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Abstract

A new method for integrated ionic liquid (IL) and absorption process design is proposed

where a rigorous rate-based process model is used to incorporate absorption thermodynamics

and  kinetics.  Different  types  of  models  including  group  contribution  models  and

thermodynamic models are employed to predict the process-relevant physical, kinetic, and

thermodynamic  (gas  solubility)  properties  of  ILs.  Combining  the  property  models  with

process models, the  integrated IL and process design problem is formulated as an MINLP

optimization problem.  Unfortunately, due to the model complexity, the problem is prone to

convergence failure.  To lower the computational difficulty,  tractable surrogate models are

used  to  replace  the  complex  thermodynamic  models  while  maintaining  the  prediction

accuracy. This provides an opportunity to find the global optimum for the integrated design

problem.  A pre-combustion  carbon  capture  case  study  is  provided  to  demonstrate  the

applicability of the method. The obtained global optimum saves 14.8% cost compared to the

Selexol process.

Keywords:  computer-aided  ionic  liquid  design,  rate-based  absorption,  hybrid  modelling,

carbon capture, global optimization
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1. Introduction

CO2 mitigation  is  crucial  for  protecting  the  global  climate  and  environment.  Carbon

capture and storage (CCS) is a promising route to reduce CO2 emissions. For CCS, carbon

capture is a key procedure where CO2 should be economically separated from various types

of flue gases.1 Among the existing carbon capture technologies, solvent-based absorption is

the most mature one. For instance, the dimethyl ether of polyethylene glycol (DEPG) has

been used in the Selexol process for pre-combustion carbon capture although this technology

still  suffers  from  some  drawbacks  such  as  low  mass  transfer  rate  and  high  energy

consumption.  Since  the core  for  employing absorption  processes  lies  in  the  use of  high-

performing solvents,  the  search for  new advanced solvents  is  essential  for enhancing the

carbon capture performance.2 

Ionic liquids  (ILs)  are  potential  solvents  for  carbon  capture  due  to  their high  CO2

solubility, low volatility as well as chemical and thermal stability.3,4 However, the number of

ILs is almost infinite when considering the large number of anions, cations, and substituent

groups.  Clearly,  using  the  traditional  trial-and-error  method  is  inefficient  for  selecting

optimal ILs.5 So far, many efforts have been made on computational IL screening. Various

predictive models and tools such as  ab initio methods,  equations of state (EOS), activity

coefficient models have been utilized to estimate the thermodynamic properties of ILs for IL

screening.  For  instance,  Jing  et  al.5 used  the  density  function  theory  (DFT)  method  to

calculate  specific  performance  indicators  on  CO2 absorption  to  screen  multi-amino-

functionalized  ILs.  It  is  noted  that  ab initio methods  are  computationally  expensive  and

barely  applied  with  large  databases  although  they  can  offer  useful  insights  on  some

thermodynamic properties. For screening ILs with large CO2 solubility at moderate pressures,

the  COSMO-RS and COSMO-SAC models  have  been extensively  applied  to  predict  the

activity coefficient and subsequently the CO2-in-IL solubilities.6-9 At a high pressure, these

models  can  be  combined  with  an  EOS  such  as  Peng-Robinson  (PR).10 Although  these

approaches can efficiently screen ILs with desired properties, they are limited by the number

of available IL candidates in the databases. To further expand the search space and find new

ILs, a systematic approach for IL design is highly necessary. 

For organic solvent design, computer-aided molecular design (CAMD) methods have been

developed and successfully applied.11-14 The solvent is represented as a set of descriptors (e.g.,

functional groups or topological descriptors) and its properties are calculated using property
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prediction models. The solvent design problem is then formulated as an optimization problem

where certain solvent properties  are maximized or minimized to generate  optimal  solvent

molecular  structures.  By  following  this  strategy,  computer-aided  IL  design  (CAILD)

approaches have been proposed.15-18 Similarly, the IL is decomposed into different structural

groups. Based on quantitative structure-property relationship (QSPR) models, IL structure is

optimized to achieve desired properties.19 For predicting IL physical properties (e.g., melting

point and viscosity), simple linear group contribution (GC) models are suitable and can be

easily applied.20-22 Besides, for predicting thermodynamic properties (e.g., activity coefficient

and solubility) of IL systems, the nonlinear GC-based UNIFAC models are often used.23,24 In

order to make accurate predictions, the involved UNIFAC model parameters for IL systems

have been extensively fitted from experimental data.25,26 

It is worth noting that any solvent ultimately serves a specific process and the process

performance depends on the solvent selection and process operations.27,28 Given the strong

interdependency  between  these  two  issues,  integrated  IL  and  process  design  is  always

preferred for enhancing the overall process efficiency.29,30 In the literature, the simultaneous

design  of  ILs  and processes  has  been studied  for  separating  azeotropic  mixtures.31-33 For

carbon capture,  Valencia-Marquez et al.16 proposed an optimization approach for integrated

