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Abstract

In this study, the impact of spatio-temporal accuracy of four different sea surface temperature
(SST) datasets on the accuracy of the Weather Research and Forecasting (WRF)-Hydro
system to simulate hydrological response during two catastrophic flood events over Eastern
Black Sea (EBS) and Mediterranean (MED) regions of Turkey is investigated. Three time-
varying and high spatial resolution external SST products (GHRSST, Medspiration, and
NCEP-SST) and one coarse-resolution and invariable SST product (ERAS5- and GFS-SST for
EBS and MED regions, respectively) already embedded in the initial and boundary condition
dataset of WRF model are used in deriving near-surface weather variables through WRF.
After the proper event-based calibration performed to the WRF-Hydro using hourly and daily
streamflow data of small catchments in both regions, uncoupled model simulations for
independent SST events are conducted to assess the impact of SST-triggered precipitation on
simulated extreme runoff. Some localized and temporal differences in the occurrence of the
flood events with respect to observations depending on the SST representation are noticeable.
SST products represented with higher temporal and spatial correlation revealed significant
improvement in flood hydrographs for both regions. The higher spatial and temporal
correlations of GHRSST dataset show RMSE reduction up to 20% and increase in correlation
from 0.3 to 0.8 with respect to the invariable SST (ERAS) in simulated runoffs over the EBS
region. The error reduction with GHRSST reached 35% after the calibration of hydrological
model parameters compared to not calibrated model. The use of both GHRSST and
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Medspiration SST data characterized with high spatio-temporal correlation resulted in runoff

simulations exactly matching the observed runoff peak of 300 m®s by reducing the

overestimation seen in not calibrated runs over the MED region.
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1. INTRODUCTION

Warming climate results in increased water vapor input into the atmosphere; consequently,
triggering the intensity of rainfall events. (Trenberth, 1999; Allen & Ingram, 2002). The
impact of the flood events might be exacerbated in time with the changing climate
(Hirabayashi et al., 2013). Accordingly, accurate flood forecasting is important for many

operational applications.

The forecast of heavy precipitation events with their spatial distributions and the forecast of
their hydrological response are among the most significant elements of an accurate flood
forecast (Shih, Chen, & Yeh, 2014; Yucel & Onen, 2014; Ryu et al., 2017). In this context,
the application of a hydrometeorological modeling framework that can integrate atmospheric
and hydrological models are started to be used commonly in practice for flood forecasting
(Kunstmann & Stadler, 2005). Accordingly, accurate short-term predictions of runoff
inherently require well-calibrated accurate hydrological model and accurate short-term
predictions of atmospheric variables (e.g., precipitation and temperature) driving this

hydrological model.

Selection of the numerical weather prediction (NWP) model and the datasets driving its
boundary and initial conditions have profound effect over the accuracy of the short-term
predictions of the atmospheric forcing datasets; hence, better operational flood forecasts
clearly require improved NWP simulations. Such NWP simulations are particularly impacted
from the SST state, as oceans/seas supply significant amount of both energy and water that
the state of the atmospheric forcing variables are heavily impacted. Studies focusing on
improvement of the accuracy of the existing operational flood forecasts, particularly near the
coastal regions with complex topography, require an ocean-land-atmosphere coupled system
to better reflect variability in all elements of the water and the energy balances as well as for
accurate parameterization of the land-surface to better benefit from the input atmospheric

forcing dataset.

SST primarily affects the heat and the water fluxes at the lower boundary of the atmosphere,
hence there is a significant relationship between SST variations and convective extremes. In
general, increasing SST state increases the moisture content in the air and warms the low
level of the atmosphere (Lebeaupin, Ducrocq, & Giordani, 2006). This often results in

stronger convection and higher precipitation totals over coastal regions. Overall, even
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variations of SST in order of +1 °K may dramatically and nonlinearly change the intensity of
the development of supercells over the seas (Miglietta, Mazon, Motola, & Pasini, 2017).
Even if SST effects on long-term simulations are identified as small, it may still significantly
affect the individual heavy precipitation events (Senatore, Mendicino, Knoche, &
Kunstmann, 2014). Accordingly, improved representation of SST fields has a not negligible
impact on simulation of the atmospheric boundary layer processes and flow dynamics

(Senatore, Furnari, & Mendicino, 2020).

Given lower atmospheric boundary conditions often drive the precipitating water on the land
surface, SST variations play a key role in heavy precipitation events (Bozkurt & Sen, 2011;
Turuncoglu, 2015; Baltaci, 2017). A gradual increase in SST may cause a sudden
amplification of convective precipitation extremes over the coastal regions (Meredith,
Maraun, Semenov, and Park, 2015). Accordingly, providing higher accuracy SST input is
crucial for accurate modeling of precipitation, hence for accurate flood forecasts through
NWP models. Despite its significance and impact over the accuracy of the runoff forecasts,
the number of studies inter-comparing the impact of spatio-temporal accuracy of different
SST input datasets over the accuracy of the predicted runoff has remained limited so far

(McCabe & Wolock, 2008; Chen, Wang, Xue, & Sun, 2009; Senatore et al., 2020).

A fully distributed, physical-based, multi-scale hydrometeorological modeling system, the
WRF-Hydro is developed by the U.S. National Center for Atmospheric Research (NCAR) to
investigate critical water issues, including flash flood forecasting applications. Allowing to
run both in uncoupled (one-way from the atmosphere to land) mode and fully-coupled (two-
way) mode (Gochis et al., 2020), this modeling system links the atmospheric and the
hydrological processes. Overall, WRF-Hydro is designed as a framework to couple WRF
(i.e., a NWP model) with a hydrological extension that enables simulation of land surface
states and fluxes, including surface overland flow, saturated subsurface flow, and channel
routing and vertical energy fluxes between land and atmosphere through physics-based and
conceptual approaches. Despite many studies have been performed so far investigating the
performance and application of the WRF-Hydro model (Kerandi et al., 2018; Wehbe et al.,
2019; Varlas et al., 2019; Sun et al., 2020), not many studies have investigated the impact of
the spatio-temporal accuracy of various SST sources over the predictions of runoff using

WRF-Hydro modelling system. Among them, studies utilized high-resolution SST inputs and
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implemented parameter calibration in prediction of runoff have particularly remained limited

with the study of Senatore et al. (2020).

