1

0
Gpt, sq f0upsqdss ` λHpuq

“ λL f0uptq ` λHpuq

p3.4q
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as a bifurcation problem from the trivial solution axis. Then (3.4) is equivalent to a completely contin-
uous operator equation from Rˆ E into E as follows:

uptq “ λrL f0uptq ` Hpuptqqs. p3.5q

Clearly, λHpuq “ ˝p}u}q near u “ 0 uniformly on bounded λ intervals. By a similar argument of
[12, 13, 23] and applying Lemma 2.1 to problem (1.7), pπ

2

f0
, 0q is a bifurcation point of (1.7) and there

exists a continuum C of nontrivial solutions of problem (1.7) bifurcating from pπ
2

f0
, 0q. Since p0, 0q is

the only solution of problem (1.7) for λ “ 0, it yields that C X pt0u ˆ Eq “ H and

C Ď rtp
π2

f0
, 0qu Y pRˆ P`q Y pRˆ P´qs

and C is unbounded in Rˆ E.
By Lemma 2.1, C can be split into C ` and C ´ such that C `XC ´ “ tpπ

2

f0
, 0qu. According the similar

argument of [13, Theorem 1.1] and [20, Sections 6.4-6.5], we can show C ` Ď rtpπ
2

f0
, 0qu Y pRˆ P`qs

and C ´ Ď rtpπ
2

f0
, 0qu Y pR ˆ P´qs. Moreover, it conclude that C ν is a unbounded continua of the

set of nontrivial solutions of (1.7) joining pπ
2

f0
, 0q to infinity, and C νztpπ

2

f0
, 0qu Ă Pν, ν P t`,´u.

This together the fact }u}8 ă 1?
κ

for any fixed pλ, uq P C ν implies that the projection of C ν on R is
unbounded. Therefore,

p
π2

f0
,`8q Ď ProjRpC νq, p3.6q

here ProjRpC νq is the projection of C ν on R. l

Now, we will develop a bifurcation approach to treat the case f0 “ 8 (resp. f0 “ 0).
Proposition 3.2 Suppose that (C1)-(C3) hold. If f0 “ 8, then the pair p0, 0q is a bifurcation point
of problem (1.7). Moreover, there exist two unbounded continua C ` and C ´ of the set of nontrivial
solutions of problem (1.7) in Rˆ E bifurcating from p0, 0q, such that C ν Ď rtp0, 0qu Y pRˆ Pνqs and
lim
λÑ`8

}u} “ 1?
κ

for any pλ, uq P C ν Ď tp0, 0qu.

Proof Define f rns : r0, 1s ˆ RÑ R as follows

f rnspt, sq “

$

’

’

’

&

’

’

’

%

ns, if s P r´ 1
n ,

1
ns,

p f pt, 2
nq ´ 1q ¨ ns ` 2 ´ f pt, 2

nq, if s P p 1
n ,

2
nq,

´p f pt,´ 2
nq ` 1q ¨ ns ´ 2 ´ f pt,´ 2

nq, if s P p´ 2
n ,´

1
nq,

f pt, sq, if s P p´8, 2
ns Y r 2

n ,8q.

p3.7q

Then f rns satisfies (C1),(C3) and
p f rnsq0 “ n. p3.8q

Now, let us consider the auxiliary family of the problems

´u2ptq “ λ f rnspt, uptqqhpu1ptqq, t P p0, 1q,

up0q “ λg1pup0qq, up1q “ λg2pup1qq.
p3.9q

From (3.8), it follows that for t P r0, 1s and every u P R,

f rnspt, sq “ ns ` ζrnspt, sq,

9



where ζrns P Cpr0, 1s ˆ R,Rq satisfies

lim
sÑ0

ζrnspt, sq

s
“ 0 uniformly for t P r0, 1s. p3.10q

Define the operatorH rns : Rˆ C1r0, 1s Ñ C1r0, 1s by

H rnspuptqq “ rR̃pτpuptqqq `

ż 1

0
Gpt, sqrnukpu1q ` kpu1qζrnsps, uq ` ζrnsps, uqsds.

Clearly,H rns is completely continuous and by the similar argument of (3.2) and (3.3), it follows that

lim
}u}Ñ0

}H rnspuq}

}u}
“ 0.