IL  and  absorption  process  design.  To  reduce  the  computational  difficulty,  a  short-cut

absorption  process  model  was  employed  and  only  the  absorption  thermodynamics  is

considered. Recently, the key role of absorption kinetics over thermodynamics in IL selection

for CO2 capture has been revealed.34-36 Ignoring kinetics can lead to sub-optimal or even poor

solutions.  To identify truly optimal  ILs for CO2 capture,  a rigorous rate-based absorption

process model that incorporates both absorption thermodynamics and kinetics should be used.

In this work, a new computer-aided IL and process design (CAILPD) method is developed

for  carbon capture  based  on the rigorous rate-based absorption process  model  where  the

effects of ILs on absorption thermodynamics and kinetics are simultaneously considered.

Moreover, integrated IL and process design problems are usually formulated as complex

mixed-integer nonlinear programming (MINLP) problems. Such optimization problems are

intractable  to  global  optimality,  especially  when  strong  nonlinear  property  models  and

rigorous process models are used.27,37 Recently, surrogate models that are constructed based

on reliable  data  have been widely used in process optimization  to substitute  complicated

thermodynamic or process models.38,39 This can effectively lower the computational difficulty

while maintaining the model reliability.  Thus, it  motivates us to incorporate the surrogate
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modeling technique into the proposed CAILPD framework for achieving a convergence to

global  optimality  that  usually  cannot  be  obtained  otherwise.  The  paper  is  organized  as

follows. First, the CAILPD framework is introduced. Afterwards, the CAILPD approach is

applied and demonstrated on a pre-combustion carbon capture case study.

2. CAILPD Framework

Figure 1 shows the framework for computer-aided ionic liquid and rate-based absorption

process  design.  The design  problem can be decomposed  into  two main  steps,  a  forward

prediction or simulation step (blue solid lines) and a reverse design or optimization step (red

dash lines). The forward step relates IL molecular structure and process operating conditions

with the final process performance via different types of models. As illustrated, the effects of

ILs on the mass transfer  coefficient  of  absorption are quantified  by employing QSPR or

group contribution (GC) models and certain correlation equations. On the other hand, gas

fugacity  and  activity  coefficients  in  the  vapor  and  liquid  phases  can  be  predicted  by

traditional  thermodynamic  models  and  the  equilibrium  gas  solubility  is  then  calculated

through  the  solution  of  the  vapor-liquid  equilibrium  (VLE)  equation.  Alternatively,  the

thermodynamic  equilibrium  solubility  can  be  directly  predicted  by  surrogate  models.

Substituting  the  mass  transfer  coefficient  and thermodynamic  driving force  into  the rate-

based absorption model, the corresponding process performance can thus be evaluated for a

given IL and process condition. After completing the forward step, the best IL structure and

optimal process conditions can be reversely identified by solving an MINLP problem where

the process performance is optimized considering all the models or equations as well as IL

structural constraints.

[Insert Figure 1 here]

3. CAILPD for Pre-combustion Carbon Capture

3.1 Representation of ILs

The first step for designing ILs is to decompose them into different building blocks. ILs

can be represented in different ways. In this work, an IL is decomposed into an anion, a

cation core, and substituents linked to the cation core. This representation can provide large

design  space  and  flexibility.33 Taking 1-propyl-3-methylimidazolium

4



bis(trifluoromethylsulfonyl)imide  [C3mim][Tf2N] as  an  example  (see Figure  2),  this  IL is

constituted by an anion ‘Tf2N’, a cation core ‘Im13’, and 4 substituent groups including 1

‘aN_CH3’, 1 ‘aN_CH2’, 1 ‘CH2’, and 1 ‘CH3’. 