Surrounded by sea from three sides and having one of the most complex topography in the
region, Turkey has many locations living with significant potential flood threats produced by
the meteorological, hydrological, and topographical differences. EBS and MED regions of
Turkey are among the most vulnerable regions in terms of flood risk in the Anatolian
peninsula (Gurer, 1998; Gurer & Ucar, 2009; Duzenli, Yucel, Pilatin, & Yilmaz, 2020).
Forecasting the floods through high resolution NWP models in MED region is critical
(Camera, Bruggeman, Zittis, Sofokleous, and Arnault, 2020), where a gradual increase in
SST may cause sudden amplification of convective precipitation extremes over the Black Sea
coastal regions (Meredith, Maraun, Semenov, and Park (2015) and SST variations play a key
role in heavy precipitation events in the Anatolian Peninsula (Bozkurt & Sen, 2011;
Turuncoglu, 2015; Baltaci, 2017). On the other hand, the number of studies investigating the
impact of utilizing various spatio-temporal accuracy SST products over the formation of

heavy precipitation that may cause floods over EBS and MED regions remains lacking.

Accordingly, the main goal of this study is to 1) evaluate the impact of the spatio-temporal
accuracy of SST products on the accuracy of the modelled hydrological response over the
small catchments located in MED and EBS coastal regions with different climatic
characteristics, 2) investigate the impact of calibration of WRF-Hydro parameters over the
benefit obtained from the use of high spatio-temporal accuracy SST products, 3) investigate
the consistency of the sensitivity analysis to different geographic regions with vastly diverse

climate.

In this study, the uncoupled WRF-Hydro simulations are forced by the WRF model
meteorological forcing data created via initial and lower boundary conditions updated with
different SST products (GHRSST, Medspiration, NCEP, ERAS5/GFS), while WRF-Hydro
parameters responsible from hydrological processes are calibrated. WRF precipitation
forecasts and WRF-Hydro runoff simulations are independently validated using ground
observations collected during three different heavy precipitation events for each basin over
MED and EBS regions. Thereby, the accuracy of the WRF-Hydro model predictability is

assessed not only with SST product sensitivity but also with model parameter calibration.
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2. DATA AND METHODS
2.1 Study Area and Event Description

Two significant SST-related heavy precipitation events (Pilatin, 2020). generated flash flood
over catchments located in the EBS and MED regions with different climatic characteristics
are considered for analysis. Nested 3-km WRF domains (d02) covering the EBS and MED
regions, selected basins together with their channel networks, location of both meteorological

and stream gauge stations are shown in Figure 1.

EBS region is located in the North-Eastern part of Turkey, where mountains lie parallel to the
shore and act as a barrier to humid air currents. The mountains rise above 3000 m and result
in complex topography and steep-sloped characteristics (Eris & Agiralioglu, 2018). Due to
small basin structures and steep rocky characteristics, river systems can react quickly to
moderate precipitation events and cause flash floods (Gurer & Ucar, 2009; Eris &
Agiralioglu, 2018). The region exhibits a humid climate and receives rainfall throughout the
year (Turkes, 1996). It has the highest mean annual recorded precipitation exceeding 2200
mm (Baltaci, 2017).

MED region has typical Mediterranean climate prevailing humid and semi-humid subtropical
characteristics with a rainy winter/spring and a severe hot-dry summer (Turkes, 1996). The
precipitation amount of the region is more than 1000 mm, and in many points, it exceeds
2000 mm (Turkes, 1996; Eris & Agiralioglu, 2018). Mean annual precipitation is 800 mm
over the MED coasts, and it increases up to 1500 mm over the Taurus Mountains (Turkes,
1996; Turkes, 1999). Details of air masses affecting the regions are described by Duzenli et
al. (2020). Typical topographic characteristics and sea effect point out that the strong
orographic lifting dependency and elevated heat sources for convective initiation exist in both
regions. Since high SST increases the moisture content in the air, it has a critical role in the

occurrence of flood events in such regions located in coastal areas with complex topography.
[Insert Figure 1]

The peak hourly precipitation amount that occurred on 24 August 2015 over the EBS region
is recorded as 32.4 mm at Artvin-Arhavi, while total 135 mm of precipitation accumulated
within 24-hours. On the other hand, for the MED event occurred on 16 December 2018, the

peak hourly precipitation was recorded as 53.1 mm at Antalya-Ovacik station, while it
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received the total daily precipitation amount of 651.7 mm. This event was registered as the
highest precipitation record measured in Turkey (Kaya, Guler Altan, & Yorganci, 2019). This
value is almost three times higher than the monthly average precipitation in December (265.3
mm) for Antalya city. The precipitation system for the event that occurred during the summer
season over the EBS region shows typical mesoscale convective signature, whereas the
frontal system is dominant for the event occurred over the MED region during the winter

sc€ason.

Over the EBS region, the drainage area of the D22A049 stream gauge and its sub-basins
(D22A079 and D22A089) located in Arhavi province and the drainage areas of the D22A 147
stream gauge in Hopa province are selected as study basins while the drainage areas of
DO08AO071, DO9A095, and EO8A008 stream gauges are selected over MED region for WRF-
Hydro Model (Figure 1 and Table 1). The streamflow observations from 7 stream gauge
stations are provided by the State Hydraulic Works (SHW) of Turkey. Streamflow is
provided as an average daily record in m*/s for selected stations and event periods except for
D22A049 and DO8AO71; it is provided as an hourly record for the events that occurred after
2016 (Table 1).

[Insert Table 1]
2.2 WRF Model

In this study, the Advanced Research WRF model version 4.0 (Skamarock et al., 2019)
developed by NCAR is used to reproduce the meteorological forcing data of the WRF-Hydro
model for the selected heavy precipitation events. Two-way nesting model configuration is
applied with spatial resolution specified at 9-km for the outer domain (d01) and 3-km for the
inner domain (d02). The outer domain as shown in Figure 1 extends 23.5°E-47.5°E;34.5°N-
43.5°N, and contains 232 x 111 grid points. Also, the inner domain over the MED region is
placed between 47.5°N — 32.4°N, 34.5°E — 36.4°E coordinates with 73 x 88 grid points,
while over the EBS region, it is placed between 47.5°N — 41.6°N, 23.5°E — 36.9°E
coordinates with 136 x 52 grid points.

In this study, two different Global Circulation Models (GCMs) are selected as initial and
boundary conditions to be used in the WRF model. Following the studies of Duzenli et al.
(2020) and Pilatin (2020), the Global Forecasting System (GFS) forecast dataset is used over
the MED region, while The European Centre for Medium-Range Weather Forecasts

7
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(ECMWF) ERAS Re-analysis dataset (ECMWF, 2020; NOAA, 2015) is used over EBS

region simulations as not updated.

