References
Abreu, T. R., Fonseca, N. A., Gonçalves, N., & Moreira, J. N. (2020).
Current challenges and emerging opportunities of CAR-T cell therapies.Journal of Controlled Release, 319 , 246-261.
doi:https://doi.org/10.1016/j.jconrel.2019.12.047
Abujarour, R., Valamehr, B., Robinson, M., Rezner, B., Vranceanu, F., &
Flynn, P. (2013). Optimized surface markers for the prospective
isolation of high-quality hiPSCs using flow cytometry selection.Scientific reports, 3 , 1179-1179. doi:10.1038/srep01179
Azzaoui, I., Uhel, F., Rossille, D., Pangault, C., Dulong, J., Le Priol,
J., . . . Roussel, M. (2016). T-cell defect in diffuse large B-cell
lymphomas involves expansion of myeloid-derived suppressor cells.Blood, 128 (8), 1081-1092. doi:10.1182/blood-2015-08-662783
Ban, H., Nishishita, N., Fusaki, N., Tabata, T., Saeki, K., Shikamura,
M., . . . Nishikawa, S. (2011). Efficient generation of transgene-free
human induced pluripotent stem cells (iPSCs) by temperature-sensitive
Sendai virus vectors. Proc Natl Acad Sci U S A, 108 (34),
14234-14239. doi:10.1073/pnas.1103509108
Ben-David, U., & Benvenisty, N. (2011). The tumorigenicity of human
embryonic and induced pluripotent stem cells. Nature Reviews
Cancer, 11 (4), 268-277. doi:10.1038/nrc3034
Bharathan, S. P., Manian, K. V., Aalam, S. M. M., Palani, D., Deshpande,
P. A., Pratheesh, M. D., . . . Velayudhan, S. R. (2017). Systematic
evaluation of markers used for the identification of human induced
pluripotent stem cells. Biology open, 6 (1), 100-108.
doi:10.1242/bio.022111
Birnbaum, M. E., Berry, R., Hsiao, Y.-S., Chen, Z., Shingu-Vazquez, M.
A., Yu, X., . . . Rossjohn, J. (2014). Molecular architecture of the αβ
T cell receptor–CD3 complex. Proceedings of the National Academy
of Sciences, 111 (49), 17576-17581.
Blelloch, R., Venere, M., Yen, J., & Ramalho-Santos, M. (2007).
Generation of induced pluripotent stem cells in the absence of drug
selection. Cell stem cell, 1 (3), 245-247.
doi:10.1016/j.stem.2007.08.008
Brentjens, R. J., Rivière, I., Park, J. H., Davila, M. L., Wang, X.,
Stefanski, J., . . . Sadelain, M. (2011). Safety and persistence of
adoptively transferred autologous CD19-targeted T cells in patients with
relapsed or chemotherapy refractory B-cell leukemias. Blood,
118 (18), 4817-4828. doi:10.1182/blood-2011-04-348540
Chapuis, A. G., Ragnarsson, G. B., Nguyen, H. N., Chaney, C. N.,
Pufnock, J. S., Schmitt, T. M., . . . Greenberg, P. D. (2013).
Transferred WT1-reactive CD8+ T cells can mediate antileukemic activity
and persist in post-transplant patients. Sci Transl Med, 5 (174),
174ra127. doi:10.1126/scitranslmed.3004916
Cheadle, E., Rothwell, D., Bridgeman, J., Sheard, V., Hawkins, R., &
Gilham, D. (2012). Ligation of the CD2 co-stimulatory receptor enhances
IL-2 production from first-generation chimeric antigen receptor T cells.Gene therapy, 19 (11), 1114-1120.
Crook, J. M., Hei, D., & Stacey, G. (2010). The International Stem Cell
Banking Initiative (ISCBI): raising standards to bank on. In Vitro
Cell Dev Biol Anim, 46 (3-4), 169-172. doi:10.1007/s11626-010-9301-7
Cunningham, J. J., Ulbright, T. M., Pera, M. F., & Looijenga, L. H.
(2012). Lessons from human teratomas to guide development of safe stem
cell therapies. Nat Biotechnol, 30 (9), 849-857.
doi:10.1038/nbt.2329
Das, R. K., Vernau, L., Grupp, S. A., & Barrett, D. M. (2019). Naïve
T-cell Deficits at Diagnosis and after Chemotherapy Impair Cell Therapy
Potential in Pediatric Cancers. Cancer Discov, 9 (4), 492-499.
doi:10.1158/2159-8290.Cd-18-1314
Dekel-Naftali, M., Aviram-Goldring, A., Litmanovitch, T., Shamash, J.,
Reznik-Wolf, H., Laevsky, I., . . . Rienstein, S. (2012). Screening of
human pluripotent stem cells using CGH and FISH reveals low-grade mosaic
aneuploidy and a recurrent amplification of chromosome 1q.European Journal of Human Genetics, 20 (12), 1248-1255.
doi:10.1038/ejhg.2012.128
Deol, A., & Lum, L. G. (2010). Role of donor lymphocyte infusions in
relapsed hematological malignancies after stem cell transplantation
revisited. Cancer Treat Rev, 36 (7), 528-538.
doi:10.1016/j.ctrv.2010.03.004
Depil, S., Duchateau, P., Grupp, S. A., Mufti, G., & Poirot, L. (2020).