[Insert Figure 2 here]

In the  present  work,  23 anions,  12 cation  cores,  and 17 cation  substituent  groups are

considered for the IL design, as listed in Table 1(a). Each generated IL is denoted by a vector

n=[n1 ,…,ni ,…,nN ] where  N =  52  and  the  element  ni represents  the  number  of  the  i-th

building group presented in the IL molecule. Note that only the abbreviations of groups are

given and their  molecular  structures  are  shown in Table  S1 (Supporting Information).  In

addition, their contributions to properties (e.g., molecular weight, melting point, etc.) and the

upper bounds in the CAILPD program are listed in Table S1 as well. These contributions are

considered as parameters in the following sections. Note that the nomenclature is presented at

the end of the Supporting Information.

[Insert Table 1 here]

3.2 IL structural constraints

To generate a feasible IL, certain structural constraints must be satisfied.  A feasible IL

consists of only one anion and one cation (Eq. 1-2). Eq. 3 shows that the number of each

constituent group should be non-negative and less than its upper bound ni
upp. The total number

of constituent groups including cation, anion, and substituent groups is between 2 and 8. 

∑
i∈Ganion

ni=1 (1)

∑
i∈Gcation

ni=1 (2)

0≤ni≤ni
upp ∀ i∈Gtot (3)

2≤∑
i∈G tot

n i≤8 Gtot= {G cation ,Ganion ,G¿} (4)

     The octet rule in Eq. 5 ensures that an IL has zero valency. PV A i is the valency of the i-th

constituent group. The modified bonding rule in Eq. 6 ensures that two adjacent groups in an

IL are not linked by more than one bond.

∑
i∈Gcation∪G¿

ni ∙ (2−PV A i )=2 (5)
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ni ∙ (PV Ai−1 )+2≤ ∑
j∈G cation∪G ¿

n j ∀ i∈ {Gcation ,G¿ } (6)

Eq. 7 means that the total number of functional substituent groups is no more than that of

the  alkyl  substituent  groups.  Gfg and  Gag are  the  sets  of  functional  and alkyl  substituent

groups,  respectively.  The detailed  classification  of  cation  substituent  groups are  given in

Table 1 (b). 

∑
i∈Gfg

n i≤ ∑
j∈G ag

n j (7)

     Eq. 8-9 ensure that the total number of ether and hydroxyl groups (Geh) is less than 2 and

less than the total number of non-CH3 alkyl groups (GnCH 3
), respectively. In addition, the total

number of fluorized alkyl groups (Gfag) is less than 2 (Eq. 10). Ether and hydroxyl groups and

fluorized alkyl groups cannot exist simultaneously (Eq. 11).

∑
i∈Geh

ni≤2 (8)

∑
i∈Geh

ni≤ ∑
j∈GnC H 3

n j (9)

∑
i∈Gfag

ni≤2 (10)

∑
i∈Geh

ni ∙ ∑
j∈Gfag

n j=0 (11)

     Eq. 12-16 ensure that the cation is properly linked to the corresponding substituent groups.

GaN  and GcycN are the sets of alkyl groups linked to the aromatic and cyclic nitrogen, respectively.

GN and GP are the alkyl groups linked to acyclic nitrogen and acyclic phosphorous, respectively.

(
nℑ13

2
+nMIm+nMMIM+nPy+nMPy)∙ ∑

i∈GaN

ni+(nMPyrro+nMPip )∙ ∑
i∈GcycN

ni+(
nN
4

+
nNH
3

+
nN H 2

2
+nNH 3

)∙∑
i∈GN

ni+
nP
4
∙∑
i∈GP

ni=1

(12)

(nℑ13+nMIm+nMMIM+nPy+nMPy ) ∙( ∑i∈GcycN
ni+ ∑

i∈GN

ni+∑
i∈GP

n i)=0 (13)

(nMPyrro+nMPip )∙ ( ∑i∈G aN
n i+ ∑

i∈GN

ni+∑
i∈GP

ni)=0 (14)

(nN+nNH+nNH 2
+nN H 3 ) ∙( ∑

i∈GcycN

ni+ ∑
i∈G aN

ni+ ∑
i∈G P

ni)=0 (15)
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nP ∙( ∑i∈GcycN
ni+ ∑

i∈G aN

ni+ ∑
i∈GN

ni)=0 (16)

     Eq. 17-20 ensure that  if the cation is only linked to CH3, no other substituent groups can

exist. GDCH 3
 and GNDC are the sets of CH3 group directly linked to cation and group not directly

linked to cation, respectively. 