In addition to ERAS and GFS, three other external SST datasets are used for the sensitivity
analysis in this study: 1) Medspiration Level 4 Ultra-High-Resolution Foundation Sea
Surface Temperature (CERSAT, 2012); 2) The Group for High-Resolution Sea Surface
Temperature Level 4 Ultra-High Resolution (GHRSST) (Team GHRSST, 2010a; Team
GHRSST, 2010b); 3) Real-Time, Global, Sea Surface Temperature (RTG SST HR)
represented by the National Centers for Environmental Prediction (NCEP), National Oceanic
and Atmospheric Administration (NOAA) (NCEP & NOAA, 2014). These products have
high spatial resolutions (0.01°, 0.022°, and 0.083°, respectively) and are provided on daily
basis. From here on, the SST products used in this study will be referred as Medspiration,
GHRSST, NCEP, ERAS, and GFS. Information about simulation periods of the WRF model

runs using these SST products over each study region are given in Table 2.
[Insert Table 2]
2.3 WRF-Hydro Model

This study operates the WRF-Hydro model version 5.1.1. configured in an uncoupled way
over the 3-km nested domain (d02) of the WRF model. Noah—Multi Parameterization (Noah-
MP) is selected for the model configuration as the land surface model (LSM). In model
physics options, surface overland and subsurface routing modules are activated for the whole
domains, whereas the channel routing module is only activated within the study basins. The
baseflow bucket model is also activated with the pass-through option. Detailed descriptions
of WRF-Hydro model structure and routing modules are available in (Gochis et al., 2020).
After the moisture states are calculated for the land surface column, the LSM grid
disaggregates into the high-resolution routing grids of 250-m resolution for both study
regions. High-resolution routing layers are produced from a hydrologically conditioned
digital elevation model (DEM) from the HydroSHEDS of Lehner, Verdin, and Jarvis (2008)
using the WRF-Hydro Pre-Processing toolbox in the GIS environment.

In calibration simulations of the WRF-Hydro model, among meteorological inputs derived
from WRF model the hourly precipitation field is updated by the observed precipitation.
Based on streamflow data availability, model calibration is performed for three events for

each basin (7 basins in total, see Table 1), and the SST events are used independently to

8
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validate the calibrated parameter set in terms of the performance of the WRF-Hydro model.
Calibration of the model is manually employed with a step-wise approach as described in
Yucel, Onen, Yilmaz, and Gochis (2015). In the first step, parameters controlling the
hydrograph volume called infiltration factor (REFKDT), surface retention depth
(RETDEPRT), and deep drainage coefficient (SLOPE) are calibrated. Surface roughness
coefficient (OVROUGHRT), channel Manning roughness coefficient (MANN), and saturated
hydraulic conductivity factor (LKSATFAC) being considered as parameters controlling
hydrograph shape (temporal distribution and peak timing) are calibrated in the second step.
Similar procedure is commonly adopted for the calibration of WRF-Hydro in terms of water
balance and its distribution (Yucel et al., 2015; Senatore et al., 2015; Naabil, Lamptey,
Arnault, Kunstmann, & Olufayo, 2017; Yang, Yuan, & Yu 2018; Liu et al., 2020). Some
parameters (REFKDT, SLOPE, MANN) are defined in tabular value format considered as
global values over the domain. Others are defined as pixel specific (RETDEPRT,
OVROUGHRT, LKSATFAC) that enables to change parameter value only for each basin.

Statistical measures are implemented between observed and simulated discharge for the
model accuracy evaluation, namely bias, root mean square error (RMSE), and correlation
coefficient (RR) to find the best parameter value among the different events for each basin.
Bias represents the degree of overestimation and underestimation in hydrograph volume. RR
reflects the linear relationship between observed and modelled flow and calculates the
capturing performance of the timing and shape of the hydrograph. Besides, RMSE is
sensitive to both the shape and the volume of the hydrograph (Moriasi et al., 2007; Gupta,
Kling, Yilmaz, & Martinez, 2009). This statistical evaluation is performed based on hourly or
daily time steps depending on the available temporal resolution of streamflow data of

selected stream gauges.
3. RESULTS
3.1 Spatio-Temporal Accuracy Evaluation of SST Products

GFS and ERAS products have coarser spatial (0.25°) resolution than GHRSST (1.1-km),
Medspiration (2.2km), and NCEP products (9-km). In this study, GHRSST, Medspiration,
and NCEP products are selected to have daily temporal resolutions, while GFS and ERAS
SST products temporally remained constant during event simulations. Temporally averaged

(10-days) spatial distribution of these products are shown in Figure 2, while spatially
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averaged time series are given in Figure 3. Eastern part of the EBS region is depicted by
warmer temperatures (~301K) than western part (~297K) consistently by all products (except
for NCEP). Over MED region, inter-product consistency is much smaller than EBS region
that spatial variability of average temperature is largest (Figure 2). Overall, all products,
except for constant ERAS and GFS, are temporally consistent with each other particularly

over MED region (Figure 3).

For any product, spatial and temporal cross-correlations are calculated with other products,
and then these cross-correlations are averaged (Table 3). Given there are no buoy
observations over the study regions to validate the accuracy of SST products, here average
cross-correlations are used as an indicator of true signal assuming there is no other common
spatial and temporal signal between the products (i.e., higher average cross-correlations
imply a better product). In general, the average temporal cross-correlations are higher over
MED region than EBS, while vice versa for spatial cross-correlations (Table 3). Overall,
average spatio-temporal cross-correlation for GHRSST (0.61) is higher than Medspiration
(0.54), which is higher than NCEP (0.36); this order is also valid for average spatial and
temporal cross-correlations as well as EBS and MED regions; this implies, among the time
varying SST products, GHRSST is the best and NCEP is the least performing products for the

events and regions focused in this study.
[Insert Figure 2]
[Insert Figure 3]
[Insert Table 3]
3.2 Calibration of the WRF-Hydro Model

Results for the hourly calibration of selected parameters within the WRF-Hydro model is
shown in Figure 4. In this figure, first column (a-f) represents the calibration results of the
event occurred between 10/19/2016 to 10/29/2016 at D22A049 basin located over EBS
region while the second column (g-1) belongs to the event occurred between 03/07/2017 to
03/17/2017 at basin DO8AO071 located over MED region. Two more additional events belong
to each catchment are also used in the calibration process (Table 1). Table 4 and Table 5

show the average statistical measures calculated for the WRF-Hydro model set up with

10
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default parameter set and for the simulation of selected parameter value of each catchment

considered over EBS region and over MED region, respectively.
[Insert Figure 4]
[Insert Table 4]
[Insert Table 5]

Depending on the step-wise approach, the calibration procedure starts with the group of
parameters controlling the hydrograph volume. Initially, calibration of the REFKDT
parameter (default value of 3.0) is performed with the parameter values between 0.5 and 5.0
with 0.5 increments. Figure 4(a) and Figure 4 (g) show the results of D22A049 and DOSA071
basins, respectively. It can be inferred as the higher the REFKDT value lower the infiltration
capacity of the soil column, in turn, the higher the hydrograph volume. According to the
statistics and comparison with the calibration hydrographs based on the other two events, it is
decided on to the lowest value (0.5) of REFKDT as optimum for both basins. However, there
is still an underestimation observed in the D022A049 hydrograph volume in Figure 4 (a). The
simulated first peak in day-8 is lowered, and the simulated hydrograph is fed through the
observed peak that occurred in between day-7 and day-8. On the contrary, when the average
bias is calculated for three events, bias turns into 3.72 in Table 4. Similar contrast is also
observed in the DO8AO71 station. Negative bias is observed for the average of three events
(Table 5), while an overestimation is observed for the represented event in Figure 4 (b).