Observe that, for any λ, the couple pλ, uq P Rˆ C1r0, 1s is a solution of the equation

uptq “ λLnuptq ` λHrnspuptqq p3.11q

if and only if u is a solution of (3.9).
Let Σrns Ă RˆC1r0, 1s be the closure of the set of all nontrivial solutions pλ, uq of (3.11) with λ ą 0.

As a straightforward consequences of Proposition 3.1, for each fixed n, there exists an unbounded
component Cν

rns
Ă Σrns of one-sign solutions of (3.11) joining pπ

2

n , 0q P Cν
rns

to infinity in r0,8q ˆ Pν.

Moreover, pπ
2

n , 0q P Cν
rns

is the only positive bifurcation point of (3.11) lying on a trivial solution line
u ” 0 and the component Cν

rns
joins the infinity in the direction of λ, here ν P t`,´u.

Note that from the compactness of the embedding C1r0, 1s ãÑ Cr0, 1s, it concluded that Cν
rns

Ă

r0,8q ˆ Cr0, 1s. By a similar argument of [12, Theorem 1.2] or [23], it is not difficult to verify that
Cν

rns
satisfies all conditions in Lemma 2.2 and consequently lim sup

nÑ8

Cν
rns

contains a component Cν which

is unbounded. Moreover, from (3.7) and (3.8), we have that the component Cν joins p0, 0q with p8, 1?
κ
q

in r0,8q ˆ Pν. l

Proposition 3.3 Suppose that (C1)-(C3) hold. If f0 “ 0, then the pair p8, 0q is a bifurcation point
of problem (1.7). Moreover, there exist two unbounded continua C ` and C ´ of the set of nontrivial
solutions of problem (1.7) in Rˆ E bifurcating from p8, 0q, such that C ν Ď rtp8, 0qu Y pRˆ Pνqs and
lim
λÑ`8

}u} “ 1?
κ

or lim
λÑ`8

}u} “ 0 for any pλ, uq P C ν.

Proof Define frns : r0, 1s ˆ RÑ R as follows

frnspt, sq “

$

’

’

’

&

’

’

’

%

1
n s, if s P r´ 1

n ,
1
ns,

p f pt, 2
nq ´ 1

n2 q ¨ ns ` 2 1
n2 ´ f pt, 2

nq, if s P p 1
n ,

2
nq,

´p f pt,´ 2
nq ` 1

n2 q ¨ ns ´ 2 1
n2 ´ f pt,´ 2

nq, if s P p´ 2
n ,´

1
nq,

f pt, sq, if s P p´8, 2
ns Y r 2

n ,8q.

p3.12q

Then frns satisfies (C1),(C3) and

p frnsq0 “
1
n
. p3.13q
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Now, let us consider the auxiliary family of the problems

´u2ptq “ λ frnspt, uptqqhpu1ptqq, t P p0, 1q,

up0q “ λg1pup0qq, up1q “ λg2pup1qq.
p3.14q

From (3.12), it follows that for t P r0, 1s and every u P R,

frnspt, sq “
1
n

s ` ζrnspt, sq,

where ζrns P Cpr0, 1s ˆ R,Rq satisfies lim
sÑ0

ζrnspt,sq

s “ 0 uniformly for t P r0, 1s.

As a straightforward consequences of Proposition 3.1, for each fixed n, there exists an unbound-
ed component Cν

rns
of one-sign solutions of (3.11) joining pnπ2, 0q P Cν

rns
to infinity in r0,8q ˆ Pν.

Moreover, pnπ2, 0q P Cν
rns

is the only positive bifurcation point of (3.11) lying on a trivial solution line
u ” 0 and the component Cν

rns
joins the infinity in the direction of λ, here ν P t`,´u. By a similar

argument of [12, Theorem 1.3] or [23], it is not difficult to verify that Cν
rns

satisfies all conditions in
Lemma 2.3 and consequently lim sup

nÑ8

Cν
rns

contains a component Cν bifurcating from p8, 0q, such that

C ν Ď rtp8, 0qu Y pRˆ Pνqs and lim
λÑ`8

}u} “ 1?
κ

or lim
λÑ`8

}u} “ 0 for any pλ, uq P C ν. l

Proof of Theorem 1.1 (i) From Proposition 3.1, the pair pπ
2

f0
, 0q is a bifurcation point of problem (1.7).