     (n¿¿MIm+nMMIM+nPy+nMPy+nMPyrro+nMPip+nN H3) ∙(0− ∑
i∈GDCH 3

ni)∙ ∑
j∈GNDC

n j≥0¿ 

(17)

(n¿¿ℑ13+nN H2)∙ (1− ∑
i∈GDCH3

ni) ∙ ∑
j∈GNDC

n j≥0 ¿ (18)

nNH ∙(2− ∑
i∈GDCH 3

ni)∙ ∑
j∈GNDC

n j≥0 (19)

(n¿¿N+nP) ∙(3− ∑
i∈GDCH 3

ni)∙ ∑
j∈GNDC

n j≥0¿ (20)

3.3 IL physical and kinetic property prediction

Physical and kinetic properties of ILs are required for the rate-based process modelling.

Figure 3 summarizes different models for predicting the physical and kinetic properties of

ILs. The detailed model descriptions are elaborated below.

[Insert Figure 3 here]

3.3.1 GC models to physical properties

The molecular weight (MW ), melting point (Tm), boiling point (T b), critical temperature (

T c), and critical pressure (Pc) of ILs are calculated using the GC methods in Eq. 21-25.40,41

PMW i,  PT mi,  PTbi,  PTci,  and  PPc i are  the  contributions  of  the  i-th  group  to  the

corresponding properties (see Table S1).

MW= ∑
i∈Gtot

ni ∙PMW i (21)

T m=288.7+ ∑
i∈G tot

ni ∙ PT mi (22)

T b=198.2+ ∑
i∈Gtot

ni ∙PTbi (23)
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T c=
T b

0.5703+1.0121 ∑
i∈Gtot

ni ∙ PTci−( ∑i∈Gtot
ni ∙PTci)

2  

(24)

Pc=
MW

(0.34+ ∑
i∈Gtot

ni ∙P Pci)
2 (25)

     IL molar volume (MV ) depends on the temperature (T ) and pressure (P) in Eq. 26. The

molar volume (M V 0) at T 0=298.15K  and P0=1.0 ¿̄ is calculated using the GC approach in

Eq. 27. PMV i is the i-th group’s contribution to molar volume (see Table S1).42

MV=MV 0 ∙[1+6.439 (T−T0)

10000 ]∙ [1−0.081× ln ⁡(1+(1+0.00497 (T−T0 ))(P−P0)

1950
)] 

(26)

MV 0= ∑
i∈Gtot

ni ∙PMV i (27)

An artificial neural network (ANN) based GC model has been developed to predict IL

viscosity.43 The model  consists  of three layers (i.e.,  input layer,  hidden layer,  and output

layer). Based on the ANN-GC model, the viscosity (μ) of ILs is estimated by

snx=

2 ∑
i∈Gtot

bx ,i
0 ∙n i

w x
0 −1 x=1 ,…,242 (28)

vis y=∑
x=1

242

snx ∙w y , x
1

+
(2T−826.15 )w y , T

1

319.85
+

(2 P−3500.6 )w y , P
1

3499.4
+b y

1 y=1 ,…,7 (29)

f one (vi s y )=1−
2

1+e2×vis y
(30)

f two=∑
y=1

7

wy
2 ∙ f one (vi s y ) (31)

μ=7.87e6.33995 f
two

−6.11685 (32)

where w x
0 and bx ,i

0  are the normalization factors. w y , x
1 , w y ,T

1 , and w y , P
1  are the weighting factors

in the hidden layer. b y
1 is the bias in the hidden layer. w y

2 is the weighting factor in the output

layer. These parameters can be found in Ref. 43.  
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3.3.2 Correlation models to physical and kinetic properties

The density (ρ), thermal conductivity (λ), and heat capacity (C p) of ILs are calculated

using the following correlation functions.41,44

ρ=
1000×MW
MV

 (33)

λ=[ 11.1T1.091
+

0.6107

0.1369MW 0.5817 (
T b
T c )

0.552

] ∙[1−0.007( PPc )
0.7

] (34)

C p=
7.7+0.226 (T−298.15 )+1.918MV

MW

(35)

     Moreover, when ILs are used for CO2 absorption in a packed column, it can be assumed

that  mass transfer resistance occurs in the vicinity of gas-liquid interface. With this, the mass

transfer coefficient (k ) can be estimated using the Onda’ correlation.45,46

k ( ρ
1000×μ∙ g )

1
3=0.000051×Rew

2
3 ∙ (ap ∙ d p )