Overall statistic shows that REFKDT parameter strongly sensitive in both regions.

Figure 4 (b) and Figure 4 (h) shows the calibration results of the RETDEPRTFAC parameter
with the range of 0.0-10.0 with 1.0 increment. Simulated hydrographs of both basins are not
showing an apparent response to the RETDEPRTFAC parameter (Table 4 and Table 5).
Since EBS and MED regions have steep topography, little water accumulation over the
terrain is expected to be observed. Therefore, the optimum RETDEPRTFAC parameter value

is selected as 0.0 for both basins.

The SLOPE is considered for the model calibration using values between 0.1 and 1.0 with 0.3
increments. Similar to Wang et al. (2019), only the first class of the nine SLOPE DATA
categories represented in GENPARM.TBL is subjected to tuning. This parameter controls the

openness of the bottom soil column to the conceptual bucket. It shows little influence on

11
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simulated hydrographs in terms of statistics. The default value is selected as an appropriate
SLOPE parameter value for the model in both basins. However, it is observed that the other
calibrated events in D22A147 and D09A095 basins show improvement in RMSE and
correlation coefficient with the SLOPE parameter (Table 4 and Table 5).

For the second step, parameters controlling hydrograph shape and timing are considered for
the calibration process. Figure 4 (d) and Figure 4 (j) show the results from the calibration of
the OVROUGHRTFAC parameter with values ranging from 0.1 to 1.0 with 0.3 increments.
OVROUGHRTFAC has an impact on the speed of the infiltration excess water transmitted
through the channel network grids. According to statistical measures, the default value of
OVROUGHRTFAC is found to be the optimum for all basins except the value of 0.1,
selected for basin DO9A09S5 (Table 5).

Manning’s Roughness scaling factor for all stream orders is calibrated with a scaling factor
(MANN) within a range from 0.5 to 2.0 with 0.5 increments. MANN controls the conveyance
time of the flow through the channel network, which can be interpreted as the higher MANN
values creates a slower peak and lower hydrograph volume. Figure 4 (e) and Figure 4 (k)
show that the highest correlation is seen for the value of 2.0. In addition, RMSE improvement
is observed in all basins for value of 2.0. Also, similar improvement is observed for value of
0.5 in EO8A008 (Table 4 and Table 5). Thus, scaling factor (MANN) is selected as 0.5 for
EO8A008, while 2.0 is selected for others.

Lastly, the LKSATFAC parameter, which affects the lateral redistribution of infiltrated water,
is calibrated for the values of 10, 100, 1000 (default), and 10000, as it is shown in Figure 4 (f)
and Figure 4 (1). It appears that LKSATFAC is the most sensitive parameter in both regions
particularly for the MED region. It influences peak timing and its magnitude with a
significant decrease. Over both regions, the value of 10 is determined as the optimum value

for LKSATFAC.

In Table 4, progressive improvement in RMSE and correlation coefficient is observed from
the first simulation (with default parameter set) to the simulation of LKSATFAC in step wise
manner for both basins. With the calibration, correlation coefficient is increased from 0.13 to
0.56, while RMSE is reduced from 40.55 to 32.16 for D22A49. On the other hand, bias
switches to negative value which is likely resulted from the effect of sharp decrease in the

recession stage in Figure 4(f). In D22A147, significant improvement is observed in
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correlation coefficient (from 0.38 to 0.71) at the end of the calibration process. For DOSA071,
an improvement is observed only in correlation coefficient, while bias and RMSE increase
after the calibration of the MANN (Table 5). In DO9A095 and EO8A008, statistics at the end
of the calibration process show an improvement compared to the model performed with
default parameters (Table 5). EO8A008 exhibits no response to the RETDEPRT, SLOPE and
OVROUGHRTFAC. As a result, it appears that the WRF-Hydro model is considerably
sensitive to the LKSATFAC parameter especially in the MED region. Calibrated parameters

for each basin with their default values are shown in Table 6.
[Insert Table 6]
3.3 Precipitation evaluation for each SST case

Figure 5 (a) and (b) show the comparison between observed and WRF-derived basin-
averaged precipitation time series of each SST case for D22A147 and DOS8AO71 basins,
respectively. On the other hand, Table 7 shows the statistical measures calculated for each
SST case in both basins. In Figure 5 (a), the precipitation time series are represented from
08/17/2015 00:00:00 UTC to 08/27/2015 00:00:00 UTC (241-hours). The maximum
precipitation amount for D22A147 is recorded as 26.3 mm for the 178" hour, which
corresponds to 08/24/2015 09:00:00 UTC. However, the maximum precipitation for the EBS
region for this event was recorded as 32.4 mm at 08/24/2015 00:00:00 UTC. The spatial
patterns of this precipitation amount measured in the meteorological station towards the
D22A049, not in the range of D22A 147 boundaries. Nevertheless, as shown in Figure 5 (a),
the effect of event center on the basin-average precipitation of the D22A 147 is still observed,
and it is recorded as 16.1 mm at the 169" hour, which corresponds to the event peak time for
the EBS region. Also, it can be interpreted that simulations performed with different SST
datasets are able to catch the general pattern of the observation, except they generate the
primary peak couple of hours earlier than the observation peak. However, notwithstanding
the poor statistical measures (low correlation of 0.01-0.03 and high RMSE of 3.19-5.30) in
Table 7, it can be depicted that using an external high-resolution SST dataset still improves
the accuracy of the simulated precipitation, especially for Medspiration. Besides, GHRSST
simulation overestimates the observed peak precipitation. Other simulated peaks are lower

than the GHRSST simulation, but they are closer to the observed peak.
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In Figure 5 (b), the basin-averaged precipitation time series are represented from 12/10/2018
00:00:00 UTC to 12/20/2018 00:00:00 UTC (241-hours). Peak time and precipitation
magnitude for the whole MED region is recorded as 53.1 mm at 162" hour (at 12/10/2018
17:00:00 UTC). The maximum basin-average precipitation value of 15.7 mm is calculated at
the same time step for the DOSAO71. Overall, simulated precipitations show nearly the
similar trend as the observation with minor overestimations. Nonetheless, it appears that
external SST simulations are able to improve the precipitation volume with reduced bias.
Modest delays in peak time (1-2 hours) are observed for GFS SST, GHRSST, and NCEP
simulations, while Medspiration catches the exact peak time. Comparing with the observed
peak precipitation amount, the GFS SST creates the highest overestimation around 17 mm,
and in terms of model run period, it creates a positive bias value of 0.56 (Table 7).
Medspiration shows the best model performance in terms of all statistics calculated with

respect to the observed precipitation compared to the rest (Table 7).
[Insert Figure 5]
[Insert Table 7]