’Off-the-shelf’ allogeneic CAR T cells: development and challenges.Nat Rev Drug Discov, 19 (3), 185-199.
doi:10.1038/s41573-019-0051-2
Duncan, E. J., Gluckman, P. D., & Dearden, P. K. (2014). Epigenetics,
plasticity, and evolution: How do we link epigenetic change to
phenotype? J Exp Zool B Mol Dev Evol, 322 (4), 208-220.
doi:10.1002/jez.b.22571
Elliott, A. M., Elliott, K. A., & Kammesheidt, A. (2010). High
resolution array-CGH characterization of human stem cells using a stem
cell focused microarray. Mol Biotechnol, 46 (3), 234-242.
doi:10.1007/s12033-010-9294-1
Farkas, S., Simara, P., Rehakova, D., Veverkova, L., & Koutna, I.
(2020). Endothelial Progenitor Cells Produced From Human Pluripotent
Stem Cells by a Synergistic Combination of Cytokines, Small Compounds,
and Serum-Free Medium. Frontiers in cell and developmental
biology, 8 , 309-309. doi:10.3389/fcell.2020.00309
Fernandez, T. d. S., de Souza Fernandez, C., & Mencalha, A. L. (2013).
Human Induced Pluripotent Stem Cells from Basic Research to Potential
Clinical Applications in Cancer. BioMed Research International,
2013 , 430290. doi:10.1155/2013/430290
Garfall, A. L., Dancy, E. K., Cohen, A. D., Hwang, W. T., Fraietta, J.
A., Davis, M. M., . . . Melenhorst, J. J. (2019). T-cell phenotypes
associated with effective CAR T-cell therapy in postinduction vs
relapsed multiple myeloma. Blood Adv, 3 (19), 2812-2815.
doi:10.1182/bloodadvances.2019000600
Gattinoni, L., Lugli, E., Ji, Y., Pos, Z., Paulos, C. M., Quigley, M.
F., . . . Restifo, N. P. (2011). A human memory T cell subset with stem
cell-like properties. Nat Med, 17 (10), 1290-1297.
doi:10.1038/nm.2446
Haridhasapavalan, K. K., Borgohain, M. P., Dey, C., Saha, B., Narayan,
G., Kumar, S., & Thummer, R. P. (2019). An insight into non-integrative
gene delivery approaches to generate transgene-free induced pluripotent
stem cells. Gene, 686 , 146-159. doi:10.1016/j.gene.2018.11.069
Hu, Y., Wang, J., Wei, G., Yu, J., Luo, Y., Shi, J., . . . Huang, H.
(2019). A retrospective comparison of allogenic and autologous chimeric
antigen receptor T cell therapy targeting CD19 in patients with
relapsed/refractory acute lymphoblastic leukemia. Bone Marrow
Transplant, 54 (8), 1208-1217. doi:10.1038/s41409-018-0403-2
Huang, C.-Y., Liu, C.-L., Ting, C.-Y., Chiu, Y.-T., Cheng, Y.-C.,
Nicholson, M. W., & Hsieh, P. C. H. (2019). Human iPSC banking:
barriers and opportunities. Journal of Biomedical Science, 26 (1),
87-87. doi:10.1186/s12929-019-0578-x
Ito, E., Miyagawa, S., Takeda, M., Kawamura, A., Harada, A., Iseoka, H.,
. . . Sawa, Y. (2019). Tumorigenicity assay essential for facilitating
safety studies of hiPSC-derived cardiomyocytes for clinical application.Scientific reports, 9 (1), 1881. doi:10.1038/s41598-018-38325-5
Iyer, R. K., Bowles, P. A., Kim, H., & Dulgar-Tulloch, A. (2018).
Industrializing Autologous Adoptive Immunotherapies: Manufacturing
Advances and Challenges. Frontiers in Medicine, 5 (150).
doi:10.3389/fmed.2018.00150
Jang, Y., Choi, J., Park, N., Kang, J., Kim, M., Kim, Y., & Ju, J. H.