0.4 ∙ S c−0.5 (36)

where g is the gravity constant. a p and d p are the specific packing surface area and diameter,

respectively. Sc is the Schmidt number calculated in Eq. 37. The mass diffusivity coefficient

Dmass is  obtained using  the  modified  Wilke–Chang correlation47 where  ϕ is  the association

factor and MV CO 2 is the molar volume of CO2 solute at its boiling point.48 Packing provides a

low pressure drop and high efficiency for gas absorption thus it is used in this work.49

Sc=
μ

103× ρ∙ Dmass
(37)

Dmass=7.4×10
−12 ϕ

0.5 ∙ MW 0.67∙ T

μ0.58∙ (M V CO2 )
0.6 (38)

     In addition, Rew is the Reynolds number depending on the wet interfacial area aw.

Rew=
M IL ∙ MW
CSA∙ μ ∙aw

(39)

aw=a p [1−e
−1.45σcp

0.75 ∙ σ−0.75 ∙ Re0.1 ∙F r−0.05 ∙ W e0.2 ] (40)

where  M IL is  the molar  flowrate  of  ILs  and  CSA is  the  cross-section  area  of  absorption

column.  σ cp is the critical surface tension of packings.  σ  is the surface tension of ILs. The
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dimensionless Reynolds number ℜ, Froude number Fr, and Weber number We are calculated

by

ℜ=
M IL ∙MW
CSA ∙ μ ∙ap

(41)

Fr=(M
IL ∙MW
103 ρ )

2

∙
ap

CS A2∙ g
 

(42)

We=
(M IL ∙MW )

2

106×CS A2 ∙ ρ∙ σ ∙ ap
 (43)

3.4 CO2 solubility in ILs

3.4.1 Rigorous thermodynamic model

Based  on  thermodynamics,  the  vapor-liquid  equilibrium (VLE)  of  CO2 determines  its

solubility in ILs. At equilibrium, the molar fraction of CO2 in ILs (xCO2
eq ) can be expressed as

xCO2
eq

=
φCO 2

∙ yCO2 ∙ P

γCO2∙ Psa tCO2
 (44)

Psa tCO2=10×e
(12.3312− 4759.46

T +156.462) (45)

where yCO2 is the molar fraction of CO2 in the gas phase. Psa tCO2 is the saturated pressure of

CO2 (in  bar),  estimated  by  the  extrapolated  Antoine  equation  in  Eq.  45.  The  fugacity

coefficient  φCO 2
 can  be  predicted  using  the  Peng-Robinson  (PR)  model  and  the  activity

coefficient γCO2 can be calculated by the UNIFAC model.24 The detailed description of the PR

and UNIFAC models is presented in Appendix A.

3.4.2 ANN-based solubility model

Alternatively, the CO2 equilibrium solubility in ILs can be predicted by surrogate models.

By using ANN and support vector machine algorithms, Song et al.50 recently built two GC-

based  machine  learning  models  to  predict  CO2 equilibrium solubility  in  ILs.  These  two

models were developed from a comprehensive database containing more than 10,000 CO2

solubility data in various ILs at different temperatures and pressures. The mean absolute error

and R2 of the two models are less than 0.03 and larger than 0.97, respectively. These statistics

indicate  that  the  models  can  give  reliable  predictions  on  CO2 equilibrium  solubility.
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Moreover, according to the reported model errors, the ANN model is slightly better and thus

is applied here. The ANN-GC model consists of a three-layer feed forward network. The

input layer receives IL structure information and temperature and pressure. The hidden layer

comprising of 7 neurons transfers the input to the output layer where the CO2 solubility is

finally predicted. Specifically, the CO2 equilibrium molar fraction  xCO2
eq  is calculated by the

following equations.

N N t
1
=∑

i

NW t , i
1 ∙ ni+TW t

1 ∙ T+PW t
1 ∙P ∙ yCO 2

+bW t
1

t=1 ,…,7 (46)

N N t
2
=1−

2

1+e2×N N t
1 (47)

xCO2
eq

=∑
t=1

7

NW t
2 ∙N N t

2
+bW 2 (48)

where  the  superscripts  1  and  2  denote  the  hidden  layer  and  output  layer,  respectively.

Subscripts t and i are the neuron and IL group indices, respectively.  NW ,  TW , and PW  are

weighting  factors  to  IL  group  numbers,  temperature,  and  pressure,  respectively.  bW

represents the bias. All these parameters can be found in Ref.50

3.5 IL-based absorption process model

Figure 4 illustrates the schematic diagram of IL-based absorption process for CO2 capture.

