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Abstract: In this work, we investigate the continuum of one-sign solutions of the nonlinear one-
dimensional Minkowski-curvature equation

—(u’/\/l — Kl/tlz)/ = Af(t,u), t€(0,1)

with nonlinear boundary conditions u(0) = Ag;(u(0)),u(1) = Ag,(u(1)) by using unilateral global

bifurcation techniques, where « > 0 is a constant, 4 > 0 is a parameter g;, g, : [0,00) — (0, 0) are

continuous functions and f : [0, 1] x [—\/L;, ﬁ] — R is a continuous function. We prove the existence

and multiplicity of one-sign solutions according to different asymptotic behaviors of nonlinearity near

Z€10.
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1. INTRODUCTION

In this work we are concerned with the existence and multiplicity of one-sign solutions of the non-
linear boundary value problem

- (=) = aftw, re ),
u(0) = g1 (u(0)),  u(1) = g2 (u(1)),

where k > 0 is a constant, 4 > 0 is a parameter, f : [0,1] x R — R is a continuous function

(1.1)

and g1,g : [0,0) — (0,00) are continuous functions. This is the one-dimensional versional of the
nonlinear problem associated with the Minkowski curvature equation on an annulus

v
—div<—”) — Af(|xl,u) in0 <R, <|x| <R,

/1 — «|VuP

u=Ag;(u)on |x| =Ry, u=Agy(u)on |x| =R,.

(12)
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It’s well-known that the Minkowski curvature equation play an important role in differential geometry
and in the theory of relativity, see the classical paper of Bartnik and Simon[1], Cheng and Yao[8] and
Grenier[18] and the references contained therein.

Note that some general solvability results and global structure of solutions for (1.1) and (1.2) were
proved under the assumption that f is continuous with the case g;(u) = g(u) = 0, see [1, 2, 3, 4,
9, 10, 12, 13, 23]. 2009, Bereanug and Mawhin [5] obtained the existence results of solutions for
(1.1) with 4/k = 1 and nonhomogeneous linear boundary conditions u(0) = A,u(1) = B under
the condition |B — A| < 1 ([5, Theorem 1]). Yet, as all spacelike solutions are uniformly bounded,
however, there is no little information for the existence of positive solution of (1.1) under the nonlinear
boundary conditions. Therefore, it may be interesting to investigate in such cases the existence of
positive solutions.

When « = 0, the problem (1.1) can degenerate to the following nonlinear problem

—u" = Af(t,u), te(0,1),
u(0) = g1 (u(0)), u(1) = Ag2(u(1)),

which has been studied by Dunninger and Haiyan Wang[16] (the method of lower and upper solu-

(1.3)

tions and degree theory). Second-order ordinary differential equation with different nonlinear bound-
ary value conditions has been studied by many authors using different methods, see Drame and Costa
[15](phase plane analysis), Shivaji et al. [17, 19] (time maps technique, the method of sub-supersolutions),
Ma and Wang [24](degree theory and bifurcation techniques) and their references.

Motivated above papers, we establish the continuum of positive solutions of the problem (1.1) by
the bifurcation theorem under the following assumptions

(Cl) fe C([O, 1] x [—\/L;, #],R), and g1, g> : [0,0) — (0, c0) are continuous.

(C2) there exist g{, ) € (3, 1), such that lim 8l) — g0 and lim £l) _ g0

N

(C3) f(t,s)s > 0 for any (z,s) € [0, 1] x [—\/LE, ﬁ] with s # 0, and there exists fy € [0, 0] such
that

f(ts)

s
(C4) f(t,5)s > O for any (z,5) € [0,1] x [—#, \/L;] with s # 0, and there exist fy, f° € (0, 00) with
fo # f°, such that

fo= lirré uniformly for # € [0, 1].

_ 2 . 2
7= timint 20 A fimnp 209,
u—0 u u—0 u

Let P* = {ue C'[0,1]|u(t) = 0,t € [0,1]} and P~ = {u e C'[0,1]|u(z) < 0,% € [0, 1]}. We also
add the point oo to the work space R x C'[0, 1], and denote the closure set of nontrivial solution pair

sets of (1.1) as follows
C := {(A,u) € R x C'[0, 1]]| u is a nontrivial solution of (1.1) for some A}.

Then we will prove the following results:
Theorem 1.1 Assume that (C1)-(C3) hold.



(i) If fo € (0,00), then the solution set C contains two subcontinuum C* and C~ bifurcating from
the trivial line at the (’}—;,0), which satisfies C" < (R x P”) U (f ,0) and A|g; (#(0)) — g2(u(1))| < \/L;
for any (A, u) € CV\(’}—;,O), v={+—}

(i) If fy = oo, then the solution set C contains two subcontinuum C* and C~ bifurcating from the
trivial line at (0, 0), which satisfies C* < (R x P”) u (0,0) and A|g; (u(0)) — g2(u(1))| < ﬁ for any
(A,u) e C"\(0,0), v = {+,—}.