(2019). Development of immunocompatible pluripotent stem cells via
CRISPR-based human leukocyte antigen engineering. Experimental &
molecular medicine, 51 (1), 1-11. doi:10.1038/s12276-018-0190-2
Johnson, L. A., Morgan, R. A., Dudley, M. E., Cassard, L., Yang, J. C.,
Hughes, M. S., . . . Rosenberg, S. A. (2009). Gene therapy with human
and mouse T-cell receptors mediates cancer regression and targets normal
tissues expressing cognate antigen. Blood, 114 (3), 535-546.
doi:10.1182/blood-2009-03-211714
Julien, E., El Omar, R., & Tavian, M. (2016). Origin of the
hematopoietic system in the human embryo. FEBS Lett, 590 (22),
3987-4001. doi:10.1002/1873-3468.12389
Keller, A., Dziedzicka, D., Zambelli, F., Markouli, C., Sermon, K.,
Spits, C., & Geens, M. (2018). Genetic and epigenetic factors which
modulate differentiation propensity in human pluripotent stem cells.Hum Reprod Update, 24 (2), 162-175. doi:10.1093/humupd/dmx042
Kelly, J. M., Darcy, P. K., Markby, J. L., Godfrey, D. I., Takeda, K.,
Yagita, H., & Smyth, M. J. (2002). Induction of tumor-specific T cell
memory by NK cell-mediated tumor rejection. Nat Immunol, 3 (1),
83-90. doi:10.1038/ni746
Kim, D., Kim, C.-H., Moon, J.-I., Chung, Y.-G., Chang, M.-Y., Han,
B.-S., . . . Kim, K.-S. (2009). Generation of human induced pluripotent
stem cells by direct delivery of reprogramming proteins. Cell stem
cell, 4 (6), 472-476. doi:10.1016/j.stem.2009.05.005
Kim, K., Zhao, R., Doi, A., Ng, K., Unternaehrer, J., Cahan, P., . . .
Daley, G. Q. (2011). Donor cell type can influence the epigenome and
differentiation potential of human induced pluripotent stem cells.Nat Biotechnol, 29 (12), 1117-1119. doi:10.1038/nbt.2052
Kochenderfer, J. N., Dudley, M. E., Carpenter, R. O., Kassim, S. H.,
Rose, J. J., Telford, W. G., . . . Rosenberg, S. A. (2013).
Donor-derived CD19-targeted T cells cause regression of malignancy
persisting after allogeneic hematopoietic stem cell transplantation.Blood, 122 (25), 4129-4139. doi:10.1182/blood-2013-08-519413
Kumazaki, T., Kurata, S., Matsuo, T., Mitsui, Y., & Takahashi, T.
(2011). Establishment of human induced pluripotent stem cell lines from
normal fibroblast TIG-1. Hum Cell, 24 (2), 96-103.
doi:10.1007/s13577-011-0016-1
Li, C., Mei, H., & Hu, Y. (2020). Applications and explorations of
CRISPR/Cas9 in CAR T-cell therapy. Briefings in Functional
Genomics, 19 (3), 175-182. doi:10.1093/bfgp/elz042
Li, Y., Hermanson, D. L., Moriarity, B. S., & Kaufman, D. S. (2018).
Human iPSC-Derived Natural Killer Cells Engineered with Chimeric Antigen
Receptors Enhance Anti-tumor Activity. Cell stem cell, 23 (2),
181-192.e185. doi:10.1016/j.stem.2018.06.002
Liem, N. T., Van Phong, N., Kien, N. T., Anh, B. V., Huyen, T. L., Thao,
C. T., . . . Nhung, H. T. M. (2019). Phase I Clinical Trial Using
Autologous Ex Vivo Expanded NK Cells and Cytotoxic T Lymphocytes for
Cancer Treatment in Vietnam. Int J Mol Sci, 20 (13).
doi:10.3390/ijms20133166
Liu, G., David, B. T., Trawczynski, M., & Fessler, R. G. (2020).
Advances in Pluripotent Stem Cells: History, Mechanisms, Technologies,
and Applications. Stem Cell Rev Rep, 16 (1), 3-32.
doi:10.1007/s12015-019-09935-x
Liu, J., Zhou, G., Zhang, L., & Zhao, Q. (2019). Building Potent
Chimeric Antigen Receptor T Cells With CRISPR Genome Editing.Frontiers in immunology, 10 , 456-456.
doi:10.3389/fimmu.2019.00456
Liu, X., Li, W., Fu, X., & Xu, Y. (2017). The Immunogenicity and Immune
Tolerance of Pluripotent Stem Cell Derivatives. Frontiers in
immunology, 8 , 645-645. doi:10.3389/fimmu.2017.00645
Loh, Y. H., Hartung, O., Li, H., Guo, C., Sahalie, J. M., Manos, P. D.,
. . . Daley, G. Q. (2010). Reprogramming of T cells from human
peripheral blood. Cell stem cell, 7 (1), 15-19.
doi:10.1016/j.stem.2010.06.004
Luther, D. C., Lee, Y. W., Nagaraj, H., Scaletti, F., & Rotello, V. M.