Moreover, there exist two unbounded continua C ` and C ´ of the set of nontrivial solutions of problem
(1.7) in Rˆ E bifurcating from pπ

2

f0
, 0q, such that C ν Ď rtpπ

2

f0
, 0qu Y pRˆ Pνqs and

ProjRC
ν Ą r

π2

f0
,8q.

For any one-sign solution pλ, uq P R ˆ Pν of (1.7), only if λ|g1pup0qq ´ g1pup1qq| ă 1?
κ
, then u is

the one-sign solution of (1.1). In fact, set 0 ă ε ă mint
2 f0

5
?
κπ2 ,

2
5

?
κ
u, there exists δ “ ε

2 , such that
λ|g1puq ´ g2puq| ď λr|g0

1 ´ g0
2|}u} ` 2εs ă 1?

κ
for any pλ, uq P BδX C ν, where Bδ “ tu P E | }u} ă δu.

Thus, (1.1) has two continua C` and C´ of the set of nontrivial solutions of problem (1.1) satisfying
λ|g1pup0qq ´ g2pup1qq| ă 1?

κ
for any pλ, uq P Cνzpπ

2

f0
, 0q, ν “ t`,´u.

(ii) From Proposition 3.2, there exist two unbounded continua C ` and C ´ of the set of nontrivial
solutions of problem (1.7) in Rˆ E bifurcating from p0, 0q, such that

ProjRC
ν “ p0,8q.

Thus,(1.1) has two continua C` and C´ of the set of nontrivial solutions of problem (1.1) satisfying
λ|g1pup0qq ´ g2pup1qq| ă 1?

κ
for any pλ, uq P Cνzp0, 0q, ν “ t`,´u.

(iii) From Proposition 3.3, the pair p8, 0q is a bifurcation point of problem (1.7). Moreover, there
exist two unbounded continua C ` and C ´ of the set of nontrivial solutions of problem (1.7) in Rˆ E
bifurcating from p8, 0q, such that C ν Ď rtp8, 0qu Y pRˆ Pνqs and lim

λÑ`8
}uλ} “ 1?

κ
or lim
λÑ`8

}uλ} “ 0

for pλ, uλq P C ν. Moreover, there exists λ˚ ą 0, such that

ProjRC
ν “ rλ˚,8q.
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Hence, only the condition λ|g1pup0qq ´ g2pup1qq| ă 1?
κ

for any pλ, uq P Cνzp8, 0q hold, (1.1) has two
continua C` and C´ of the set of nontrivial solutions of problem (1.1). l

Proof of Corollary 1 It’s the directly consequences of Theorem 1.1, we omit it. l

Now, we give some examples to illustrate the main results.
Example 3.1 Let us consider the problem

´
` u1

?
1 ´ u12

˘

“ λ f puq, up0q “
3λ
5

peup0q ´ 1q, up1q “
2λ
3

up1q. p3.15q

where f puq “

#

20 lnp1 ` uq u ě 0;
´20 lnp1 ´ uq u ď 0.

Obviously, κ “ 1, f satisfies (C1), (C3) and f0 “ 20 and

g1puq “
3peu´1q

5 , g2puq “ 2
3u satisfy (C2), g0

1 “ 3
5 P p 4

π2 , 1q, g0
2 “ 2

3 P p 4
π2 , 1q and |g0

1 ´ g0
2| “

1
15 ă 1. Since |g1puq ´ g2puq| “ |

3peu´1q

5 ´ 2
3u| ď |

3peu´1q

5 | ď 1.64 for any u P r0, 1q, it follows that
|g1puq ´ g2puq| ă

f0
π2 « 2.03. Therefore, from Theorem 1.1 and Corollary 1, for any λ P p π

2

20 , 0.61q,
(3.15) has at least two one-sign solution u` ą 0 and u´ ă 0 in p0, 1q such that pλ, uνq P Cν, here
ν “ t`,´u.
Example 3.2 Let us consider the problem

´
` u1

?
1 ´ u12

˘

“ λ f puq, up0q “
3λ
4

sin up0q, up1q “
3λ
4

sin up1q. p3.16q

where f puq “

#

eu u ě 0;
´e´u u ď 0.