Figure 6 shows the spatial distribution of observed precipitationand simulated precipitations
from the WRF model created by different SST datasets in peak day (08/24/2015) over the
EBS region. Observed precipitation map is created by IDW method using the point
observations, as shown in Figure 6 (a). It is noteworthy that in Figure 6 GHRSST simulation
shows an overestimation in spatial distribution of precipitation over the D22A147 compared
to observed precipitation (Figure 6 (c)). Medspiration generates the closest precipitation
distribution to the observation over the D22A147, consistent with the previously mentioned
remark that Medspiration improves the accuracy of precipitation estimates compared to
native coarse-resolution SST dataset (ERAS5) in Figure 6 (d). Medspiration and GHRSST
simulations also overestimate the precipitation towards the coastline, where they produce
more than 140 mm of daily precipitation (Figure 6 (¢ and d)). Besides, NCEP simulation
leads to the underestimation of the simulated precipitation as shown in Figure 6 (e). On the
other hand, GHRSST catches the observed event location compare to other simulations

considerably (Figure 6 (¢)).

[Insert Figure 6]
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For the MED region, Figure 7 shows the spatial distribution of simulated precipitation (GFS,
GHRSST, Medspiration, and NCEP) and observed precipitation with a maximum depth of
53.1 mm at the peak hour (Figure 7 (a)). Simulation performed with GFS SST shows
overestimation in terms of precipitation amount. It also misses the event location and creates
the event over the sea near the coastline instead of over the land (Figure 7 (b)). Besides,
simulations performed with external high-resolution SST datasets are reasonably well
represented compared to GFS simulations to catch the event location over the land. Figure 7
(c) shows that GHRSST simulation can capture the observed event location yet, it cannot
generate enough precipitation and causes underestimation with a depth of 16-18 mm, which
is due to the modest delay in peak time mentioned earlier. Medspiration and NCEP
simulations reveal much closer precipitation predictions to the observation in terms of
precipitation depth (Figure 7 (d-e)). Especially, Medspiration simulation steps forward in
generating similar precipitation depth and catching the similar hotspot of the observed event
in Figure 5 (b). However, it overestimates the observed precipitation by ~8 mm (the highest
hourly precipitation for Medspiration simulation over DO08A071 is 25.8 mm which

corresponds to the darker orange coloring of the basin grids (Figure 7 (d)).
[Insert Figure 7]
3.4 Evaluation of the WRF-Hydro for SST events

The performance of the calibrated WRF-Hydro model is evaluated using each SST case in
D22A147 and DO8AO71 basins. In Figure 8 shows the simulated hydrographs by
uncalibrated and calibrated models in D22A147. ERAS and NCEP hydrographs show
substantial underestimation for the peak volume (Figure 8 (a)). This may due to the negative
bias observed in precipitation in Figure 5 (a) for ERAS5 and NCEP simulations (They are the
ones with the highest negative bias among other SST simulations). Medspiration simulation
creates slightly better hydrograph volume and statistics compare to ERAS5 and NCEP
simulation. Though the GHRSST generates overestimation in precipitation and misses the
event peak time for D22A147 as discussed in the previous session (Figure 5 (a)), the daily
mean discharge of the GHRSST simulation makes the best improvement in the discharge
estimation. This is due to the fact that the WRF simulation of the GHRSST generated the
most realistic amount of water volume that the D22A147received on peak day (in
08/24/2015) as shown in Figure 6 (c). Therefore, the daily mean of the total water conveyed

to the channel network after the water balance calculations resulted in the closest simulated
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discharge volume to the observed one with the lowest negative bias and RMSE values among
the other simulations (Figure 8 (a)). The bias value of the simulated hydrographs with
GHRSST precipitation is reduced by -1.8 (from -10.5 to -8.7) while RMSE is reduced by 4.2
(from 20.7 to 16.5) as compared to hydrograph simulated with ERAS precipitation (Table 8).
On average, correlation coefficients increase from 0.3 (for ERAS) to 0.8 for the simulated
hydrographs with high-resolution SST datasets. A sharp decrease in the recession stage in the
hydrographs of all simulations is observed as different from the observed hydrograph.
Overall, from the statistical measures in Table 8, it can be seen that simulated hydrographs
obtained from WRF model forcings derived by high-resolution SST datasets show better
performance in terms of both peak timing and hydrograph volume corresponding to the

observed hydrograph.
[Insert Figure 8]
[Insert Table §]

In Figure 8 (b), the realistic volume increase is observed in the simulated hydrographs
through the calibrated set of parameters in the D22A147. The correlation coefficients of
simulated hydrographs are similar to those before calibration, except the correlation
coefficient of ERAS simulation increases from 0.3 to 0.4. Medspiration and NCEP
hydrographs volumes are improved, and they are way closer to the volume of observed
hydrograph, but their underestimation is still higher compare to GHRSST hydrograph. The
calibrated parameter set also substantially increases the GHRSST hydrograph volume and
makes it closer to the observation compare to other simulations. For GHRSST simulated
hydrograph, bias and RMSE is reduced by -2.5 (from -8.7 to -6.2) and 5.7 (from 16.5 to
10.8), respectively (Table 8). These results indicate that the GHRSST is the most
representative SST dataset for D22A147 among the other SST datasets in the way of its
positive effect on simulated hydrograph and the calibration of the WRF-Hydro model is also

essential to further improve the model simulation, especially in terms of hydrograph volume.

Comparison of hourly observed hydrograph and simulated hydrographs forced by four
different SST events in the DOSAO71 basin is represented in Error: Reference source not
found (a) (plotted for the last six days of the model run period). Figure 9 (b) shows the
equivalent plots with the set of calibrated parameters for the DOSAO71. In Figure 9 (a),

hourly simulated discharge patterns are well matched with the observation for high-resolution
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SST datasets (GHRSST, Medspiration, and NCEP) simulations with the correlation
coefficient values of ~0.6 (Table 8). Minor delays in the primary hydrograph peak time are
observed for the simulated hydrographs with GHRSST and NCEP. They overestimate the
observed discharge until peak time, yet the underestimation in the falling limb stage causes
negative bias between -18.85 and -26.24 as shown in the Table 8. The simulated hydrograph
of GFS SST produces a substantially higher peak of 877.4 m*/s compared to the observed
hydrograph and mismatches the hydrograph timing trend. The overestimation in a peak
discharge of this hydrograph is likely due to the positive bias in the peak time of hourly
precipitation time series of GFS SST in Figure 5 (b). Though the GFS SST hydrograph has
the lowest bias value (-7.1), it produces the highest RMSE (125.9) and lowest correlation
coefficient (0.3) (Table 8). Therefore, the simulated hydrograph shows better performance in
terms of hydrograph peak timing and magnitude with the WRF forcing updated by external
high-resolution SSTs, consistent with that they show the closer spatial distribution of

precipitation to observation in peak time over the DOSA071 (Figure 7).
[Insert Figure 9]