(2018). Delivery approaches for CRISPR/Cas9 therapeutics in vivo:
advances and challenges. Expert Opin Drug Deliv, 15 (9), 905-913.
doi:10.1080/17425247.2018.1517746
Maeda, T., Nagano, S., Ichise, H., Kataoka, K., Yamada, D., Ogawa, S., .
. . Kawamoto, H. (2016). Regeneration of CD8αβ T Cells from
T-cell-Derived iPSC Imparts Potent Tumor Antigen-Specific Cytotoxicity.Cancer Res, 76 (23), 6839-6850. doi:10.1158/0008-5472.Can-16-1149
Matutes, E. (2007). Adult T-cell leukaemia/lymphoma. Journal of
clinical pathology, 60 (12), 1373-1377. doi:10.1136/jcp.2007.052456
Maude, S. L., Laetsch, T. W., Buechner, J., Rives, S., Boyer, M.,
Bittencourt, H., . . . Grupp, S. A. (2018). Tisagenlecleucel in Children
and Young Adults with B-Cell Lymphoblastic Leukemia. N Engl J Med,
378 (5), 439-448. doi:10.1056/NEJMoa1709866
Milone, M. C., & Bhoj, V. G. (2018). The pharmacology of T cell
therapies. Molecular Therapy-Methods & Clinical Development, 8 ,
210-221.
Minagawa, A., Yoshikawa, T., Yasukawa, M., Hotta, A., Kunitomo, M.,
Iriguchi, S., . . . Kaneko, S. (2018). Enhancing T Cell Receptor
Stability in Rejuvenated iPSC-Derived T Cells Improves Their Use in
Cancer Immunotherapy. Cell stem cell, 23 (6), 850-858.e854.
doi:10.1016/j.stem.2018.10.005
Miyoshi, N., Ishii, H., Nagano, H., Haraguchi, N., Dewi, D. L., Kano,
Y., . . . Mori, M. (2011). Reprogramming of mouse and human cells to
pluripotency using mature microRNAs. Cell stem cell, 8 (6),
633-638. doi:10.1016/j.stem.2011.05.001
Morgan, R. A., Dudley, M. E., Wunderlich, J. R., Hughes, M. S., Yang, J.
C., Sherry, R. M., . . . Rosenberg, S. A. (2006). Cancer regression in
patients after transfer of genetically engineered lymphocytes.Science, 314 (5796), 126-129. doi:10.1126/science.1129003
Nagano, S., Maeda, T., Ichise, H., Kashima, S., Ohtaka, M., Nakanishi,
M., . . . Kawamoto, H. (2020). High Frequency Production of T
Cell-Derived iPSC Clones Capable of Generating Potent Cytotoxic T Cells.Mol Ther Methods Clin Dev, 16 , 126-135.
doi:10.1016/j.omtm.2019.12.006
Nandan, M. O., & Yang, V. W. (2009). The role of Krüppel-like factors
in the reprogramming of somatic cells to induced pluripotent stem cells.Histology and histopathology, 24 (10), 1343-1355.
doi:10.14670/HH-24.1343
Narsinh, K. H., Jia, F., Robbins, R. C., Kay, M. A., Longaker, M. T., &
Wu, J. C. (2011). Generation of adult human induced pluripotent stem
cells using nonviral minicircle DNA vectors. Nat Protoc, 6 (1),
78-88. doi:10.1038/nprot.2010.173
Nazareth, E. J. P., Ostblom, J. E. E., Lücker, P. B., Shukla, S.,
Alvarez, M. M., Oh, S. K. W., . . . Zandstra, P. W. (2013).
High-throughput fingerprinting of human pluripotent stem cell fate
responses and lineage bias. Nature methods, 10 (12), 1225-1231.
doi:10.1038/nmeth.2684
Neelapu, S. S., Locke, F. L., Bartlett, N. L., Lekakis, L. J., Miklos,
D. B., Jacobson, C. A., . . . Go, W. Y. (2017). Axicabtagene Ciloleucel
CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. N Engl J
Med, 377 (26), 2531-2544. doi:10.1056/NEJMoa1707447
Netsrithong, R., Promnakhon, N., Boonkaew, B., Vatanashevanopakorn, C.,
Pattanapanyasat, K., & Wattanapanitch, M. (2019). Generation of two
induced pluripotent stem cell lines (MUSIi011-A and MUSIi011-B) from
peripheral blood T lymphocytes of a healthy individual. Stem cell
research, 39 , 101487. doi:10.1016/j.scr.2019.101487
Nianias, A., & Themeli, M. (2019). Induced Pluripotent Stem Cell
(iPSC)-Derived Lymphocytes for Adoptive Cell Immunotherapy: Recent
Advances and Challenges. Curr Hematol Malig Rep, 14 (4), 261-268.
