REFERENCES
1. Hui DS. Epidemic and Emerging Coronaviruses (Severe Acute Respiratory Syndrome and Middle East Respiratory Syndrome). ClinChestMed. 2017;38 (1) :71-86.
2. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020;382 (8) :727-33.
3. Paraskevis D, Kostaki EG, Magiorkinis G, Panayiotakopoulos G, Sourvinos G, TsiodraS. Full-genome evolutionary analysis of the novel coronavirus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event. InfectGenetEvol. 2020;79:104212.
4. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, G enomiccharacterisation and epidemiology of 2019 novel coronavirus: implicationsfor virus origins and receptor binding. Lancet. 2020;395 (10224) :565-74.
5. Mueller S. On DNA Signatures, Their Dual-Use Potentialfor GMO Counterfeiting, and a Cyber-Based Security Solution. FrontBioengBiotechnol. 2019;7:189. Published 2019 Aug 7. doi:10. 3389fbioe. 2019. 00189
6. Ziebuhr J. Molecular biology of severe acute respiratory syndrome coronavirus. CurrOpinMicrobiol. 2004;7 (4) :412-9.
7. WeisSR, Leibowitz JL. Coronavirus pathogenesis. Adv Virus Res. 2011;81:85-164.
8. Brian DA, Baric RS. Coronavirus genome structure and replication. Curr
Top Microbiol Immunol. 2005;287:1-30.
9. Narayanan K, Huang C, Makino S. SARS coronavirus accessory proteins. Virus Res. 2008;133 (1) :113-21.
10. Arndt AL, Larson BJ, Hogue BG. A conserved domain in the coronavirus membrane protein tail is importantfor virus assembly. J Virol. 2010;84 (21) :11418-28.
11. Neuman BW, Kiss G, Kunding AH, Bhella D, Baksh MF, Connelly S, et al. A structural analysis of M protein in coronavirus assembly and morphology. J StructBiol. 2011;174 (1) :11-22
12. Siu KL, Chan CP, Kok KH, Chiu-Yat Woo P, Jin DY. Suppression of innate antiviral response by severe acute respiratory syndrome coronavirus M protein is mediated through the first transmembrane domain. Cell Mol Immunol. 2014;11 (2) :141-9.
13. Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virol J. 2019;16 (1) :69.
14. Pilon, A. C., Valli, M., Dametto, A. C. et al. NuBBEDB: an updated database to uncover chemical and biological informationfrom Brazilian biodiversity. Sci Rep 7, 7215 (2017). https: // doi. org10. 1038s41598-017-07451-x
15. Ruch TR, Machamer CE. The coronavirus E protein: assembly andbeyond. Viruses. 2012;4 (3) :363-82.
16. McBride R, van Zyl M, Fielding BC. The coronavirus nucleocapsid is a multifunctional protein. Viruses. 2014;6 (8) :2991-3018.
17. Chang CK, Hou MH, Chang CF, Hsiao CD, Huang TH. The SARScoronavirus nucleocapsid protein–for ms and functions. Antiviral Res. 2014;103:39-50.
18. Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basisfor therecognition of the SARS-CoV-2 by full-length human ACE2. Science. 2020.
19. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020.
20. Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, et al. SARS-CoV-2 Cell Entry Dependson ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020.
21. Kang H, Bhardwaj K, Li Y, Palaninathan S, Sacchettini J, Guarino L, et al. Biochemical and genetic analyses of murine hepatitis virus Nsp15 endoribonuclease. J Virol. 2007;81 (24) :13587-97.
22. Bhardwaj K, Sun J, Holzenburg A, Guarino LA, Kao CC. RNA recognition and cleavage by the SARS coronavirus endoribonuclease. J Mol Biol. 2006;361 (2) :243-56.
23. Zhang L, Li L, Yan L, Ming Z, Jia Z, Lou Z, et al. Structural andBiochemical Characterization of Endoribonuclease Nsp15 Encoded by Middle East Respiratory Syndrome Coronavirus. J Virol. 2018;92 (22).
24. Ton AT, Gentile F, Hsing M, Ban F, Cherkasov A. Rapid Identification of Potential Inhibitors of SARS-CoV-2 Main Protease by Deep Docking of 1. 3 Billion Compounds. MolInfor m. 2020.
25. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic AcidsRes. 2018;46 (W1) :W296-W303.
26. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, et al. DrugBank 5. 0: a major update to the DrugBank databasefor 2018. Nucleic AcidsRes. 2018;46 (D1) :D1074-D82.