Simulated hourly hydrographs with the calibrated parameter set in Figure 9 (b) represent
better behaviour in rising limb part till their peak values, but their falling limb parts decreases
more sharply after the calibration. It can be interpreted that model is trying to adapt to
extraordinarily high observed peak discharges (301.4 m’/s) via calibration. This is likely the
evidence for the discrepancy in statistical measures in Table 8, are getting worse after the
calibration of the model. The observed peak value is greatly captured by external high-

resolution SST products with a reduction of ~100 m*/s.
3.5 Evaluation of Rainfall-Runoff Representations

Figure 10 shows overlapped dynamic maps of accumulated precipitation simulated by the
WRF model using four different SST datasets (ERAS, GHRSST, Medspiration and NCEP)
and simulated discharges on the gridded river networks corresponding to these four
precipitation estimates over the EBS region for D22A49 and D22A147 basins. Blue dots over
the maps highlight the location of outlet points (stream gauge station from Figure 1) of the
basins. The first-time step in Figure 10 (a-d) shows the accumulated precipitation shortly
before the start of the precipitation event and the state of the river networks of the D22A49
and D22A 147 having the discharge at the baseflow level. In Figure 10 (f), at the second time
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step, the D22A 147 basin receives the highest precipitation compared to others; this result is
consistent with that the simulated precipitation with GHRSST generates the highest
overestimation stated in the previous section. Due to the steep slope characteristics of the
basins over the EBS region, it can be seen that the precipitation is immediately conveyed
(less than 1 hour) to the river network and collected to the outlet point and lead to flooding.
This is clearly seen in Figure 10 (e) for the D22A049, in Figure 10 (f) for the D22A147, and
in Figure 10 (g-h) for both basins. For the third time step, the river network responds with
lowered discharge values and lastly returns to the baseflow since there is no significant

precipitation observed at the previous time step (Figure 10 (i-1)).
[Insert Figure 10]

Figure 11 shows overlapped dynamic maps of accumulated precipitation simulated by the
WRF model through using four different SST datasets (GFS, GHRSST, Medspiration, and
NCEP) and simulated discharges on gridded river networks corresponding to these four
precipitation estimates over the MED region for DOSA071, DO9A095, and EO8A008 basins.
The first-time step (02:00:00 UTC) demonstrates the precipitation event start over the basins
located towards the east at which channel grids of mentioned basins are started to be filled
with water (Figure 11 (a-d)). At 16:00:00 UTC, the simulated discharge amount with GFS-
SST at the outlet of the DOSA071 reaches from 142 to 516 m’/s as a response to the
accumulated precipitation for 14 hours, especially over the upper basin (Figure 11 (a and ¢)).
The precipitation event takes place towards the DO9A095 for MED-SST simulation, and it
appears that precipitated water is collected from the upper basin and conveyed to the outlet
point and reaches the discharge value of 698 m*/s (Figure 11 (g)). In Figure 11 (1), due to the
minor delays in primary peak time discharge in hydrographs of GHRSST and NCEP, the
channel grid network still on the rising limb stage with respect to the simulated hydrographs

in Figure 9 (b)Error: Reference source not found
[Insert Figure 11]
4. DISCUSSION

Various SST products indeed resulted in different precipitation variability both in space and
time over both regions, while the spatial and the temporal differences in precipitation greatly
affect the accuracy of runoff simulation in terms of timing and magnitude of the peak value,

and overall volume (Yucel et al., 2015; Senatore et al., 2020). Overall, GHRSST product
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yield the highest spatio-temporal accuracy, while NCEP yield the least among the temporally
variable SST products. Consistent with this result, GHRSST-based runoff simulations yield
the highest accuracy, while NCEP the lowest among the temporally variable SST products.
These results clearly show the significance of using higher spatio-temporal accuracy SST

products in the simulation of heavy rainfall and extreme runoff.

In this study, cross-correlations are used as a validation tool, where buoy observations are
non-existent over the study regions. Accordingly, the consistency between the cross-
correlation based accuracy estimates and the runoff simulations show such cross-correlation-
based methodology can be used over other remote locations that do not have buoy

observations to validate SST products.

In general, simulated hydrographs show strong sensitivity to simulated precipitation inputs
based on different SST products as well as significant variability from event to event. It is
indicated that WRF Hydro and its calibration process function reasonably well in that
calibration tends to improve model simulations when appropriate precipitation inputs are
used. With the hourly calibration procedure, simulated hydrographs shapes over both regions
are significantly improved. With sharp and steep small catchments over the EBS, the
hydrologic response is very fast and overland flow is quickly joined to the river networks and
pours to the outlets within 1-h period. The high-resolution gridded rainfall-runoff coupling
greatly benefits to monitor the water excess condition for a given storm over topographically

complex and steeply small watersheds.

In event simulations by WRF, the updates in SST through model integration are usually not
activated because the variability of SST is small during a short event period. However, it is
expected that changing climate causes abnormal SST changes that trigger the formation of
the occurrence of heavy precipitation events (Pilatin, 2020). The daily updated SST products
from GHRSST, Medspiration, and NCEP over both study regions revealed significant
changes in heavy precipitation amounts with respect to the not-updated (native) SST products
from GFS over MED and ERAS5 over EBS. They improved the accuracy of predictions in
terms of storm location, timing, and extent particularly over the MED region. As a result, the
Medspiration over the MED region and GHRSST over the EBS region revealed the best
basin-averaged precipitation representation that directly translates into improvement in

surface runoff prediction in small catchments of both study regions.
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The high spatio-temporal resolution SSTs (GHRSST and Medspiration) help resolve high
variability in rainfall and its hydrologic response resulted from a mesoscale convective
system occurred in the ESB region. The calibrated WRF-Hydro model significantly
highlighted the improvement provided by these two SST products over the EBS region. Even
though the statistics show some degradation in runoff results after model calibration, the
calibrated model indeed improved the rising limb parts of the storm hydrographs till their
peak occurrence particularly for Medspiration- and GHRSST-based simulations over the
MED region. Since the MED SST event produced an observed peak around 300 m?/s, the
calibration became highly sensitive to this peak value and therefore it showed a poor
performance in describing the falling limb parts of the hydrographs. The effective parameter
sets controlling the volume and shape of the hydrograph need to be identified prior to the
operational runoff forecast to perform more accurate forecasts (Yucel et al., 2015; Senatore et
al., 2015; Silver, Karnieli, Ginat, Meiri, & Fredj, 2017). Among the parameters, REFKDT,
SLOPE, MANN and LKSATFAC revealed an important impact on making reliable runoff
prediction in both regions but especially the saturated hydraulic conductivity parameter factor

(LKSATFAC) became substantially critical over the MED region.