doi:10.1007/s11899-019-00528-6
Nishimura, T., Kaneko, S., Kawana-Tachikawa, A., Tajima, Y., Goto, H.,
Zhu, D., . . . Nakauchi, H. (2013). Generation of rejuvenated
antigen-specific T cells by reprogramming to pluripotency and
redifferentiation. Cell stem cell, 12 (1), 114-126.
doi:10.1016/j.stem.2012.11.002
Niwa, H., Ogawa, K., Shimosato, D., & Adachi, K. (2009). A parallel
circuit of LIF signalling pathways maintains pluripotency of mouse ES
cells. Nature, 460 (7251), 118-122. doi:10.1038/nature08113
Ou, J., Si, Y., Tang, Y., Salzer, G. E., Lu, Y., Kim, S., . . . Liu, X.
(2019). Novel biomanufacturing platform for large-scale and high-quality
human T cells production. Journal of biological engineering,
13 (1), 34.
Paik, E. J., O’Neil, A. L., Ng, S.-Y., Sun, C., & Rubin, L. L. (2018).
Using intracellular markers to identify a novel set of surface markers
for live cell purification from a heterogeneous hIPSC culture.Scientific reports, 8 (1), 804. doi:10.1038/s41598-018-19291-4
Palomero, T., & Ferrando, A. (2017). Targeted cellular immunotherapy
for T cell malignancies. Nat Med, 23 (12), 1402-1403.
doi:10.1038/nm.4458
Papathanasiou, M. M., Stamatis, C., Lakelin, M., Farid, S.,
Titchener-Hooker, N., & Shah, N. (2020). Autologous CAR T-cell
therapies supply chain: challenges and opportunities? Cancer Gene
Therapy, 27 (10), 799-809. doi:10.1038/s41417-019-0157-z
Parrotta, E., De Angelis, M. T., Scalise, S., Candeloro, P., Santamaria,
G., Paonessa, M., . . . Cuda, G. (2017). Two sides of the same coin?
Unraveling subtle differences between human embryonic and induced
pluripotent stem cells by Raman spectroscopy. Stem Cell Res Ther,
8 (1), 271. doi:10.1186/s13287-017-0720-1
Perdomo-Celis, F., Taborda, N. A., & Rugeles, M. T. (2019). CD8+ T-Cell
Response to HIV Infection in the Era of Antiretroviral Therapy.Frontiers in immunology, 10 (1896). doi:10.3389/fimmu.2019.01896
Popp, B., Krumbiegel, M., Grosch, J., Sommer, A., Uebe, S., Kohl, Z., .
. . Reis, A. (2018). Need for high-resolution Genetic Analysis in iPSC:
Results and Lessons from the ForIPS Consortium. Scientific
reports, 8 (1), 17201. doi:10.1038/s41598-018-35506-0
Quinlan, A. R., Boland, M. J., Leibowitz, M. L., Shumilina, S., Pehrson,
S. M., Baldwin, K. K., & Hall, I. M. (2011). Genome sequencing of mouse
induced pluripotent stem cells reveals retroelement stability and
infrequent DNA rearrangement during reprogramming. Cell stem cell,
9 (4), 366-373. doi:10.1016/j.stem.2011.07.018
Raetz, E. A., & Teachey, D. T. (2016). T-cell acute lymphoblastic
leukemia. Hematology Am Soc Hematol Educ Program, 2016 (1),
580-588. doi:10.1182/asheducation-2016.1.580
Ramos-Mejía, V., Montes, R., Bueno, C., Ayllón, V., Real, P. J.,
Rodríguez, R., & Menendez, P. (2012). Residual expression of the
reprogramming factors prevents differentiation of iPSC generated from
human fibroblasts and cord blood CD34+ progenitors. PloS one,
7 (4), e35824. doi:10.1371/journal.pone.0035824
Ritchie, D. S., Neeson, P. J., Khot, A., Peinert, S., Tai, T., Tainton,
K., . . . Prince, H. M. (2013). Persistence and efficacy of second
generation CAR T cell against the LeY antigen in acute myeloid leukemia.Mol Ther, 21 (11), 2122-2129. doi:10.1038/mt.2013.154
Rodda, D. J., Chew, J. L., Lim, L. H., Loh, Y. H., Wang, B., Ng, H. H.,
& Robson, P. (2005). Transcriptional regulation of nanog by OCT4 and
SOX2. J Biol Chem, 280 (26), 24731-24737.
doi:10.1074/jbc.M502573200
Rohaan, M. W., Wilgenhof, S., & Haanen, J. (2019). Adoptive cellular
therapies: the current landscape. Virchows Arch, 474 (4), 449-461.
doi:10.1007/s00428-018-2484-0
Rosenberg, S. A., Yang, J. C., Sherry, R. M., Kammula, U. S., Hughes, M.
