References
1. Naphthalene indoor limit values in Germany: https://www.eggbi.eu/forschung-und-lehre/zudiesemthema/naphthalin/ (accessed: 27 October 2020)
2. Benzo[a]pyrene indoor limit values in Germany: https://www.lfu.bayern.de/analytik_stoffe/doc/infoblatt_benzoapyren.pdf (accessed: 27 October 2020)
3. Liu LB, Lin JM, Tang N, Hayakawa K, Maeda T. Development of analytical methods for polycyclic aromatic hydrocarbons (PAHs) in airborne particulates: A review. J Env Sci 2007;19:1-11.
4. DIN EN ISO 16000-12 Indoor air: Sampling strategy for polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and polycyclic aromatic hydrocarbons (PAHs)
5. David F, Ochiai N, Sandra P. Two decades of stir bar sorptive extraction: A retrospective and future outlook. TRAC-Trend Anal Chem 2019;112:102-111.
6. Matsiko J, Li H, Wang P, Sun H, Zheng S, Wang D, Zhang W, Hao Y, Li Y, Zhang Q, Jiang G. Stir bar sorptive extraction and thermal desorption - gas chromatography/mass spectrometry for determining phosphorus flame retardants in air samples. Anal Methods 2018;10:1918–1927.
7. Cacho JJ, Campillo N, Vinas P, Hernandez-Cordoba M. Evaluation of three headspace sorptive extraction coatings for the determination of volatile terpenes in honey using gas chromatography-mass-spectrometry. J Chromatogr A 2015;1399:18-24.
8. Lee J, Shibamoto T, Ha J, Jang HW. Identification of volatile markers for the detection of adulterants in red ginseng (Panax ginseng) juice using headspace stir-bar sorptive extraction coupled with gas chromatography and mass spectrometry. J Sep Sci 2018;41:2903-2912.
9. Cacho JJ, Campillo N, Alsite M, Vinas P, Hernandez-Cordoba M. Headspace sorptive extraction for the detection of combustion accelerants in fire debris. Forensic Sci Int 2014;238:26-32.
10. Gallidabino M, Romolo FS, Weyermann C. Time since discharge of 9 mm cartridges by headspace analysis, part 1: Comprehensive optimisation and validation of a headspace sorptive extraction (HSSE) method. Forensic Sci Int 2017;272:159–170.
11. Kolahgar B, Hoffmann A, Heiden AC. Application of stir bar sorptive extraction to the determination of polycyclic aromatic hydrocarbons in aqueous samples. J. Chromatogr A 2002;963:225-230.
12. Niehus B, Popp P, Bauer C, Peklo G, Zwanziger HW. Comparison of stir bar sorptive extraction and solid phase extraction as enrichment techniques in combination with column liquid chromatography for the determination of polycyclic aromatic hydrocarbons in water samples. Int J Env Anal Chem 2002;82:669-676.
13. Garcia-Falcon MS, Cancho-Grande B, Simal-Gandara J. Stirring bar sorptive extraction in the determination of PAHs in drinking waters. Water Res 2004;38:1679-1684.
14. Roy G, Vuillemin R, Guyomarch J. On-site determination of polynuclear aromatic hydrocarbons in seawater by stir bar sorptive extraction (SBSE) and thermal desorption GC-MS. Talanta 2005;66:540-546.
15. Krueger O, Christoph G, Kalbe U, Berger W. Comparison of stir bar sorptive extraction (SBSE) and liquid-liquid extraction (LLE) for the analysis of polycyclic aromatic hydrocarbons (PAH) in complex aqueous matrices. Talanta 2011;85:1428-1434.
16. Barco-Bonilla N, Romero-Gonzalez R, Plaza-Bolanos P, Fernandez-Moreno JL, Frenich AG, Vidal JLM. Comprehensive analysis of polycyclic aromatic hydrocarbons in wastewater using stir bar sorptive extraction and gas chromatography coupled to tandem mass spectrometry. Anal Chim Acta 2011;693:62-71.
17. Krueger O, Olberg S, Senz R, Simon FG. Comparison of Stir Bar Sorptive Extraction (SBSE) and Solid Phase Microextraction (SPME) for the Analysis of Polycyclic Aromatic Hydrocarbons (PAH) in Complex Aqueous Soil Leachates. Water Air Soil Poll 2015;226:397.
18. Foan L, Ricoul F, Vignoud S. A novel microfluidic device for fast extraction of polycyclic aromatic hydrocarbons (PAHs) from environmental waters - comparison with stir-bar sorptive extraction (SBSE). Int J Env Anal Chem 2015;95:1171-1185.
19. Li XM, Zhang QH, Wang P, Li YM, Jiang GB. Determination of Polycyclic Aromatic Hydrocarbons in Air by Stir Bar Sorptive Extraction-Thermal Desorption-Gas Chromatography Tandem Mass Spectrometry. Chin J Anal Chem, 2011;39:1641-1646.
20. ISO 11843-2:2000-05 - Capability of detection - Part 2: Methodology in the linear calibration case.
21. DINTEST: University of Heidelberg, Germany, 2001.
22. Certified reference material BAM-U013c – Polycyclic aromatic hydrocarbons in soil, (2018). https://www.webshop.bam.de/show_blob_data.php?filename=pdf%2Fcertificates%2Fbam_u013c_e.pdf (accessed: 28.10.2020)
23. Valentyne A, Crawford K, Cook T, Mathewson PD. Polycyclic aromatic hydrocarbon contamination and source profiling in watersheds serving three small Wisconsin, USA cities. Sci tot Env 2018;627:1453-1463.
24. Achten C, Andersson JT. Overview of Polycyclic Aromatic Compounds (PAC). Polycycl Aromat Comp 2015;35:177–186.
25. WHO (World Health Organisation): Selected non-heterocyclic polycyclic aromatic hydrocarbons. IPCS–Environmental Health Criteria 202, WHO, Genf, CH, 1998. http://www.inchem.org/documents/ehc/ehc/ehc202.htm#SectionNumber:1.2 (accessed: 28.10.2020)
26. Harrison RM, Smith DJT, Luhana L. Source Apportionment of Atmospheric Polycyclic Aromatic Hydrocarbons Collected from an Urban Location in Birmingham, U.K. Environ Sci Technol 1996;30:825–832.
Table 1: Content of PAH congeners in the jute fabric (means and standard deviations, n=3) and respective vapor pressures at 25 °C