References
Allesina, S. & Pascual, M. (2009). Googling food webs: Can an
eigenvector measure species’ importance for coextinctions? PLoS
Comput. Biol. , 5.
Almeida-Neto, M., Guimarães, P., Guimarães, P.R., Loyola, R.D. &
Ulrich, W. (2008). A consistent metric for nestedness analysis in
ecological systems: Reconciling concept and measurement. Oikos ,
117, 1227–1239.
Barnes, C., Jennings, S. & Barry, J.T. (2009). Environmental correlates
of large-scale spatial variation in the δ13C of marine animals.Estuar. Coast. Shelf Sci. , 81, 368–374.
Baum, J.K. & Worm, B. (2009). Cascading top-down effects of changing
oceanic predator abundances. J. Anim. Ecol. , 78, 699–714.
Beukhof, E., Dencker, T.S., Palomares, M.L.D. & Maureaud, A. (2019a). A
trait collection of marine fish species from North Atlantic and
Northeast Pacific continental shelf seas.
Beukhof, E., Frelat, R., Pecuchet, L., Maureaud, A., Dencker, T.S.,
Sólmundsson, J., et al. (2019b). Marine fish traits follow
fast-slow continuum across oceans. Sci. Rep. , 9, 17878.
Blanchard, J.L., Law, R., Castle, M.D. & Jennings, S. (2011). Coupled
energy pathways and the resilience of size-structured food webs.Theor. Ecol. , 4, 289–300.
Bonacich, P. (1987). Power and centrality: A familly of measures.Am. J. Sociol. , 92, 1170–1182.
Corcoran-Barrios, D., Avila-Thieme, M.I., Valdovinos, F.S., Navarrete,
S.A. & Marquet, P.A. (2019). NetworkExtinction.
Curtsdotter, A., Binzer, A., Brose, U., de Castro, F., Ebenman, B.,
Eklöf, A., et al. (2011). Robustness to secondary extinctions:
Comparing trait-based sequential deletions in static and dynamic food
webs. Basic Appl. Ecol. , 12, 571–580.
Dee, L.E., Allesina, S., Bonn, A., Eklöf, A., Gaines, S.D., Hines, J.,et al. (2017). Operationalizing Network Theory for Ecosystem
Service Assessments. Trends Ecol. Evol. , 32, 118–130.
Delmas, E., Besson, M., Brice, M.H., Burkle, L.A., Dalla Riva, G. V.,
Fortin, M.J., et al. (2019). Analysing ecological networks of
species interactions. Biol. Rev. , 94, 16–36.
Duarte, C.M., Agusti, S., Barbier, E., Britten, G.L., Castilla, J.C.,
Gattuso, J.P., et al. (2020). Rebuilding marine life.Nature , 580, 39–51.
Dunne, J.A. & Williams, R.J. (2009). Cascading extinctions and
community collapse in model food webs. Philos. Trans. R. Soc. B
Biol. Sci. , 364, 1711–1723.
Dunne, J.A., Williams, R.J. & Martinez, I. (2002). Network structure
and biodiversity loss in food webs: robustness increases with
connectance. Ecol. Lett. , 5, 558–567.
Dunne, J.A., Williams, R.J. & Martinez, N.D. (2004). Network structure
and robustness of marine food webs. Mar. Ecol. Prog. Ser. , 273,
291–302.
Estrada, E. (2007). Characterization of topological keystone species.
Local, global and “meso-scale” centralities in food webs. Ecol.
Complex. , 4, 48–57.
Gaichas, S.K. & Francis, R.C. (2008). Network models for
ecosystem-based fishery analysis: A review of concepts and application
to the Gulf of Alaska marine food web. Can. J. Fish. Aquat. Sci. ,
65, 1965–1982.
Garren, F., Laffargue, P. & Duhamel, E. (2019). EVHOE 2019 cruise, RV
Thalassa.
Gilarranz, L.J., Mora, C. & Bascompte, J. (2016). Anthropogenic effects
are associated with a lower persistence of marine food webs. Nat.
Commun. , 7, 1–5.
Guénette, S. & Gascuel, D. (2012). Shifting baselines in European
fisheries: The case of the Celtic Sea and Bay of Biscay. Ocean
Coast. Manag. , 70, 10–21.