S., Phan, G. Q., . . . Dudley, M. E. (2011). Durable complete responses
in heavily pretreated patients with metastatic melanoma using T-cell
transfer immunotherapy. Clin Cancer Res, 17 (13), 4550-4557.
doi:10.1158/1078-0432.Ccr-11-0116
Rouce, R. H., Fousek, K., Ahmed, N., Gottschalk, S., Savoldo, B., Dotti,
G., . . . Brenner, M. K. (2015). Safety of multiple doses of CAR T
cells. In: American Society of Hematology Washington, DC.
Rudolph, M. G., Stanfield, R. L., & Wilson, I. A. (2006). How TCRs bind
MHCs, peptides, and coreceptors. Annu. Rev. Immunol., 24 ,
419-466.
Ruella, M., Xu, J., Barrett, D. M., Fraietta, J. A., Reich, T. J.,
Ambrose, D. E., . . . Melenhorst, J. J. (2018). Induction of resistance
to chimeric antigen receptor T cell therapy by transduction of a single
leukemic B cell. Nat Med, 24 (10), 1499-1503.
doi:10.1038/s41591-018-0201-9
Sadeqi Nezhad, M., Seifalian, A., Bagheri, N., Yaghoubi, S., Karimi, M.
H., & Adbollahpour-Alitappeh, M. (2020). Chimeric Antigen Receptor
Based Therapy as a Potential Approach in Autoimmune Diseases: How Close
Are We to the Treatment? Frontiers in immunology, 11 (3062).
doi:10.3389/fimmu.2020.603237
Saito, H., Okita, K., Fusaki, N., Sabel, M. S., Chang, A. E., & Ito, F.
(2016). Reprogramming of Melanoma Tumor-Infiltrating Lymphocytes to
Induced Pluripotent Stem Cells. Stem Cells Int, 2016 , 8394960.
doi:10.1155/2016/8394960
Sarafian, R., Morato-Marques, M., Borsoi, J., & Pereira, L. V. (2018).
Monitoring cell line identity in collections of human induced
pluripotent stem cells. Stem cell research, 28 , 66-70.
doi:https://doi.org/10.1016/j.scr.2018.01.030
Scheper, W., & Copray, S. (2009). The molecular mechanism of induced
pluripotency: a two-stage switch. Stem Cell Rev Rep, 5 (3),
204-223. doi:10.1007/s12015-009-9077-x
Schuster, S. J., Svoboda, J., Chong, E. A., Nasta, S. D., Mato, A. R.,
Anak, Ö., . . . June, C. H. (2017). Chimeric Antigen Receptor T Cells in
Refractory B-Cell Lymphomas. N Engl J Med, 377 (26), 2545-2554.
doi:10.1056/NEJMoa1708566
Secher, J. O., Ceylan, A., Mazzoni, G., Mashayekhi, K., Li, T.,
Muenthaisong, S., . . . Freude, K. K. (2017). Systematic in vitro and in
vivo characterization of Leukemia-inhibiting factor- and Fibroblast
growth factor-derived porcine induced pluripotent stem cells.Molecular reproduction and development, 84 (3), 229-245.
doi:10.1002/mrd.22771
Seki, T., Yuasa, S., Oda, M., Egashira, T., Yae, K., Kusumoto, D., . . .
Fukuda, K. (2010). Generation of induced pluripotent stem cells from
human terminally differentiated circulating T cells. Cell stem
cell, 7 (1), 11-14. doi:10.1016/j.stem.2010.06.003
Shi, G., & Jin, Y. (2010). Role of Oct4 in maintaining and regaining
stem cell pluripotency. Stem Cell Res Ther, 1 (5), 39.
doi:10.1186/scrt39
Shyh-Chang, N., & Daley, G. Q. (2013). Lin28: primal regulator of
growth and metabolism in stem cells. Cell stem cell, 12 (4),
395-406. doi:10.1016/j.stem.2013.03.005
Singh, U., Quintanilla, R. H., Grecian, S., Gee, K. R., Rao, M. S., &
Lakshmipathy, U. (2012). Novel live alkaline phosphatase substrate for
identification of pluripotent stem cells. Stem cell reviews and
reports, 8 (3), 1021-1029. doi:10.1007/s12015-012-9359-6
Sohn, Y. D., Somasuntharam, I., Che, P. L., Jayswal, R., Murthy, N.,
Davis, M. E., & Yoon, Y. S. (2013). Induction of pluripotency in bone
marrow mononuclear cells via polyketal nanoparticle-mediated delivery of
mature microRNAs. Biomaterials, 34 (17), 4235-4241.
doi:10.1016/j.biomaterials.2013.02.005
Srivastava, S., & Riddell, S. R. (2018). Chimeric Antigen Receptor T
Cell Therapy: Challenges to Bench-to-Bedside Efficacy. J Immunol,
200 (2), 459-468. doi:10.4049/jimmunol.1701155
Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G., & Hochedlinger, K.