The  feed  gas  is  first  compressed  and cooled  (if  necessary)  since  high  pressure  and low

temperature are favored for dissolving CO2. Then, the compressed gas is fed to an absorber

where it  counter-currently contacts  with the ILs.  Meanwhile,  CO2 goes into the IL phase

while other gases remain in the gas phase. The CO2-rich ILs leave from the bottom of the

absorber while the clean gas is collected from the top. Afterwards, the CO2-loaded ILs are

heated and enter a flash tank which has a lower pressure than the absorber. In the flash tank,

the captured CO2 is released and collected. Later, the recovered ILs are cooled and sent back

to the absorber. In addition, makeup ILs are added to the absorber in case of IL losses. The

specific process models used for CAILPD are presented below.

[Insert Figure 4 here]

11



3.5.1 Compressor

The feed gas is compressed to match the pressure in the absorber (PAB).  Assuming an

adiabatic compression, the compressor workload  WCOMP in kW and the output temperature

T out
COMP are calculated by Eq. 49 and Eq. 50, respectively.

WCOMP
=

1
1000

×
IC
IC−1

∙ M feed ∙ MV feed ∙P feed ∙[( P
AB

P feed )
IC−1
IC −1] (49)

T out
COMP

=T feed ∙( P
AB

P feed )
IC−1
IC (50)

where  M feed,  MV feed,  Pfeed,  and  T feed are the molar  flowrate,  molar  volume, pressure, and

temperature of the feed gas, respectively. IC is the isentropic coefficient.

3.5.2 Heat exchanger for gas cooling

The  compressed  feed  gas  is  cooled  to  match  the  temperature  in  the  absorber  (T AB).

Assuming  that  the  heat  exchanger  has  a  counter-current  design,  the  logarithm  mean

temperature difference LMT DGC is calculated as

LMT DGC=
(T out
COMP

−T out
water )−(T AB−T¿

water
)

ln (T out
COMP

−T out
water )−ln(T AB−T¿

water
)

(51)

where T ¿

water and T out
water are the inlet and outlet temperature of cooling water, respectively. In

addition, the removed heat (QGC in kJ/s), heat transfer area (HTAGC), and mass flowrate of

cooling water (mwGC) are calculated from the energy balances.

QGC=C p feedM feedM V feed ρ feed (T out
COMP

−T AB ) (52)

QGC=1000×C pwatermwGC (T out
water

−T ¿

water
)=
HTAGC ∙ LMT DGC ∙U GC

1000
(53)

whereC p feed and ρ feed are the heat capacity and density of the feed gas, respectively.  UGC is

the overall heat transfer coefficient (200 W/(m2⸱K)) in the gas-cooling heat exchanger.

3.5.3 Absorber

The rate-based model is used in the absorber. The column is presumably isothermal and

T AB should be larger than the melting temperature to ensure that the ILs are in liquid. In

addition, the column is divided into  NT=20 sections. In each section, the amount of CO2

absorbed from gas to ILs (pern) is equal and decided from the mass balance.
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T m≤T
AB (54)

pern=
M feed ∙ yCO2

feed ∙θ

NT
(55)

where yCO2
feed  and θ are the CO2 molar fraction in the feed gas and the percentage of CO2 to be

absorbed, respectively.  If the solubility  of other gases in ILs is negligible, the liquid and

vapor molar fractions of CO2 in the  n-th section (n=1 ,…, NT  from the bottom up) can be

calculated by

xn ,CO2=
M IL xout ,CO2

FT
+ (NT−n ) pern

M IL
+(NT−n ) pern

(56)

yn ,CO 2
=
M feed yCO2

feed
−n× pern

M feed
−n× pern

(57)

where xout ,CO2
FT  is the molar fraction of CO2 in the ILs regenerated from the flash tank (FT). In

addition, the following summation equations must be satisfied for each section.