(iii) If fy = 0, then the solution set C contains two subcontinuum C* and C~ bifurcating from the
trivial line at (0, 0), which satisfies C* < (R x P”) U (00,0) and 4|g; (u(0)) — g2(u(1))| < \/L; for any
(Au)eC,v={+—}

Theorem 1.1 give the continuum of one-sign solutions of (1.1) according to the nonlinearity f is
asymptotic linear growth, superlinear growth and sublinear growth near at u = 0, respectively. A
naturally interesting question is that how to bifurcate the one-sign solution subcontinuum C” when

( Y e fis jumping near u = 0. A typical example is that f(t,u) = |u|

satisfying —1 = hmmff 1) 2 lim sup% = 1. The following Theorem gives the continuum

u—0~— u—0+
structure of one-sign solutions of (1.1) under the nonlinearity f is jumping near u = 0.

Theorem 1.2 Assume that (C1)-(C2) and (C4) hold. Then the solution set C contains two sub-
2

fo,’L] x {0}, which satisfies ¢” <

(R x P") U {[%, %] x {0}} and Al (u(0) — g2(u(1))| < I for any (A,u) € C'\{[%, %] x O},

v={+,—}

Remark 1.1 Note that the condition A|g;(u(0)) — g2 (u(1))| < %& is

existence of solutions of (1.1) under the assumption f is continuous, see Corollary 1 of [5]. Therefore,

lim inf £24 ( A lim sup —

u—0 u—0

continuums ¢” bifurcating from the trivial line at the interval [

a sufficient condition for the

compared with that the one-sign solution subcontinuum C” is unbounded in A-direction under the
homogeneous linear boundary conditions u(0) = 0,u(1) = 0 (see [9, 12, 13, 23]), the subcontinuum
C” of (1.1) 1s more complex, not only depend on the nonlinearity f, but also depend on the boundary
function g; and g,. we should divide more details about g;, g, to obtain the direction of the connected
branch C”.

In addition, g(l), gg € (%, 1) is a restricted condition for the eigenvalues of corresponding eigenvalue

problem of (1.1) don’t depend on the boundary(the more details, see reference [7]), which provides a
sufficient condition for the existence of one-sign solution components C” of (1.1). The best condition
looks an interesting but difficult problem.
Remark 1.2 Compared with the results of [2, 3, 5, 9], Theorem 1.1 and Theorem 1.2 obtain the con-
tinuum structure of the set of one-sign solutions of (1.1), it gives a clear description of the evolution
process of the components of positive solutions as the parameter A increases. The study of global be-
havior of the positive solution curves is very useful for computing the numerical solution of (1.1) as
it can be used to guide the numerical work. For example, it can be used to estimate the u-interval in
advance in applying the finite difference method, and it can be used to restrict the range of initial values
we need to consider in applying the shooting method.



As a first step, we present that problem (1.1) can always be reduced to an equivalent one, where
the singularity on the left of the equation has been removed and the function on the right is bounded,
actually vanishes outside the rectangle [0, 1] x [— \[ \[] and agree with f in a neighborhood of s = 0.
Such a reduction, which is achieved by quite elementary estimates, is depending on bifurcation theory.
In fact, we replace the equation in (1.1) by

—u" = Af(t,u)h(u), (1.4)
where .
1 —«s?)z, if|s| < L,
asy = TS T < (15)
0, if |S| > N

has compact support and f is bounded. Note that define the function £ : [0, 1] x R — R by setting ,
for any 1 € [0, 1],

) £l s), if —ﬁ<s \/L;,
f(t,s) =<3 linear, if se (ﬁ, %ﬁ) U (— %, \/L;), (1.6)
0, if |s| > 2.

Observe that, with the context of one-sign solutions, problem (1.1) is equivalent to the same problem

with f by f. Indeed, if u is a one-sign solution, then |||, < —- and hence ||u|.,, < ﬁ In the sequel

. G
of the proof we shall replace f with f; however, for the sake of simplicity in the notation, the modified
function f will still be denoted by f. By the similar argument of [9, Theorem 2.3] and [5, Corollary
1], it follows that u € C?[0, 1] is a one-sign solution of (1.1) if and only if it is a one-sign solution of

the following nonlinear problem
—u" (1) = Af (1, u(t))h(' (1)), 1€ (0,1),
u(0) = g1 (u(0)),  u(1) = Aga(u(1)).

and A1 (u(0)) — ga(u(1))] < .
Next, we will show that the one-sign solution branch of (1.1) bifurcate to the trivial line at (

(1.7)

+0)and
develop a bifurcation approach to treat the case f, = o0 and f, = 0, respectively. It’s very crucial to
this approach is that the construction of a sequence of functions "] which is asymptotic linear growth
at 0 and satisfies

lim sup [f"(s,s) — f(t,5)] =0, (fI")g — oo (resp. (f"1® — 0) uniformly for 7€ [0, 1].

=% se[0,00)
By means of the corresponding auxiliary equations, we obtain a sequence of unbounded components
{CEf]} via a unilateral global bifurcation theorem, see [20, Section 6.4, 6.5,] or [12, 23] and this enables
us to find an unbounded component C* (resp. € ) satisfying

C* < limsup CE:’] (resp.€" < lim sup CEf])
n—ao0 n—o0
and joining (0, 0) (resp. (20, 0)) with (20, —=). Whereafter, we introduce the one-sign solution compo-

x {0}.

4
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From Theorem 1.1-Theorem 1.2 and above discussion, we give the following existence results of
one-sign solution of (1.1).

Corollary 1 Assume that (C1)-(C3) hold and g, g, satisfy one of the following assumptions: (a)
lg1 — &2| > 0; (b) g1 = & is strictly monotone function on [0, ] (©) g1(u(0)) = g2(u(1)), in this
case, denote m = +00.