Obviously, κ “ 1, f satisfies (C1), (C3) and f0 “ 8 and g1puq “

g2puq “ 3
4 sin u satisfy (C2), g0

1 “ g0
2 “ 3

4 P p 4
π2 , 1q, and 3

4 sin u is strictly increasing on r0, 1s. Since
|g1pup0qq ´ g2pup1qq| “ 3

4 | sin up0q ´ sin up1q| ă 3
4 , from from Theorem 1.1 and Corollary 1, for any

λ P p0, 4
3q, (3.16) has at least two one-sign solution u` ą 0 and u´ ă 0 in p0, 1q such that pλ, uνq P Cν,

here ν “ t`,´u.
Example 3.3 Let us consider the problem

´
` u1

?
1 ´ u12

˘

“ λ f puq, up0q “
1
2
λ, up1q “

1
2
λ. p3.17q

where f puq “

#

up u ě 0;
´p´uqp u ď 0,

and p ą 1 is a constant. Obviously, κ “ 1, f satisfies (C1), (C3)

and f0 “ 0 and g1puq “ g2puq “ 1
2 satisfy (C2), g0

1 “ g0
2 “ 1

2 P p 4
π2 , 1q, and |g1pup0qq ´ g2pup1qq| “ 0.

Hence, from Theorem 1.1 and Corollary 1, there exist λ˚ ą 0 such that problem (3.17) has at least
four one-sign solution u`

1 ą 0, u`
2 ą 0, u´

1 ă 0 and u´
2 ă 0 in p0, 1q, such that pλ, uνi q P Cν for any

λ P pλ˚,8q, here i “ 1, 2.

4. The continuum bifurcate from interval in the case of f is jumping at zero

In this section, we present the one-sign solution component of (1.1) bifurcate to the interval r π
2

f̄ 0 ,
π2

f̄0
sˆ

t0u. From (C4), it’s easy to see that f̄0u ` ζ1pt, uq ď f pt, uq ď f̄ 0u ` ζ2pt, uq as u Ñ 0, where
lim
uÑ0

ζ1pt,uq

u “ 0 uniformly for u Ñ 0, i “ 1, 2.
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Define the operators Hi : C1r0, 1s Ñ C1r0, 1s as follows

H1puptqq “ R̃pτpuptqqq `

ż 1

0
Gpt, sql1ps, u, u1qds, p4.1q

H2puptqq “ R̃pτpuptqqq `

ż 1

0
Gpt, sql2ps, u, u1qds, p4.2q

where l1ps, u, u1q “ f̄0ukpu1q ` kpu1qζ1ps, uq ` ζ1ps, uq, l2ps, u, u1q “ f̄ 0ukpu1q ` kpu1qζ2ps, uq ` ζ2ps, uq

satisfying lim
}u}Ñ0

lipt,u,u1q

u “ 0 uniformly for s P r0, 1s, i “ 1, 2, and define the operator G : C1r0, 1s Ñ

C1r0, 1s as follows

Gpuptqq “ R̃pτpuptqqq `

ż 1

0
Gpt, sqr f ps, upsqqhpu1psqq ´ ρupsqsds, p4.3q

where f0 ď ρ ď f 0 and by the similar argument of (3.2) and (3.3), lim
uÑ0

Gpuq

}u}
“ 0.

Let us consider the following problem

uptq “ λrLρuptq ` Gpuptqqs “ 0, u P E

as a bifurcation problem from the trivial solution u ” 0.
First, we shall show a priori bounds for the solutions of the following approximation problem

u “ λLρu ` λGpu|u|ϵq “ 0, u P E p4.4q

near the trivial solution.
Let S be the closure of the set of nontrivial solution pairs of (4.4) in R ˆ E. From Proposition 3.1,

pπ
2

ρ
, 0q is a bifurcation point of problem (4.4) and S possesses two unbounded continuum C ` and C ´,

which join pπ
2

ρ
, 0q to infinity, and pCνztpπ

2

ρ
, 0quq Ď Rˆ Pν, here π

2

ρ
satisfies π

2

f̄ 0 ď π2

ρ
ď π2

f̄0
, see [7].

Lemma 4.1 Let (C1)-(C2), (C4) hold and ϵnp0 ď ϵn ď 1q be a sequence converging to 0. For each
k P N, if there exists a sequence pλn, unq P R ˆ Pνpν P t`,´uq such that pλn, unq is a solution of
problem (4.4) with ϵ “ ϵn and pλn, unq converges to pλ0, 0q in Rˆ E, then λ0 P r π

2

f̄ 0 ,
π2

f̄0
s “: I.