∑
c

xn , c=1 (58)

∑
c

yn ,c=1 (59)

where the subscript c denotes the gas and liquid components. Moreover, the height of the n-th

section (hn) is calculated in Eq. 60 and the height of the absorber H AB is obtained by Eq. 61.46 

pern ∙
MV IL

106
=Voi d p ∙aw ∙CSA ∙k ∙hn ∙(

xn , CO 2

eq

1−xn ,CO2
eq −

xn , CO2
1−xn ,CO2 ) (60)

H AB
=∑
n=1

NT

hn (61)

where  MV IL denotes the molar volume of IL in the absorber (see Eq. 26-27).  Voi d p is the

void fraction of packing. xn ,CO2
eq  represents the equilibrium CO2 solubility in the n-th column

section. If rigorous thermodynamic models are used, it is calculated using Eq. 44-45 with

known yn ,CO 2
. Alternatively, this equilibrium solubility can be directly calculated by Eq. 46-

48 if  the  ANN-based surrogate  model  is  applied.  In  addition,  Eq.  62  ensures  a  positive

driving force for CO2 absorption.
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xn ,CO2
eq ≥xn , CO 2

(62)

3.5.4 Heat exchanger for IL heating

The CO2-rich ILs are heated by steam in a shell-and-tube heat exchanger.  The IL and

steam flow through the shell and tube, respectively. Wadekar51 reported that the average heat

transfer coefficient for this type of heat exchanger U HE is about 946 W/(m2⸱K). The LMT DHE

is written as

LMT DHE=
(T steam−T AB )−(T steam−T FT )

ln (T steam−T AB )− ln(T steam−T FT )
(63)

where  T steam and  T FT  are  the  steam  temperature  and  the  temperature  of  the  flash  tank,

respectively. In addition, the required heat duty (QHE in kJ/s) is calculated by

QHE=
C pHE ∙ M IL ∙ MW ∙ (T FT−T AB )

1000

(64)

where the IL heat capacity C pHE is predicted by Eq. 35 at an average temperature (T
FT

+T AB

2

). The mass flowrate of the consumed steam (msHE in kg/s) and the heat transfer area (HTAHE

) are calculated below.LH  is the latent heat of steam. 

    QHE=msHE ∙ LH=
HTAHE ∙U HE ∙ LMT DHE

1000

(65)

3.5.5 Flash tank

The  heated  CO2-loaded  ILs  are  fed  into  the  flash  tank  for  solvent  regeneration.  The

temperature in the flash tank cannot exceed the boiling point of IL to prevent its vaporization.

The CO2 molar fraction in the lean ILs xout ,CO2
FT  is estimated by the short-cut model in Eq. 67.52

T FT<T b (66)

xout ,CO2
FT

=1−
1

1+
PFT ∙ MW

104exp (6.8591−2004.3T FT )
(67)
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In order to facilitate the computation in the absorber, xout ,CO2
FT  is fixed to 0.02. In this case, the

operating pressure of the flash tank PFT depends on the temperature T FT. Moreover, the flash

tank is presumably operated on a half-full basis and the total volume of ILs in the flash tank

is equal to the volume of 5 minutes’ IL flows.53 Thus, the volume of the flash tank (V FT) is

expressed as

V FT=2×300×M IL ∙
MV FT

106
(68)

where MV FT  is the IL molar volume at T FT  and PFT. 

3.5.6 Pump

The regenerated ILs are pumped back to the absorber. The pump workload W PUMP in kW

is estimated by

W PUMP
=10−4∙ M IL ∙ M V FT ∙(PAB−PFT ) (69)

3.5.7 Heat exchanger for IL cooling

Similarly,  a  shell-and-tube  heat  exchanger  is  used  for  IL  cooling.  The  heat  transfer

coefficient  UCO is  assumed to  be  946 W/(m2⸱K) according  to  Ref.51  The  LMT DCO,  the

removed heat QCO in kJ/s, the mass flowrate of cooling water mwCO in ton/s, and heat transfer

area HTACO are calculated below.

LMT DCO=
(T FT−T out

water )−(T AB−T ¿

water )

ln (T FT−T out
water )− ln ⁡(T AB−T ¿

water
)

(70)

QCO=
C pCO ∙ M IL ∙ MW ∙ (T FT−T AB )

1000

(71)

QCO=103×C pwatermwCO(T out
water

−T ¿

water
)=
HTACO ∙UCO ∙ LMT DCO

1000
(72)

3.5.8 Process economics

The  performance  of  the  IL-based  carbon  capture  process  is  evaluated  using  the  total

annualized cost (TAC).