Q) If f € (0,0) and |g; — g2| < \/fgﬂz for any u € [0, ), then for any A € (”—2 =) the
problem (1.1) has at least two one-sign solution u* > 0 and u~ < 0 in (0, 1) such that (2,u”) € C”,
here v = {+, —}.

(ii) If fy = oo, then for any A € (0, m), the problem (1.1) has at least two one-sign solution
ut > 0and u~ < 0in (0, 1) such that (1,u”) € C".

(1) If fo = O and there exist 4, > 0 such that problem (1.7) has at least four one-sign solution
u > 0,uf > 0,u < O and u, < 0in (0,1) such that (A,u}) € C” for any 1 € (A4, ), here
i = 1,2. Moreover, if ———— \[\g = < A, then problem (1.1) has no one-sign solution; if m = A,
then problem (1.1) has at least two one-sign solution u™ > 0 and u~ < 01in (0, 1) such that (1, u”) € C”
with 4 = A,; if m > A, problem (1.1) has at least four one-sign solution uf > 0, u; > 0,
u; <Oandu, <O0in (0,1) such that (4, u)) € C" for any A € (4, m).

Corollary 2 Assume that (C1)-(C2) and (C4) hold. If g;, g, satisfy one of the following assumptions:

()0 < [g1 — ga| < s

(i) g1 = g is strictly monotone function on [0, ﬁ and |g; (#(0)) — g1 (u(1))| <

(iii) g1 (u(0)) = gz( (1)) in this case, denote

\/,?ﬂ27
= —|-OO,

then for any 4 ( T \[|gl — I) the problem (1.1) has at least two one-sign solution ™ > 0 and u~ < 0
in (0, 1) such that (1, u”) € €”, here v = {+, —}.

Finally, we give some examples to illustrate the main results according to different nonlinear bound-
ary function g; and g,.

The rest of the paper is organized as follows. In Section 2, we introduce some properties of the
superior limit of a certain infinity collection of connected sets and preliminary results. Section 3
prove Theorem 1.1 and Corollary 1 and give some examples to illustrate the main results according to
different nonlinear boundary function g; and g,. In Section 4, we prove Theorem 1.2, Corollary 2 and

introduce some examples as application.

2. PRELIMINARIES AND SUPERIOR LIMIT AND COMPONENT

Let E be a real Banach space with norm | - |, and let . be the closure of nontrivial solutions set of
the following equation
u=ALlu+ Hy(A,u), ucE, (2.1)

where A varies in R, L : E — E is a linear completely continuous operator, Hy : R x E — E be
completely continuous and Hy(A,u) = o(||ul|) at u = 0 uniformly on bounded A intervals.
Let A denote the set of real eigenvalues of equation

u=ALu, ue E.
5



Suppose that u € A has geometric multiplicity 1, let E, be a closed subspace of E such that £ =
span{y,} @ E,, where ¢, is an eigenfunction corresponding to u with |¢,| = 1.

We give the bifurcation phenomenon of solutions for (2.1).
Lemma 2.1 ([14, 20, 25]) If u € A isolated and satisfying

deg(I — (u — &)L, B,(0),0) # deg(I — (u + )L, B,(0),0) for any & > 0 small enough,

where B,(0) = {u € E||ul| < r}, then (u,0) is a bifurcation point for equation (2.1). Moreover,
. possesses a maximal continuum %, such that (4,0) € ¢, and €, can be decomposed into two
sub-continua %jf and %jj, such that each of them either

(i) meets infinity in R x E; or

(ii) meets (f1,0), where u # ji € A; or

(iii) contains a point (1,v) € R x (Ey\{0}).

Let M be a metric space and {C, |n = 1,2, -- -} a family of subsets of M. Then the superior limit &
of {C,} is defined by

2 :=limsupC, = {xe M|3 {m} <N, x,, € C,, such that x,, — x}. (2.2)
n—00

A component of a set M means a maximal connected subset of M, see [11] for the detail.
Lemma 2.2 ([11, Theorem 1.2],[22]) Let E be a Banach space and let {C,} be a family of closed
connected subsets of E. Assume that

(1) there existz, € C,,, n = 1,2,--- and z, € E such that z, — z,;

(ii) nh_% rp = nh_)rgj sup{|ul| | u € C,} = oo;

(iii) for every R > 0, (| J/—, C,) N By is a relatively compact of E, Bx = {u € E | |u| < R}.
Then there exists an unbounded component %" in & and z, € €.
Lemma 2.3 ([21, Theorem 3],[11], [12]) Let E be a Banach space and a € R be a constant. Let {C,,}
be a family of connected subsets of R x E. Assume that

(A1) C, n ((—0,a] x E) = &;

(A2) there exist 0 < o < r < o0 and b € (a, ) such that

Con{lwu)|lu=b—o0o, r—oc<|ul<r+o}=0; (2.3)

(A3) yyp > afor all k € N, gy — +00 and C, meets (u,,0) and infinity in ([a, ©0) x E)\€,,, here
Q,, = ([0,0) x EN{(,) € [b,0) x E| Ju] < r}:

(A4) forevery R > 0, (1,2, C.) N Bg is a relatively compact of E.
Then there exists an unbounded component % in Z such that

(a) both € N Qy,, and € N (([a, 0) x E)\Q,,) are unbounded;

(b) € A{(.u) [ = b, |u| = r)} = .