5. CONCLUSIONS

This study investigated the hydrologic response of the small catchments characterized by
complex coastal orography and diverse climate to the heavy precipitation events simulated by
various SST products featured as coarse- and high-resolution, and daily updated and not
updated within the WRF model. The flood hydrographs of the heavy rainfall events are
simulated using the physical-based and fully-distributed WRF-Hydro model configured with
one-way coupling from WRF 3-km domain to the Hydro model. GFS over the MED region
and ERAS5 data over EBS region include their own SST values (considered as coarse
resolution and not updated data sets), whereas GHRSST, Medspiration, and NCEP products
are described as high-resolution and updated external products used in both study regions.
Calibration of the WRF-Hydro model is carried out for two different groups of parameters
controlling hydrograph volume and shape in a step-wise approach to improve the
performance of the WRF-Hydro model further. The main findings of this study are listed as

follows:
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* Using higher spatio-temporal SST products (Medspiration and GHRSST) is highly
influential in capturing the temporal and spatial variability of precipitation in small
catchments. This effect is variable from region to region.

* For operational forecasts of extreme events, higher spatio-temporal products should be
used to improve the accuracy of the runoft.

* High spatio-temporal resolution SST update impact on simulated hydrograph over both
regions is highlighted in terms of predicting peak discharge values more accurately by
their effect of changing precipitation spatial distribution, and intensity.

* (Calibration of the model further improved the model statistical measures for simulated
hydrographs over the EBS region, and it was observed that the hydrographs simulated
over the MED region are way more sensitive to the calibration, especially in terms of
peak timing and magnitude, though the statistical measures were degraded in the falling
limb part of the hydrographs.

* The effect of calibrated parameters on statistics improvement was found slightly better
than the SST effect over the EBS region, while over the MED region, both SST and
calibration effects were found prominent in terms of hydrograph improvement capacity.

* Improvements acquired from different SST products with various spatio-temporal
resolution vary. Overall, high-resolution GHRSST and Medspiration show more
significant improvement compared to other SST datasets to capture peak discharge timing

and magnitude for hydrographs simulated over both regions.

Overall, the findings of this study from the precipitation and hydrograph simulations
demonstrate the potential benefit of using high-resolution SST datasets in initial and lower
boundary conditions of the WRF model simulations. Under the consideration of abnormal
SST changes exacerbated by changing climate, time-varying SST features characterized with
high spatio-temporal accuracy should be accounted for extreme weather event evaluations in
complex coastal topographical regions. Additionally, the effect of the WRF-Hydro model
calibration on simulated hydrographs displays satisfactory enhancement. Such improvements
are considered noteworthy in terms of early warning systems, especially regions under the
significant influence of sea effect in atmospheric conditions and have a complex

topographical characteristic that poses high flood risk.
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789

790 Table 1 Drainage areas and calibrated event periods of each selected basin over EBS and

791

792

793

794

795

TABLES

MED regions.
Regio Station Drai;lf;iz Calibration Event Period
n (knn?) Start End
08/27/2016 09/06/2016
D22A049 175.8 09/20/2017 09/30/2017
10/19/2016 10/29/2016
10/19/2016 10/29/2016
D22A079 85.8 10/01/2018 01/11/2018
06/24/2019 07/04/2019
EBS 08/27/2016 09/06/2016
D22A089 71.5 09/20/2017 09/30/2017
10/19/2016 10/29/2016
08/27/2016 09/06/2016
D22A147 41.9 09/20/2017 09/30/2017
10/19/2016 10/29/2016
01/09/2015 01/19/2015
DO08AO071 98.3 03/07/2017 03/17/2017
03/23/2015 04/02/2015
01/09/2015 01/19/2015
MED EO08A008 164.6 03/07/2017 03/17/2017
03/23/2015 04/02/2015
01/21/2014 01/31/2014
D09A095 164.6 01/09/2015 01/19/2015
03/23/2015 04/02/2015
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796 Table 2 SST products and initial boundaries included as meteorological forcings in the scope
797  of this study and model run periods corresponding to EBS and MED region.

Meteorological Forcings Model Run Periods

Region SST Initial and
Boundary Start Date  End Date
Products  Conditions

ERA5S
GHR
EBS R E{{A.S 08/17/2015 08/27/2015
Medspiration canalysis
NCEP
GFS
GHR GFS
MED 12/10/2018 12/20/2018
Medspiration Forecast
NCEP
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798 Table 3 Average spatial and temporal cross correlations of SST products over the study

799 regions and periods

Average Cross Spatial Temporal

Correlations EBS MED EBS MED

ERAS5/GFS 0.75 0.11 ; ;

GHRSST 0.83 0.39 0.60 0.84

NCEP 0.48 0.23 0.24 0.79

MED 0.73 0.35 0.48 0.79
800
801
802
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803 Table 4 Average statistics of (Bias, Root Mean Square Error (RMSE), and Correlation
804 Coefficient (RR)) calibrated parameters for three events compare to default parameter set for

805 D22A049 and D22A147 basins over EBS region.

D22A049 D22A147
\IZZMm; Bias RMSE RR \lj:mm;'s Bias RMSE RR
Default Parameter Set 424 40.55 0.13 048 575 0.38
REFKDT 0.5 372 4048 0.38 0.5 0.58 320 0.63
RETDEPRT 0.0 4.00 4045 0.39 0.0 0.60 3.18 0.62
SLOPE 0.1 4.00 4045 0.39 1.0 1.01 2.88 0.67
OVROUGHRTFAC 1.0 4.00 4045 0.39 1.0 1.01 2.88 0.67
MANN 2.0 3.69 3754 0.39 2.0 0.85 2.76 0.64
LKSATFAC 10 -2.34 32,16 0.56 10 0.55 2.33 0.71
806
807
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808 Table 5 Average statistics of (Bias, Root Mean Square Error (RMSE), and Correlation

809 Coefficient (RR)) calibrated parameters for three events compare to default parameter set for

810 DO8AO071, DO9A095 and EO8A008 basins over MED region.

DOSAOT1 DO9A095
Parm. b RMSE RR Parm. o o RMSE RR
Values Values
Defa““;);rameter 528 1667 044 278 17.02 045
REFKDT 05 -1.02 3012 044 05 131 967 0.3
RETDEPRT 0.0 -047 3053 044 0.0 528 1658 042
SLOPE 0.1  -047 3053 044 10 548 15.65 0.48
OVROUSHRTFA 10 -047 3053 044 0.1 169 855 0.70
MANN 20  -0.50 29.85 0.49 20 170 835 081
LKSATFAC 10 557 2630 046 10 229 902 0.77
E0SA008
Parm. o o RMSE RR
Values
Def"‘“ltspeirameter 1222 1598 025
REFKDT 05 1181 1538 039
RETDEPRT 00 1180 1535 039
SLOPE 0.1 1180 1535 039
OVROUSHRTFA 10 11.80 1535 0.39
MANN 05 1184 1519 037
LKSATFAC 10 252 423 031
811
812
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813 Table 6 Default and calibrated parameter values for each basin.