Proof It’s easy to see that

H1punq ď
Gpunq

un
ď H2punq, n Ñ 8. p4.5q

Hence, there exists a subsequence, relabeling if necessary, such that (4.4) can be rewritten as follows

un “ λnLρ̃un ` λnGpun|un|ϵnq “ 0, un P E p4.6q

where f̄0 ď ρ̃ ď f̄ 0 and

lim
nÑ`8

Gpun|un|ϵnq

}un}
“ 0.

Let vn “
un

}un}
. Then it follows from (4.5) and (4.6) that

λn
“

L f0vn `
H1punq

}un}

‰

ď vn “ λnLρ̃vn ` λn
Gpun|un|ϵnq

}un}
ď λn

“

L f 0vn `
H1punq

}un}

‰

.
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Hence, vn is a relatively compact set in E by the compactness of A. Suppose that there is a subsequence
of tvnu, which is still written tvnu if necessary, such that vn Ñ v˚ P C1r0, 1s, n Ñ `8 and v˚ P E with
}v˚} “ 1. By the similar argument of the proof of Proposition 3.1, it concludes that v˚ “ λ0ρ̃v˚, i.e.

v2
˚ ` λ0ρ̃v˚ “ 0,

v˚p0q “ λg0
1v˚p0q, v˚p1q “ λg0

2v˚p1q.
p4.7q

Since vn P Pν, it’s follows that v˚ P Pν is the nontrivial solution of (4.7), which means that λ0ρ̃ “ π2.
This together with the comparison theorem of eigenvalue in [7], it follows that

π2

f̄ 0
ď λ0 “

π2

ρ̃
ď
π2

f̄0
.

That is, λ0 P I.
Proposition 4.1 Let (C1)-(C2), (C4) hold and I “ r π

2

f̄ 0 ,
π2

f̄0
s. Then there are two unbounded components

C ` and C ´ of C, which bifurcates from I ˆ t0u and satisfies C ν Ď rRˆ Pνs Y tI ˆ t0uu.
Proof Let S ν be the closure in R ˆ E of the set of all solutions pλ, uq of problem (1.7) with u P Pν.
We only to show the case ν “ `, the case ν “ ´ can be shown similarly, we omit it. Let C ` be the
component of S ` containing I ˆ t0u and u is positive near t “ 0.

We show that C ` Ď pR ˆ P`q Y tI ˆ t0uu. For any pλ̃, ũq P C `, we have that ũ P P`. If ũ ” 0,
there exists a solution sequence pλn, unq P R ˆ P`, such that pλn, unq converges to pλ̃, 0q in R ˆ E. It
follows from Lemma 4.1 implies that λ̃ P I. If ũ ě 0 and ũ ı 0, then by the similar argument in the
proof of Theorem 2.3 of [9], it concludes that ũ ą 0 in p0, 1q. By the similar argument of Theorem 1 in
[6] with obvious changes, it follows that C ` is unbounded and there exists a neighborhood U of C `

such that BU X S ` “ H.
Let us consider the approximation problem (4.4) again. For any ϵ ą 0, it’s not difficult to verify that

Gpu|u|ϵq “ ˝p|u|q near u “ 0. By the Rabinowitz’s global bifurcation theorem [25, Theorem 1.3], there
exists two continuum C νϵ of the set of nontrivial solutions pairs of (4.4) bifurcating from pπ2{ρ̃, 0q, such
that they are both unbounded or C `

ϵ X C ´
ϵ ‰ tpπ2{ρ̃, 0qu. By the similar argument of Proposition 3.1,

C `
ϵ and C ´

ϵ are both unbounded and

pC νϵ ztpπ2{ρ̃q, 0quq Ď Rˆ Pν.