Let X = C[0, 1] be the Banach space with |ul|,, = rrEax] |u(t)].
te[0,1
First, it’s easy to verify that problem (1.7) is equivalent to the integral equation

1

u(t) = AR(r(u(r))) + /lJ0 G(t,8)f (s, u(s))h(u'(s))ds, (2.4)
6



where 7 : X — R? with 7(u(¢)) = (u(0),u(1)) is the trace operator, the operator R : R — X is defined
by

R(x,y) = &)t + &1(x)(1 — 1), (2.5)
and G(t, s) is the Green’s function of linear problem —u"(t) = 0, t € (0, 1), u(0) = 0, u(1) = 0 with

G(1,5) ={ (1=1)s, gi

N IN

? (2.6)

/A //\

(1 — ), s

It’s easy to verify that G(z, s) satisfies the following properties:
(i) G(t,s) =20, Vt,se[0,1] and G(t,5) >0, V1,5€ [
(i) G(t,s) = 1G(z,s), Vi€ [1,2], z,s€ [0, 1];

and the function R(x, y) satisfies the following properties:
(D get+g(x)(1—1) =0 Vre[0,1],x,y =0
(2) g2(v)1 + g1(x)(1 — 1) < g2(y) + &1(x), V t€0,1],x,y = 0;

B e+ a1(x)(1—1) = 1[e2(0)z+&s1(x)(1 —2)], Vre[1,2], ze[0,1], x,y = 0.
Clearly, (2.4) is equivalent to the fixed point equation

4’4]

AAu = u,
where A : X — X is defined by
Au(t) = R(t(u(1))) + Jol G(t,5)f(s,u(s))h(u(s))ds. (2.7)
Define the cone K = {u € X|u > 0} and K; = {u € X|u >0, min u(t) > {|ufs}, then K is a

re[1/4,3/4]
nonnegative cone of X with intK # 0 and K is a positive cone of X. It’s not very difficult to verify that

A(K) c Ky and A : K; — K; is completely continuous, see [16, Lemma 3.2].
Let p > 0 is a constant and let us consider the linear eigenvalue problem

u" (1) = 2ou(t), t€(0,1),
u(0) = 2g1u(0), u(1) = Agu(1).
It’s easy to verify that (2.8) has only trivial solution u = 0 if 4 < 0, and (2.8) has the nontrivial

solutions ¢ (7) = sin(kxt) which changes its sign k — 1 on (0, 1) with 2 = 4, = (kz)z,k =1,2,---if
A > 0. In addition, it’s not difficult verify thatif A = gio, then the boundary value condition degenerates
1

to u(0) € R,u(1) = 0, (2.8) has nontrivial solution if and only if gio = (kn)? or gio = (@)2,

k=1,2,---;if 1 = 3, then the boundary value condition degenerates to u(0) = 0,u(1) € R, (2.8) has
&

2
nontrivial solution if and only if é = (km)2.
2

(2.8)

Thus, under the condition (C2), g(l), gg > % implies that gl—o,é < ’372, which means that (2.8) has
1 2

no other eigenvalues except for 4 = A;. Especially, the principal eigenvalue of (2.8) is ”;2 and the

corresponding eigenfunction ¢, (¢) = sinzt > 0, 7 € (0, 1). The more general spectrum results of (2.8),
we refer to the reference [7].



3. THE CONTINUUM BIFURCATE FROM POINT IN THE CASE OF f IS LINEAR NEAR ZERO

Let E = C'[0, 1] denote the Banach space equipped with the norm |u| = max{|u|., |¢]x}-
Let L, : E — E be the linear operator
1

Lou(t) = Ro(t(u(t))) + f G(t, s)pu(s)ds, t € [0, 1],

0
here Ro(t(u(r))) = gu(1)t + g%u(0)(1 —t), p > 0 is a constant. Then L, : E — E is completely
continuous and the linear eigenvalue problem (2.8) is equivalent to the operator equation

u = AL,(u),

so that the eigenvalues of the problem (2.8) are precisely the characteristic values of L,.

Now we give the important proposition of the bifurcation from trivial solution axis.
Proposition 3.1 Suppose that (C1)-(C3) hold. If f; € (0, o0), then the pair (’}—;, 0) is a bifurcation point
of problem (1.7). Moreover, there exist two unbounded continua ¥’* and %~ of the set of nontrivial
solutions of problem (1.7) in R x E bifurcating from (f ,0), such that €~ < [{(’}—z 0)} u (R x P)].
Proof Let € C([0,1] x R, R) and &,&, € C(R,R) such that

f(f u) = fou+ {(t.5). gi1(u) = giu+ & (u), g2(u) = ghu + &(u). (3.1)
Clearly, \l|1mo =% = 0 uniformly for 7 € [0, 1]. Let £(,u) := mz‘lx |£(¢, 5)| for any ¢ € [0, 1], then  is
((ts )

= 0 uniformly for ¢ € [0, 1]. It follows that

) _ & Jul)

nondecreasing with respect to u and ‘1|1m
—0

— 0as [lu| — 0.