Harvey, E., Gounand, I., Ward, C.L. & Altermatt, F. (2017). Bridging
ecology and conservation: from ecological networks to ecosystem
function. J. Appl. Ecol. , 54, 371–379.
Hattab, T., Leprieur, F., Ben Rais Lasram, F., Gravel, D., Loc’h, F. Le
& Albouy, C. (2016). Forecasting fine-scale changes in the food-web
structure of coastal marine communities under climate change.Ecography (Cop.). , 39, 1227–1237.
Hernvann, P.-Y. & Gascuel, D. (2020). Exploring the impacts of fishing
and environment on the Celtic Sea ecosystem since 1950. Fish.
Res. , 225, 105472.
Hernvann, P.-Y., Grüss, A., Gascuel, D., Kopp, D., Robert, M., Piroddi,
C., et al. (2020). The Celtic Sea through time and space:
ecosystem modeling to unravel fishing and climate change impacts on
food-web structure and dynamics. Front. Mar. Sci.
Hill, M.O. & Smith, J.E. (1976). Principal component analysis of
taxonomic data with multi-state discrete characters. Taxon , 25,
249–255.
ICES. (2018a). Celtic Seas Ecoregion. In: ICES Ecosystem
Overviews . pp. 1–17.
ICES. (2018b). ICES Fisheries Overviews Celtic Seas Ecoregion.ICES Advice 2018 , 1–37.
ICES. (2019). Official Nominal Catches 2006-2017. Version
16-09-2019. Available at:
http://ices.dk/marine-data/dataset-collections/Pages/Fish-catch-and-stock-assessment.aspx.
Last accessed 16 September 2019.
ICES. (2020). Working Group for the Celtic Seas Ecoregion
(WGCSE) . ICES Sci. reports .
IPCC. (2001). Climate Change 2001: Impacts, Adaptation, and
Vulnerability. Contribution of Work- ing Group II to the Third
Assessment Report of the IPCC . Press Synd. Univ. Cambridge .
Jennings, S. & van der Molen, J. (2015). Trophic levels of marine
consumers from nitrogen stable isotope analysis: estimation and
uncertainty. ICES J. Mar. Sci. , 72, 2289–2300.
Jennings, S., Reynolds, J.D., Mills, S.C., Jennings, S., Reynolds, J.D.
& Mills, S.C. (1998). Life History Correlates of Responses to Fisheries
Exploitation. Proc. R. Soc. B Biol. Sci. , 265, 333–339.
Jonsson, T., Berg, S., Pimenov, A., Palmer, C. & Emmerson, M. (2015).
The reliability of R50 as a measure of vulnerability of food webs to
sequential species deletions. Oikos , 124, 446–457.
Jordán, F. (2009). Keystone species and food webs. Philos. Trans.
R. Soc. B Biol. Sci. , 364, 1733–1741.
Jordán, F., Liu, W.C. & Davis, A.J. (2006). Topological keystone
species: Measures of positional importance in food webs. Oikos ,
112, 535–546.
Klemm, K., Serrano, M.Á., Eguíluz, V.M. & Miguel, M.S. (2012). A
measure of individual role in collective dynamics. Sci. Rep. , 2,
1–8.
Kortsch, S., Primicerio, R., Aschan, M., Lind, S., Dolgov, A. V. &
Planque, B. (2018). Food-web structure varies along environmental
gradients in a high-latitude marine ecosystem. Ecography (Cop.).
Martinez, N.D. (1992). Constant Connectance in Community Food Webs.Am. Nat. , 139, 1208–1218.
Mérillet, L., Kopp, D., Robert, M., Mouchet, M. & Pavoine, S. (2020).
Environment outweighs the effects of fishing in regulating demersal
community structure in an exploited marine ecosystem. Glob. Chang.
Biol. , 2106–2119.
Moullec, F., Gascuel, D., Bentorcha, K., Guénette, S. & Robert, M.
(2017). Trophic models: What do we learn about Celtic Sea and Bay of
Biscay ecosystems? J. Mar. Syst. , 172, 104–117.
Newman, M.E.J. & Girvan, M. (2004). Finding and evaluating community
structure in networks. Phys. Rev. E - Stat. Nonlinear, Soft Matter
Phys. , 69, 1–15.