(2008). Induced pluripotent stem cells generated without viral
integration. Science, 322 (5903), 945-949.
doi:10.1126/science.1162494
Staerk, J., Dawlaty, M. M., Gao, Q., Maetzel, D., Hanna, J., Sommer, C.
A., . . . Jaenisch, R. (2010). Reprogramming of human peripheral blood
cells to induced pluripotent stem cells. Cell stem cell, 7 (1),
20-24. doi:10.1016/j.stem.2010.06.002
Sullivan, S., Stacey, G. N., Akazawa, C., Aoyama, N., Baptista, R.,
Bedford, P., . . . Song, J. (2018). Quality control guidelines for
clinical-grade human induced pluripotent stem cell lines. Regen
Med, 13 (7), 859-866. doi:10.2217/rme-2018-0095
Taapken, S. M., Nisler, B. S., Newton, M. A., Sampsell-Barron, T. L.,
Leonhard, K. A., McIntire, E. M., & Montgomery, K. D. (2011).
Karyotypic abnormalities in human induced pluripotent stem cells and
embryonic stem cells. Nature biotechnology, 29 (4), 313-314.
doi:10.1038/nbt.1835
Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda,
K., & Yamanaka, S. (2007). Induction of pluripotent stem cells from
adult human fibroblasts by defined factors. Cell, 131 (5),
861-872. doi:10.1016/j.cell.2007.11.019
Takahashi, K., & Yamanaka, S. (2006). Induction of Pluripotent Stem
Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined
Factors. Cell, 126 (4), 663-676.
doi:https://doi.org/10.1016/j.cell.2006.07.024
Taylor, C. J., Peacock, S., Chaudhry, A. N., Bradley, J. A., & Bolton,
E. M. (2012). Generating an iPSC bank for HLA-matched tissue
transplantation based on known donor and recipient HLA types. Cell
stem cell, 11 (2), 147-152. doi:10.1016/j.stem.2012.07.014
Themeli, M., Kloss, C. C., Ciriello, G., Fedorov, V. D., Perna, F.,
Gonen, M., & Sadelain, M. (2013). Generation of tumor-targeted human T
lymphocytes from induced pluripotent stem cells for cancer therapy.Nature biotechnology, 31 (10), 928-933. doi:10.1038/nbt.2678
Themeli, M., Kloss, C. C., Ciriello, G., Fedorov, V. D., Perna, F.,
Gonen, M., & Sadelain, M. (2013). Generation of tumor-targeted human T
lymphocytes from induced pluripotent stem cells for cancer therapy.Nat Biotechnol, 31 (10), 928-933. doi:10.1038/nbt.2678
Townsend, M. H., Bennion, K., Robison, R. A., & O’Neill, K. L. (2020).
Paving the way towards universal treatment with allogenic T cells.Immunologic Research , 1-8.
Tumaini, B., Lee, D. W., Lin, T., Castiello, L., Stroncek, D. F.,
Mackall, C., . . . Sabatino, M. (2013). Simplified process for the
production of anti-CD19-CAR-engineered T cells. Cytotherapy,
15 (11), 1406-1415. doi:10.1016/j.jcyt.2013.06.003
Vizcardo, R., Masuda, K., Yamada, D., Ikawa, T., Shimizu, K., Fujii, S.,
. . . Kawamoto, H. (2013). Regeneration of human tumor antigen-specific
T cells from iPSCs derived from mature CD8(+) T cells. Cell stem
cell, 12 (1), 31-36. doi:10.1016/j.stem.2012.12.006
Wang, M., Munoz, J., Goy, A., Locke, F. L., Jacobson, C. A., Hill, B.
T., . . . Reagan, P. M. (2020). KTE-X19 CAR T-Cell Therapy in Relapsed
or Refractory Mantle-Cell Lymphoma. N Engl J Med, 382 (14),
1331-1342. doi:10.1056/NEJMoa1914347
Wang, X., & Rivière, I. (2016a). Clinical manufacturing of CAR T cells:
foundation of a promising therapy. Molecular Therapy - Oncolytics,
3 , 16015. doi:https://doi.org/10.1038/mto.2016.15
Wang, X., & Rivière, I. (2016b). Clinical manufacturing of CAR T cells:
foundation of a promising therapy. Molecular Therapy-Oncolytics,
3 , 16015.