’§(f,u)‘<2(h

u Jul

Note that (C2) implies that lim 3 () = 0,i = 1,2. Denote R(7(u)) = R(7(u)) — Ro(r(u)), then

s|—0
R(t(u)) = & (u(1))t + & (u(0))(1 — t) — 0 as u — 0. Let us set, for convenience, k(v) = h(v) — 1 for
v e R. It’s easy to see that

lim —~ = 0. (3.2)

Define the operator H : C'[0,1] — C![0, 1] as follows
1

H(u(t)) = R(r(u(t)) + J G(t,s)| fouk(u') + k(u")Z(s,u) + (s, u)]ds. (3.3)

0
LHW] _ o

Clul

It’s easy to verify that lim

Jlu]|—0

Let us consider the problem

u(t) = AR )+ A G u(s))h(u'(s))ds

(3.4)

= AR )+ Gtsfou )ds] + AH (u)

o%o%

— ALgu ()+/1Hu)



as a bifurcation problem from the trivial solution axis. Then (3.4) is equivalent to a completely contin-
uous operator equation from R x E into E as follows:

u(t) = A[Lgu(t) + Hu(1))). (3.5)

Clearly, AH(u) = o(|u|) near u = 0 uniformly on bounded A intervals. By a similar argument of
[12, 13, 23] and applying Lemma 2.1 to problem (1.7), (’}—z, 0) is a bifurcation point of (1.7) and there
exists a continuum % of nontrivial solutions of problem (1.7) bifurcating from (’}—;, 0). Since (0,0) is
the only solution of problem (1.7) for 2 = 0, it yields that €' n ({0} x E) = ¢J and

@ < U0 o (R 7)o (% P

and ¢ is unbounded in R x E.

By Lemma 2.1, % can be splitinto €+ and ¢~ suchthat € n%¢~ = {(’}—j, 0)}. According the similar
argument of [13, Theorem 1.1] and [20, Sections 6.4-6.5], we can show € < [{(’}—; 0)} u (R x P*)]
and €~ < [{(’}—;,O)} U (R x P7)]. Moreover, it conclude that € is a unbounded continua of the
set of nontrivial solutions of (1.7) joining (’}—;, 0) to infinity, and ‘KV\{(’}—; 0)} ¢ P,ve{+,—-}

This together the fact |ul|,, < -~ for any fixed (1,u) € € implies that the projection of 4 on R is

ﬁ
unbounded. Therefore,
2
(’;—, +90) € Projy (%), (3.6)
0
here Proj (¢”) is the projection of € on R. O

Now, we will develop a bifurcation approach to treat the case f, = oo (resp. fo = 0).
Proposition 3.2 Suppose that (C1)-(C3) hold. If f; = oo, then the pair (0,0) is a bifurcation point
of problem (1.7). Moreover, there exist two unbounded continua ¥’* and %~ of the set of nontrivial
solutions of problem (1.7) in R x E bifurcating from (0, 0), such that €~ < [{(0,0)} U (R x P”)] and

AETOO |u| = ﬁ for any (4, u) € €~ < {(0,0)}.

Proof Define fI"l : [0,1] x R — R as follows

ns, if se [—%,i],
2y _1). 2 _ 2 if 12
f[n](l, S) _ (f(t’ n) ) ) ns + f(t’ n)7 ) 1 s € (n?zn)’ | (37)
_(f(t’_ﬁ)—i_l)ns—z_f(t,_Z)’ lfSG(—;,—Z),
f(ts), if se (—o0,2] U [3,0)
Then £l satisfies (C1),(C3) and
(o = n. (3.8)
Now, let us consider the auxiliary family of the problems
—u"(1) = AU (1, u(0))h( (), 1€ (0,1),
(1) (1)) h(u'( ) (39)

u(0) = g1 (u(0)), u(1) = Ag2(u(1)).
From (3.8), it follows that for 7 € [0, 1] and every u € R,

f[”](t, s) =ns + f["](t, s),
9



where /" € C([0, 1] x R, R) satisfies

[n] t
fim & (%:9)

s—0 S

=0  uniformly for 7€ [0, 1]. (3.10)

Define the operator H[" : R x C'[0, 1] — C'[0, 1] by

1

W[”](u(t)) = [R(r(u(t)) + f G(t, s)[nuk(u') + k(u')g’["](s, u) + g“["](s, u)lds.

0

Clearly, H!"l is completely continuous and by the similar argument of (3.2) and (3.3), it follows that
[ (w)]

lim ——— = 0.
lu|—0 HMH

Observe that, for any A, the couple (4,u) € R x C![0, 1] is a solution of the equation
u(t) = ALu(t) + AH™ (u(r)) (3.11)

if and only if u is a solution of (3.9).

Let = = R x C'[0, 1] be the closure of the set of all nontrivial solutions (4, u) of (3.11) with 1 > 0.
As a straightforward consequences of Proposition 3.1, for each fixed n, there exists an unbounded
component Cfn] < 2"l of one-sign solutions of (3.11) joining (”72, 0) C‘[’n] to infinity in [0, 00) x P.