27. Tchesnokov EP, Feng JY, Porter DP, Gotte M. Mechanism of Inhibition of Ebola Virus RNA-Dependent RNA Polymerase by Remdesivir. Viruses. 2019;11 (4).
28. Al-Tawfiq JA, Al-Homoud AH, Memish ZA. Remdesivir as a possibletherapeutic optionfor the COVID-19. Travel Med Infect Dis. 2020:101615.
29. Poulin D, Yard J (2007) Dynamics of a quantum reference frame. N J Phys 9 (5) : 156.
30. Skotiniotis M, Toloui B, Durham IT, Sanders BC (2013) Quantum Framenessfor CPT Symmetry. PhysRevLett 111 (2) : 020504.
31. Giacomini F, Castro-Ruiz E, Brukner Č. Quantum mechanics and the covariance
of physical laws in quantum reference frames. Nat Commun. 2019;10 (1) :494.
Published 2019 Jan 30. doi:10. 1038s41467-018-08155-0
32. Poulin D (2006) Toy modelfor a relationalformulation of quantum theory. Int J TheorPhys 45 (7) : 1189 - 1215.
33. Girelli F, Poulin D (2008) Quantum reference frames and defor med symmetries. PhysRev D 77 (10) : 104012.
34. Miyadera T, Loveridge L, Busch P (2016) Approximating relational observables by absolute quantities: a quantum accuracy-size trade-off. J Phys. A 49 (18) : 185301.
35. Loveridge L, Busch P, Miyadera T (2017) Relativity of quantum states and observables. EPL (EurophysLett) 117 (4) : 40004.
36. Kunduri HK, Lucietti J. Classification of Near-Horizon Geometries of Extremal Black Holes. LivingRevRelativ. 2013;16 (1) :8. doi:10. 12942lrr-2013-8
37. Yoshida N. formationof the first generation of stars and blackholes in the Universe. Proc JpnAcad Ser B Phys Biol Sci. 2019;95 (1) :17-28. doi:10. 2183pjab. 95. 002
38. Bertschinger E. Simulations of Structureformationin the Universe. Annu. Rev. Astron. Astrophys. 1998;36:599–654. doi: 10. 1146annurev. astro. 36. 1. 599. (CrossRef) (Google Scholar)
39. Birrell ND, Davies PCW. Quantum Fieldsin Curved Space. Cambridge, U. K. : Cambridge University Press; 1982. (GoogleScholar)
40. Baumgarte TD, Shapiro SL. On the Numerical Integration of Einstein SFieldEqs. Phys. Rev. D. 1999;59:024007. doi: 10. 1103PhysRevD. 59. 024007. (CrossRef) (GoogleScholar)
41. Anninos P, Masso J, Seidel E, Suen W-M, Tobias M. Dynamics of Gravitational Waves in 3D:for mulations, Methods, and Tests. Phys. Rev. D. 1997;56:842–858. doi:10. 1103PhysRevD. 56. 842. (CrossRef) (GoogleScholar)
42. Anninos P, Centrella J, Matzner R. Nonlinear Wave Solutions to the Planar Vacuum Einstein Eqs. Phys. Rev. D. 1991;43:1825–1838. doi: 10. 1103PhysRevD. 43. 1825. (PubMed) (CrossRef) (GoogleScholar)
43. Chou YC. A radiating Kerr black hole and Hawking radiation. Heliyon. 2020;6 (1) :e03336. Published 2020 Jan 31. doi:10. 1016j. heliyon. 2020. e03336
44. Marcus Johansson1and Valera VeryazovAutomatic procedurefor generating symmetry adapted wavefunctions. Division of Theoretical Chemistry, Lund University, Naturvetarvägen 14, P. O. B. 124, 221 00 Lund, Sweden.
45. Chambers C M. The Cauchy Horizon in Black Hole-de Sitter Spacetimes. In: Burko L M, Ori A, editors. Internal Structure of Black Holes and Spacetime Singularities. Bristol: Institute of Physics; 1998. [ Google Scholar]
46. Compère G. The KerrCFT correspondence and its extensions. Living Rev Relativ. 2017;20 (1) :1. doi: 10. 1007s41114-017-0003-2. Epub 2017 Feb 27. PMID: 28690421; PMCID: PMC5479153.
47. Nalewajski, R. F. Quantum information descriptors in position and momentum spaces. J Math Chem 53, 1549–1575 (2015). https: // doi. org10. 1007s10910-015-0505-7