Wang, X., & Rivière, I. (2016). Clinical manufacturing of CAR T cells:
foundation of a promising therapy. Mol Ther Oncolytics, 3 , 16015.
doi:10.1038/mto.2016.15
Wang, Z., & Cao, Y. J. (2020). Adoptive Cell Therapy Targeting
Neoantigens: A Frontier for Cancer Research. Frontiers in
immunology, 11 (176). doi:10.3389/fimmu.2020.00176
Warren, L., Manos, P. D., Ahfeldt, T., Loh, Y. H., Li, H., Lau, F., . .
. Rossi, D. J. (2010). Highly efficient reprogramming to pluripotency
and directed differentiation of human cells with synthetic modified
mRNA. Cell stem cell, 7 (5), 618-630.
doi:10.1016/j.stem.2010.08.012
Wattanapanitch, M. (2019). Recent Updates on Induced Pluripotent Stem
Cells in Hematological Disorders. Stem Cells Int, 2019 , 5171032.
doi:10.1155/2019/5171032
Wieczorek, M., Abualrous, E. T., Sticht, J., Álvaro-Benito, M.,
Stolzenberg, S., Noé, F., & Freund, C. (2017). Major Histocompatibility
Complex (MHC) Class I and MHC Class II Proteins: Conformational
Plasticity in Antigen Presentation. Front Immunol, 8 , 292.
doi:10.3389/fimmu.2017.00292
Wu, Y., Zhang, Y., Mishra, A., Tardif, S. D., & Hornsby, P. J. (2010).
Generation of induced pluripotent stem cells from newborn marmoset skin
fibroblasts. Stem cell research, 4 (3), 180-188.
doi:10.1016/j.scr.2010.02.003
Xiang, M., Lu, M., Quan, J., Xu, M., Meng, D., Cui, A., . . . Chen, S.
(2019). Direct in vivo application of induced pluripotent stem cells is
feasible and can be safe. Theranostics, 9 (1), 290-310.
doi:10.7150/thno.28671
Xu, H., Wang, B., Ono, M., Kagita, A., Fujii, K., Sasakawa, N., . . .
Hotta, A. (2019). Targeted Disruption of HLA Genes via CRISPR-Cas9
Generates iPSCs with Enhanced Immune Compatibility. Cell stem
cell, 24 (4), 566-578.e567. doi:10.1016/j.stem.2019.02.005
Yadav, R. K., Ali, A., Kumar, S., Sharma, A., Baghchi, B., Singh, P., .
. . Sharma, S. (2020). CAR T cell therapy: newer approaches to counter
resistance and cost. Heliyon, 6 (4), e03779.
doi:10.1016/j.heliyon.2020.e03779
Yamanaka, S. (2020). Pluripotent Stem Cell-Based Cell Therapy-Promise
and Challenges. Cell stem cell, 27 (4), 523-531.
doi:10.1016/j.stem.2020.09.014
Yanada, M., Konuma, T., Yamasaki, S., Kondo, T., Fukuda, T., Shingai,
N., . . . Yano, S. (2020). Relapse of acute myeloid leukemia after
allogeneic hematopoietic cell transplantation: clinical features and
outcomes. Bone Marrow Transplantation .
doi:10.1038/s41409-020-01163-z
Yang, Y., Jacoby, E., & Fry, T. J. (2015). Challenges and opportunities
of allogeneic donor-derived CAR T cells. Curr Opin Hematol,
22 (6), 509-515. doi:10.1097/moh.0000000000000181
Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane,
J. L., Tian, S., . . . Thomson, J. A. (2007). Induced pluripotent stem
cell lines derived from human somatic cells. Science, 318 (5858),
1917-1920. doi:10.1126/science.1151526
Yusa, K., Rad, R., Takeda, J., & Bradley, A. (2009). Generation of
transgene-free induced pluripotent mouse stem cells by the piggyBac
transposon. Nat Methods, 6 (5), 363-369. doi:10.1038/nmeth.1323
Zhou, H., Wu, S., Joo, J. Y., Zhu, S., Han, D. W., Lin, T., . . . Ding,
S. (2009). Generation of induced pluripotent stem cells using
recombinant proteins. Cell stem cell, 4 (5), 381-384.
doi:10.1016/j.stem.2009.04.005
Zhou, W., & Freed, C. R. (2009). Adenoviral gene delivery can reprogram
human fibroblasts to induced pluripotent stem cells. Stem Cells,
27 (11), 2667-2674. doi:10.1002/stem.201
Table 1. iPSC-derived T cell generation from peripheral blood
mononuclear cells