Moreover, (”72, 0) € Cra is the only positive bifurcation point of (3.11) lying on a trivial solution line

u = 0 and the component CY

[n]

Note that from the compactness of the embedding C'[0,1] — C[0, 1], it concluded that Cry <

[0,00) x C[0, 1]. By a similar argument of [12, Theorem 1.2] or [23], it is not difficult to verify that
C [Vn] satisfies all conditions in Lemma 2.2 and consequently lim sup C En] contains a component C* which

joins the infinity in the direction of A, here v € {+, —}.

n—aoo
is unbounded. Moreover, from (3.7) and (3.8), we have that the component C” joins (0, 0) with (oo, \/LE)
in [0,00) x P. O

Proposition 3.3 Suppose that (C1)-(C3) hold. If f; = 0, then the pair (o0, 0) is a bifurcation point

of problem (1.7). Moreover, there exist two unbounded continua 4" and %~ of the set of nontrivial

solutions of problem (1.7) in R x E bifurcating from (0, 0), such that €~ < [{(20,0)} U (R x P”)] and
. _ 1 . _ v

1211100 |u| = 5 or /IETOO |u| = O for any (A, u) € €.

Proof Define fi, : [0, 1] x R — R as follows

oo ifse[—11]
_ ) @) =) ns 25 — f(53), ifs€ (5. 2).
TS = Zep -2y 1y s ok fn ), ifse (L2, (3.12)
f(ts), if se (—o0,2] U [3,0)
Then fj, satisfies (C1),(C3) and
1
(fim)o = —. (3.13)



Now, let us consider the auxiliary family of the problems

—u" (1) = Afpn) (1, u(t))h(u' (7)), 1€ (0,1),
u(0) = Ag1 (u(0)), u(1) = Ag2(u(1)).

From (3.12), it follows that for ¢ € [0, 1] and every u € R,

(3.14)

1
f[n](t, s) = ;S + {[n](t, s),

where [, € C([0, 1] x R,R) satisfies lvl_r)% {[]—Em) = 0 uniformly for ¢ € [0, 1].

As a straightforward consequences of Proposition 3.1, for each fixed n, there exists an unbound-
ed component Cy, of one-sign solutions of (3.11) joining (nn?,0) € Cy,, to infinity in [0,00) x P".
Moreover, (nr?,0) € CV , is the only positive bifurcation point of (3.11) lying on a trivial solution line

[n]

u = 0 and the component CY

1]
argument of [12, Theorem 1.3] or [23], it is not difficult to verify that Cfn] satisfies all conditions in

joins the infinity in the direction of A, here v € {+, —}. By a similar

Lemma 2.3 and consequently lim sup Cfn] contains a component C” bifurcating from (o0, 0), such that
n—00
¢ < [{(00,0)} U (R x P")] and lim |ul| = \L[ or lim |ju| =0 forany (A,u)ec %". O
A—+00 K A—+00

Proof of Theorem 1.1 (i) From Proposition 3.1, the pair (’}—z, 0) is a bifurcation point of problem (1.7).
Moreover, there exist two unbounded continua ¢’ and 4"~ of the set of nontrivial solutions of problem

(1.7)in R x E bifurcating from (%, 0), such that 6” < [{(%,0)} U (R x P”)] and

71.2

Projp 6" o [—, o).
fo
For any one-sign solution (1,u) € R x P” of (1.7), only if A|g;(u(0)) — g, (u(1))| < -, then u is

K’
2fo 2 . _
5l m}, there exists § = £, such that

Algi(u) — g (u)| < A[|gY — &5 |ull + 2¢] < ﬁ for any (1,u) € Bs 0 6", where B; = {u € E | |u| < 6}.
Thus, (1.1) has two continua C* and C~ of the set of nontrivial solutions of problem (1.1) satisfying
Alg1(1(0)) — ga(u(1))| < L= forany (4,u) € C"\(%,0),v = {+,—}.
(ii) From Proposition 3.2, there exist two unbounded continua ¢ and €~ of the set of nontrivial

the one-sign solution of (1.1). In fact, set 0 < & < min{

solutions of problem (1.7) in R x E bifurcating from (0, 0), such that
Proj, 6" = (0, ).

Thus,(1.1) has two continua C* and C~ of the set of nontrivial solutions of problem (1.1) satisfying
Alg1((0)) — ga2(u(1))| < -z for any (1,u) € C*\(0,0), v = {+.—}.

(iii) From Proposition 3.3, the pair (0, 0) is a bifurcation point of problem (1.7). Moreover, there
exist two unbounded continua ¢+ and €~ of the set of nontrivial solutions of problem (1.7) inR x E
bifurcating from (oo, 0), such that € < [{(20,0)} U (R x P”)] and AEIPOO |uy]| = \/L/? or AETOC |ua =0

for (A,u,) € €”. Moreover, there exists 4, > 0, such that

Projp,@” = [, 0).
11



Hence, only the condition A|g; (u(0)) — g2(u(1))] < ﬁ for any (4, u) € C”\(o0,0) hold, (1.1) has two

continua C* and C~ of the set of nontrivial solutions of problem (1.1). ]

Proof of Corollary 1 It’s the directly consequences of Theorem 1.1, we omit it. ]
Now, we give some examples to illustrate the main results.