Default Calibrated Parameter Value
Parameter Parameter EBS MED
Value D22A049 D22A079 D22A089 D22A147|D08A071 D0O9A095 EO08A008
REDKT 3.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5
RETDEPRTFAC 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SLOPE 0.1 0.1 0.1 1.0 1.0 0.1 1.0 0.1
OVROUGHRTFAC 1.0 1.0 1.0 0.1 1.0 1.0 0.1 1.0
MANN 1.0 2.0 2.0 2.0 2.0 2.0 2.0 0.5
LKSATFAC 1000 10 10000 1000 10 10 10 10

814
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815 Table 7 Statistics of Bias, RMSE, and RR between observed and modelled precipitations with
816 different SST datasets a) ERAS, GHRSST, Medspiration, and NCEP for D22A147 over EBS
817 and b) GFS, GHRSST, Medspiration, and NCEP for DO8A071 over MED are shown.

Station SST WRE Bias RMSE RR
Runs
ERAS5-SST -0.54 3.19 0.03

GHR-SST  -0.06 5.30 0.01

D22A147 MED-SST  -0.24  3.55 0.03
NCEP-SST -0.54  3.38 0.01
GFS-SST 0.56 345 0.60
GHR-SST 0.18 235 0.52
DOSAO7L MED-SST 0.13 1.86 0.67
NCEP-SST  0.33 2.23 0.60
818
819
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820 Table 8 Statistics of Bias, RMSE, and RR between observed and modelled hydrographs of

821 D22A147 and DO8AO71 for SST events over EBS and MED regions.

. SST WRE- Default Calibrated
Station Hydro Runs ' Parameter Set . Parameter Set
Bias RMSE RR Bias RMSE RR

ERAS5-SST -10.46 20.69  0.29 -9.92 20.13 0.42

GHR-SST -8.71 1649 0.83 -6.16 10.82 0.83

D22AIST MED-SST -1024 2013 086 832 1586 0386
NCEP-SST -10.42 20.55 0.83 -9.60 18.98 0.82

GFS-SST -7.07 125.97 030 -24.98 128.81 0.18

DO8A0T] GHR-SST  -26.56 5730 0.62 -42.73 83.25 0.30
MED-SST -26.24 59.70  0.59 -43.63 83.57 0.31

NCEP-SST  -18.85 58.79 0.60 -40.76 81.50 0.32

822
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FIGURE LEGENDS

Figure 1 The outer and nested domains (d01 and d02) of the WRF model for EBS and MED
regions are displayed in the top-left. Boundaries of the selected basin, their outlet points
(stream gauge stations denoted as blues dots), channel network grids in the WRF-Hydro
model, and the meteorological station (denoted as a green triangle) are shown in the zoomed

maps with the high-resolution topography layer at the background.

Figure 2 Temporally averaged spatial distribution of SST products over MED (left column)
and EBS (right column) regions.

Figure 3 Spatially-averaged temporal distribution of SST products over EBS (upper panel)
and MED (lower panel) regions.

Figure 4 Calibration results of the selected WRF-Hydro model parameters, namely REFKDT,
RETDEPRT, SLOPE, OVROUGHRTFAC, MANN, and LKSATFAC: a-f) left column for
event occurred between 10/19/2019 to 10/29/2016 and basin D22A049 located over EBS
region; g-1) right column for event occurred between 03/07/2017 to 03/17/2017 and basin
DO08AO071 located over MED region. Dashed line shows the hydrograph for selected optimum

parameter value.

Figure 5 Time series of hourly precipitation that a) D22A147 basin over EBS region receives
during the event occurred in 08/17/2015-08/27/2015 and b) DO8AO071 basin over MED region
receives during the event occurred in 12/10/2018-12/20/2018 for 10 days. Outputs are
generated from WRF model with the native SST field from ERAS5 Reanalysis data (ERAS-
SST) for EBS region and GFS Forecast data (GFS-SST) for MED region with different SST
products: GHRSST, Medspiration, and NCEP.
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Figure 6 Spatial distribution of daily precipitation at the peak day (08/24/2015) for run period
of 08/17/2017 — 08/27/2017 over EBS region. a) The map at the top shows the interpolated
observed precipitation map obtained from meteorological stations data (green triangles).
Black line indicates the boundaries of selected basins for this study while blue dots show the
corresponding stream gauge stations. The four maps at the sub-panels refer the simulated
precipitations by WRF model derived by different SST data sources for the peak hour: b)
ERAS, ¢) GHRSST, d) Medspiration and e¢) NCEP, respectively.

Figure 7 Spatial distribution of hourly precipitation at the peak hour (12/16/201817:00:00
UTC) for run period of12/10/2018-12/20/2018 over MED region. a) The map at the top
shows the interpolated observed precipitation map obtained from meteorological stations data
(green triangles). Black line indicates the boundaries of selected basins for this study while
blue dots show the corresponding stream gauge stations. The four maps at the sub-panels
refer the simulated precipitations by WRF model derived by different SST data sources for
the peak hour: b) GFS, ¢) GHRSST, d) Medspiration and e) NCEP, respectively.

Figure 8 Comparison of observed hydrographs with the simulated hydrographs generated
using precipitation inputs derived with native SST field (ERAS), GHRSST, Medspiration and
NCEP a) prior to the calibration and b) with the calibrated parameter set of the WRF-Hydro
model for event 08/17/2015-08/27/2015 in D22A147.

Figure 9 Comparison of observed hydrographs with the simulated hydrographs generated
using precipitation inputs derived with native SST field (GFS), GHRSST, Medspiration and
NCEP a) prior to the calibration and b) with the calibrated parameter set of the WRF-Hydro
model for event 12/10/2018-12/20/2018 in DOSAO071.
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Figure 10 Overlapped dynamic maps of accumulated precipitation simulated by WRF model
(3-km) operated with 4 different SST datasets (ERAS, GHRSST, Medspiration and NCEP)
and discharge simulated by WRF-Hydro model (250-m) over EBS region at 08/23/2015
23:00:00, 08/24/2015 03:00:00, and 08/24/2015 04:00:00. Stream gauges are denoted as
blued dots.

Figure 11 Overlapped dynamic maps of accumulated precipitation simulated by WRF model
(3-km) operated with 4 different SST datasets (GFS, GHRSST, Medspiration and NCEP) and
discharge simulated by WRF-Hydro model (250-m) over MED region at 12/16/2018
02:00:00, 12/16/2018 16:00:00, and 12/16/2018 19:00:00. Stream gauges are denoted as
blued dots.
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