Nordstrom, M.C., Aarnio, K., Tornroos, A. & Bonsdorff, E. (2015).
Nestedness of trophic links and biological traits in a marine food web.Ecosphere , 6, 1–14.
Pauly, D. & Palomares, M. (2005). Fishing Down Marine Food Web- It is
Far More Pervasive Than We Thought. Bull. Mar. Sci. , 76,
197–211.
Pecl, G.T., Araújo, M.B., Bell, J.D., Blanchard, J., Bonebrake, T.C.,
Chen, I.C., et al. (2017). Biodiversity redistribution under
climate change: Impacts on ecosystems and human well-being.Science (80-. ). , 355.
Pianka, E.R. (1970). On r- and K-Selection. Am. Nat. , 104,
592–597.
Post, D.M. (2002). Using stable isotopes to estimate trophic position:
Models, methods, and assumptions. Ecology , 83, 703–718.
Le Quesne, W.J.F. & Jennings, S. (2012). Predicting species
vulnerability with minimal data to support rapid risk assessment of
fishing impacts on biodiversity. J. Appl. Ecol. , 49, 20–28.
R Core Team. (2020). R: A Language and Environment for Statistical
Computing. R Found. Stat. Comput.
Robinson, M.L. & Strauss, S.Y. (2020). Generalists are more specialized
in low-resource habitats, increasing stability of ecological network
structure. Proc. Natl. Acad. Sci. U. S. A. , 117, 2043–2048.
Scotti, M. & Jordán, F. (2010). Relationships between centrality
indices and trophic levels in food webs. Community Ecol. , 11,
59–67.
Staniczenko, P.P.A., Lewis, O.T., Jones, N.S. & Reed-Tsochas, F.
(2010). Structural dynamics and robustness of food webs. Ecol.
Lett. , 13, 891–899.
Stouffer, D.B. & Bascompte, J. (2011). Compartmentalization increases
food-web persistence. Proc. Natl. Acad. Sci. , 108, 3648–3652.
Sweeting, C.J., Polunin, N.V.C. & Jennings, S. (2006). Effects of
chemical lipid extraction and arithmetic lipid correction on stable
isotope ratios of fish tissues. Rapid Commun. Mass Spectrom. , 20,
595–601.
Thébault, E. & Fontaine, C. (2010). Stability of ecological communities
and the architecture of mutualistic and trophic networks. Science
(80-. ). , 329, 853–856.
Tillin, H.M., Hull, S.C. & Tyler-walters, H. (2010). Development
of a Sensitivity Matrix (pressures-MCZ/MPA features) .
van Treeck, R., Van Wichelen, J. & Wolter, C. (2020). Fish species
sensitivity classification for environmental impact assessment,
conservation and restoration planning. Sci. Total Environ. , 708,
135173.
Tylianakis, J.M., Tscharntke, T. & Lewis, O.T. (2007). Habitat
modification alters the structure of tropical host-parasitoid food webs.Nature , 445, 202–205.
De Visser, S.N., Freymann, B.P. & Olff, H. (2011). The Serengeti food
web: Empirical quantification and analysis of topological changes under
increasing human impact. J. Anim. Ecol. , 80, 484–494.
Wallach, A.D., Dekker, A.H., Lurgi, M., Montoya, J.M., Fordham, D.A. &
Ritchie, E.G. (2017). Trophic cascades in 3D: network analysis reveals
how apex predators structure ecosystems. Methods Ecol. Evol. , 8,
135–142.
Wiedmann, M., Primicerio, R., Dolgov, A., Ottesen, C. & Aschan, M.
(2014). Life history variation in Barents Sea fish: Implications for
sensitivity to fishing in a changing environment. Ecol. Evol. , 4,
3596–3611.
Winemiller, K.O. & Rose, K.A. (1992). Patterns of life-history
diversification in North American fishes: implications for population
regulation. Can. J. Fish. Aquat. Sci. , 49, 2196–2218.
Worm, B. & Paine, R.T. (2016). Humans as a Hyperkeystone Species.Trends Ecol. Evol. , 31, 600–607.
Zhou, S., Kolding, J., Garcia, S.M., Plank, M.J., Bundy, A., Charles,
A., et al. (2019). Balanced harvest: concept, policies, evidence,
and management implications. Rev. Fish Biol. Fish. , 29, 711–733.