Example 3.1 Let us consider the problem

u 31

—(—) = u(0) _ _
(=) = W, ul0) = = 1), u(t) = Zu()). (3.15)
201In(1 > 0; ' .
where f(u) = _20T£<1+_”Z) =0 Obviously, « = 1, f satisfies (C1), (C3) and f, = 20 and
3(e" —1) 4 5

gi(u) =

, gou) = —u satisfy (C2), g(]) = % € (77 1), gg = 3 € (,%,1) and ’g(l) —g(2)| =
L <1 Slnce g1 (1) — ga(u) 3

| _ | G 71) 2u| < | (e“s—l | 1.64 for any u € [O’ 1), it follows that

lg1(u) — g2(u)| < % ~ 2.03. Therefore, from Theorem 1.1 and Corollary 1, for any A € (20,0 61),
(3.15) has at least two one-sign solution u* > 0 and = < 0 in (0, 1) such that (1,u”) € C”, here
v={+,—}.
Example 3.2 Let us consider the problem
! 31 31
_(ﬁ) = Af(u). u(0) = == sinu(0), (1) = == sinu(1). (3.16)
e u>=0; ) )

where f(u) = { w O Obviously, k = 1, f satisfies (C1), (C3) and fy = o and g,(u) =
g (u) = 2 sinu satisfy (C2), g = g9 = 2 € (%, 1), and 3 sinu is strictly increasing on [0, 1]. Since

lg1(u(0 )) g (u(1))] = 2|sin u(O) — sinu(1)| < 2, from from Theorem 1.1 and Corollary 1, for any
A€ (0,%), (3.16) has at least two one-sign solution u* > 0 and u~ < 0 in (0, 1) such that (4, u”) € C”,
here v = {+, —}.

Example 3.3 Let us consider the problem

u 1 1
u? uz=0; : . :
where f(u) = C(—uP u<0 and p > 1 is a constant. Obviously, k = 1, f satisfies (C1), (C3)

and fy = 0 and g (u) = g»(u) = % satisfy (C2), g) = g5 = % (”2, ), and |g;(u(0)) — g2(u(1))| = 0.
Hence, from Theorem 1.1 and Corollary 1, there exist 4, > 0 such that problem (3.17) has at least
four one-sign solution uf > 0,u; >0,u; <O0andu, <O0in (0,1), such that (1, u}) € C” for any
A€ (A4,0), herei = 1,2.

4. THE CONTINUUM BIFURCATE FROM INTERVAL IN THE CASE OF f IS JUMPING AT ZERO

In this section, we present the one-sign solution component of (1.1) bifurcate to the interval [ %; ik f—z] X

{0}. From (C4), it’s easy to see that fou + i (t,u) < f(t,u) < fou + &(t,u) as u — 0, where

lim 4] ([“

] = O uniformly foru — 0,7 = 1, 2.

12



Define the operators H; : C'[0, 1] — C'[0, 1] as follows

R(t(u(1))) +f G(t, s)li(s,u,u")ds, (4.1)

H,(u(t)) = +JO G(t, s)l(s,u,u')ds, (4.2)

where [; (s, u,u') = fouk(u') + k()1 (s,u) + &1 (s,u), L(s,u,u') = fPuk() + k(W) (s, u) + & (s, u)
satisfying lim % = 0 uniformly for s € [0, 1], i = 1,2, and define the operator G : C! [0,1] —

|u|—0

C'[0, 1] as follows

1

G(u(r)) = R(z(u(r))) + L G(t, 9)[f (s, u(s))h(u'(s)) — pu(s)]ds, (4.3)
where fy < p < f° and by the similar argument of (3.2) and (3.3), 11 =0.

Let us consider the following problem

u(t) = ALyu(t) + G(u(t))] =0, uekE

as a bifurcation problem from the trivial solution u = 0.
First, we shall show a priori bounds for the solutions of the following approximation problem

u=ALu+ AG(ulu|) =0, ueckE (4.4)

near the trivial solution.

Let © be the closure of the set of nontrivial solution pairs of (4.4) in R x E. From Proposition 3.1,
(ﬂf’ 0) is a bifurcation point of problem (4.4) and & possesses two unbounded continuum ¢t and €,
which join (”;2, 0) to infinity, and (CV\{(”E, 0)}) < R x P”, here = " satisfies T 5 f , see [7].
Lemma 4.1 Let (C1)-(C2), (C4) hold and €,(0 < ¢, < 1) be a sequence converging to 0. For each
k € N, if there exists a sequence (4,,u,) € R x P’(v € {+,—}) such that (/ln,un) is a solution of

2

problem (4.4) with € = ¢, and (4, u,) converges to (1p,0) in R x E, then A € []70, ff] =: I

2
<”;<

Proof It’s easy to see that
G(u,)

Uy

Hi(u,) < < Hy(uy), n— o. (4.5)

Hence, there exists a subsequence, relabeling if necessary, such that (4.4) can be rewritten as follows

u, = ALy, + ,G(up|u,|*) =0, u,€E (4.6)

where fy <p < f° and

G n n &
fim GUall™) o
oo iy
Letv, = ” ik Then it follows from (4.5) and (4.6) that
(”n|un‘ )

/l,,[Lva,, + Hl(u")] = A, Lsv, + 4, < /1,,[Lfov,, + Hl(u")]

13



Hence, v, is arelatively compact set in E by the compactness of A. Suppose that there is a subsequence
of {v,}, which is still written {v,} if necessary, such that v, — v, € C'[0, 1], n — +c and v, € E with
|[v«| = 1. By the similar argument of the proof of Proposition 3.1, it concludes that v, = Aoy, i.e.

v;: + Appvs = 0,
v4(0) = /18(1)"*(0)’ vi(l) = /18(2)"*(1)-

Since v, € P, it’s follows that v, € P” is the nontrivial solution of (4.7), which means that 1op = 7°.

(4.7)

This together with the comparison theorem of eigenvalue in [7], it follows that

7.[2

— < Ay = ﬂ—j < —=.
f° p

That is, Ay € 1.