Since π
2

ρ̃
P I, there exists pλϵ , uϵq P C `

ϵ X BU for all ϵ ą 0. Thus, there exists a sequence ϵn Ñ 0
such that pλϵn , uϵnq converges to a solution pλ, uq of problem (1.7). Clearly, u P P̄`. If u ” 0, it follows
from Lemma 3.1 implies that λ P I, which contradict the definition of U . Hence, u ě 0 and u ı 0, It
follows from Theorem 2.3 of [9] that u ą 0 in p0, 1q. Thus, pλ, uq P S ` X U , which contradicts the
fact of BU X S ` “ H. l.
Proof of Theorem 1.2 From Proposition 4.1, there exist two unbounded continua C ` and C ´ of
the set of nontrivial solutions of problem (1.7) in R ˆ E bifurcating from I ˆ t0u, such that C ν Ď

rRˆ Pνs Y tI ˆ t0uu and

ProjRC
ν Ą r

π2

f̄0
,8q.
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For any one-sign solution pλ, uq P R ˆ Pν of (1.7), only if λ|g1pup0qq ´ g1pup1qq| ă 1?
κ
, then u is the

one-sign solution of (1.1). Thus, (1.1) has two unbounded continua C` and C´ of the set of nontrivial
solutions of problem (1.1) satisfying λ|g1pup0qq ´ g2pup1qq| ă 1?

κ
for any pλ, uq P CνzI ˆ t0u, ν “

t`,´u.
Proof of Corollary 2 It’s the directly consequences of Theorem 1.2, we omit it. l

Finally, we present some examples to illustrate the results of Theorem 1.2 and Corollary 2.
Example 4.1 Let us consider the problem

´
` u1

?
1 ´ u12

˘

“ λ f puq, up0q “
3λ
5

peup0q ´ 1q, up1q “
2λ
3

up1q. p4.8q

where f puq “ 20u ` 2|u|. Obviously, κ “ 1, f satisfies (C1), (C4) and f 0 “ 18 ‰ f
0

“ 20,
and g1puq “

3peu´1q

5 , g2puq “ 2
3u satisfy (C2), g0

1 “ 3
5 P p 4

π2 , 1q, g0
2 “ 2

3 P p 4
π2 , 1q and |g0

1 ´ g0
2| “

1
15 ă 1. Since |g1puq ´ g2puq| “ |

3peu´1q

5 ´ 2
3u| ď |

3peu´1q

5 | ď 1.64 for any u P r0, 1q, it follows that
|g1puq´g2puq| ă 18

π2 « 1.83. Therefore, from Theorem 1.2 and Corollary 2, for any λ P p π
2

18 , 0.61q, (4.8)
has at least two one-sign solution u` ą 0 and u´ ă 0 in p0, 1q such that pλ, uνq P Cν, here ν “ t`,´u.
Example 4.2 Let us consider the problem

´
` u1

?
1 ´ u12

˘

“ λ f puq, up0q “
3λ
4

sin up0q, up1q “
3λ
4

sin up1q. p4.9q

where f puq “ 20u ` 2|u|. Obviously, κ “ 1, f satisfies (C1), (C4) and f 0 “ 18 ‰ f
0

“ 20, and
g1puq “ g2puq “ 3

4 sin u satisfy (C2), g0
1 “ g0

2 “ 3
4 P p 4

π2 , 1q, and 3
4 sin u is strictly increasing on r0, 1s.

Since |g1pup0qq ´ g2pup1qq| “ 3
4 | sin up0q ´ sin up1q| ă 3

4 ă 18
π2 , from from Theorem 1.2 and Corollary

2, for any λ P p π
2

18 ,
4
3q, (4.9) has at least two one-sign solution u` ą 0 and u´ ă 0 in p0, 1q such that

pλ, uνq P Cν, here ν “ t`,´u.
Example 4.3 Let us consider the problem

´
` u1

?
1 ´ u12

˘

“ λ f puq, up0q “
1
2
λ, up1q “

1
2
λ. p4.10q

where f puq “ 20u ` 2|u|. Obviously, κ “ 1, f satisfies (C1), (C4) and f 0 “ 18 ‰ f
0

“ 20, and
g1puq “ g2puq “ 1

2 satisfy (C2), g0
1 “ g0

2 “ 1
2 P p 4

π2 , 1q, and |g1pup0qq ´ g2pup1qq| “ 0. Hence, from
Theorem 1.2 and Corollary 2, for any λ P p π

2

18 ,`8q, (4.10) has at least two one-sign solution u` ą 0
and u´ ă 0 in p0, 1q such that pλ, uνq P Cν, here ν “ t`,´u.
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