Proposition 4.1 Let (C1)-(C2), (C4) hold and I = [%, ’}—;] Then there are two unbounded components
¢+ and ¢~ of C, which bifurcates from I x {0} and satisfies €~ < [R x P”] u {I x {0}}.

Proof Let . be the closure in R x E of the set of all solutions (4, u) of problem (1.7) with u € P”.
We only to show the case v = +, the case v = — can be shown similarly, we omit it. Let € be the
component of .#’* containing I x {0} and u is positive near t = 0.

We show that €+ < (R x P*) u {I x {0}}. For any (1,ii) € €+, we have that it € P*. If it = 0,
there exists a solution sequence (1,,u,) € R x P*, such that (1,,u,) converges to (1,0) in R x E. It
follows from Lemma 4.1 implies that 1 € I. If &t > 0 and & # 0, then by the similar argument in the
proof of Theorem 2.3 of [9], it concludes that &z > 0 in (0, 1). By the similar argument of Theorem 1 in
[6] with obvious changes, it follows that " is unbounded and there exists a neighborhood % of ¢+
such that 0% n ./ = &.

Let us consider the approximation problem (4.4) again. For any € > 0, it’s not difficult to verify that
G(u|ul?) = o(|u|) near u = 0. By the Rabinowitz’s global bifurcation theorem [25, Theorem 1.3], there
exists two continuum %" of the set of nontrivial solutions pairs of (4.4) bifurcating from (7*/p, 0), such
that they are both unbounded or €.* n 6. # {(7*/p,0)}. By the similar argument of Proposition 3.1,

¢ and €. are both unbounded and

(€\{(7*/p).0)}) SR x P".

Since %2 € I, there exists (A, u.) € €. n 0% for all € > 0. Thus, there exists a sequence €, — 0
such that (A, u,, ) converges to a solution (4, u) of problem (1.7). Clearly, u € P*. If u = 0, it follows
from Lemma 3.1 implies that A € I, which contradict the definition of %/. Hence, u > 0 and u # O, It
follows from Theorem 2.3 of [9] that u > 0 in (0, 1). Thus, (A,u) € . n %, which contradicts the
fact of 0% N ./ = . .
Proof of Theorem 1.2 From Proposition 4.1, there exist two unbounded continua ¢+ and ¢~ of
the set of nontrivial solutions of problem (1.7) in R x E bifurcating from I x {0}, such that ¥ <

[R x P"] u{I x {0}} and
2
Projp, " > [%,oo).
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For any one-sign solution (4, u) € R x P” of (1.7), only if A|g;(«#(0)) — g1 (u(1))| < L\[, then u is the

one-sign solution of (1.1). Thus, (1.1) has two unbounded continua C* and C~ of the set of nontrivial

solutions of problem (1.1) satisfying A|g; (u(0)) — g2(u(1))| < # for any (A,u) € C"\I x {0}, v =

{+ -}

Proof of Corollary 2 It’s the directly consequences of Theorem 1.2, we omit it. O

Finally, we present some examples to illustrate the results of Theorem 1.2 and Corollary 2.

Example 4.1 Let us consider the problem

() = AW, w0) = FO 1. u(1) = S, 48)

where f(u) = 20u + 2|u|. ObViously, k=1, f satisﬁes (C1), (C4) and f, = 18 # 70 = 20,
and gi(u) = 2, g>(u) = 3u satisfy (C2), gl =2€(5.1).8 =3¢€ (1) and[g) —g) =

L < 1. Since \gl( g = & e”—l) — 2u| < |3(6T| 1.64 for any u € [0, 1), it follows that
0.61), (4.8)

i5 ) —
g1(u) —g2(u)| < 7 ~ 1.83. Therefore from Theorem 1.2 and Corollary 2, for any A € (18,

has at least two one-sign solution u* > 0 and u~ < 0in (0, 1) such that (4,u”) € C”, here v = {+, —}.
Example 4.2 Let us consider the problem

~( ?> = Af (), u(0) = 2 sinu(0), (1) = 2 sinu(1). (49)

4 4
where f(u) = 20u + 2|u|. Obviously, k = 1, f satisfies (C1), (C4) and f, = 18 # ?O = 20, and
g1(u) = go(u) = 3 sinu satisfy (C2), g9 = g9 = 2 € (%, 1), and 3 sinu is strictly increasing on [0, 1].
Since [g1(u(0)) — g2(u(1))| = 2| sinu(0) —sinu(1)| < 3 < &, from from Theorem 1.2 and Corollary
2, for any A € (’{;, 1), (4.9) has at least two one-sign solutron ut > 0and u~ < Oin (0, 1) such that
(A, u’) e C”, herev = {+,—}.

Example 4.3 Let us consider the problem

—(u—,z) = Af(u), u(0) = %/L u(l) = %ﬂ. (4.10)

where f(u) = 2()u + 2|u|. Obviously, k = 1 1 satisfies (C1), (C4) and f, = 18 # f = 20, and
g1(u) = g2(u) = 1 satisfy (C2), g = g5 = 1 € (5.,1), and |g;(u(0)) — g2(u(1))| = 0. Hence, from
Theorem 1.2 and Corollary 2, forany A € (18, +0), (4.10) has at least two one-sign solution u™ > 0
and u~ < 01in (0, 1) such that (1,u”) € C”, here v = {+, —}.
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