TAC=CRF ∙Ccap+Cope (73)

C cap=C
COMP

+CGC+CHE+CCO+CPUMP+CAB+CFT (74)
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Cope=C
steam

+Cele+Cwater+Cml (75)

where CRF is the capital recovery factor. C cap is the summation of the capital costs of all the

equipment.  Cope is the annual operating cost that accounts for the consumption of utilities

(i.e.,  steam,  electricity,  and  cooling  water)  and  other  operating  costs  including  labor,

maintenance,  and IL losses. The detailed calculation of the capital  and operating costs  is

presented in Appendix B.

4. Results and Discussion

As a major CO2 emission resource, the pre-combustion flue gas is usually produced in an

integrated gasification  combined  cycle  (IGCC) based  power plant.  The feedstock such as

natural gas is reacted with oxygen under high temperature and pressure to produce synthesis

gas consisting of CO, H2, and CO2. Through a water-gas shift reaction, the CO is converted

into CO2 and the pre-combustion flue gas comprising mainly H2 and CO2 is formed. The CO2

must be removed from the H2 before power generation. In this work, the CAILPD framework

is applied for pre-combustion carbon capture. The flue gas is assumed to be at 313.15 K and

20 bar with a molar flowrate of 10 kmol/s. The compositions of CO2 and H2 are set to 0.4 and

0.6, respectively. With an assumption that H2 is not soluble in the ILs, the goal is to design a

cost-effective IL-based absorption process for capturing no less than 90% CO2 from the flue

gas.

4.1 First trail using rigorous thermodynamic model

In the first  trial,  the  CAILPD problem is  formulated  using the classic  thermodynamic

models (i.e., UNIFAC and PR models) to predict the CO2 equilibrium solubility. An MINLP

problem is formed and summarized below. The objective is to minimize the process  TAC

while fulfilling the carbon capture requirement stated above. The design variables (degrees of

freedom)  consist  of  the  discrete  variable  ni and  the  continuous  variables  PAB and  T FT.

Equality constraints include IL structural constraints, property and process models as well as

process  economics.  The  specific  feed  gas  conditions  as  well  as  process  and  costing

parameters are listed in Table 2. The UNIFAC model parameters for the CO2-IL systems can

be found in Zhou et al.26

min
ni , P

AB ,T FT
TAC
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s.t. Eq. 1−20 IL structural constraints

Eq. 21−45, A1−A14 IL property models

Eq. 54−62 Absorption model

Eq. 49−53, 63−72 Other process models

Eq. 73−75, B1−B15 Process economics

[Insert Table 2 here]

The optimization  problem is  coded in GAMS 24.2 and solved using the deterministic

global optimization solver BARON version 19.3.24.54 The computational statistics are listed

in  the  second column of  Table  3.  As  shown,  in  total  52  discrete  variables,  3086 single

variables, 3121 equations, and 58032 nonlinear matrix entries are involved. Clearly, this is a

very  complicated  optimization  problem.  Different  initial  estimates  and  different  ways  of

formulating  equations  are considered.  However,  it  cannot  converge within 24 hours on a

standard computer.

[Insert Table 3 here]

4.2 Second trail using ANN-based solubility model

In order to mitigate  the computational  difficulties,  the highly complex thermodynamic

models are replaced by the relatively simple ANN-based surrogate model. Furthermore, Eq.

76 serves as an upper bound that limits the CO2 equilibrium solubility at a specific absorption

condition lower than 0.5. This absorption condition corresponds to the case where the feed

gas is cooled and directly fed into the absorber. This constraint ensures that the ANN model

does not extrapolate to unreasonable predictions. 

x¿

eq∗¿=F (ni ,T=T AB ,P=20 ,̄ yCO2=0.4 )≤0.5¿ (76)

F ANN represents Eq.  46–48. Replacing Eq. 44–45 and Eq. A1−A14 in the previous MINLP

problem with Eq. 46–48 and adding Eq. 76 as an extra constraint, we can formulate another

MINLP problem. The new optimization problem is solved with the global solver BARON as

well. The third column of Table 3 lists the corresponding computational statistics. It consists

of  52  discrete  variables,  439  single  variables,  456  equations,  and  574  nonlinear  matrix

entries.  It is clear that the problem size and nonlinearity are much less than those of the

previous problem. It takes around 1.5 hours for BARON to converge to the global optimality.
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The obtained optimal IL and its properties as well as the operating conditions and process

specifications  are  summarized  in  Table  4.  The  corresponding minimized  process  TAC is

11.44  M$/year.  The  optimal  IL  found  is  N-ethyl-N-ethoxymethyl-ammonium

bis(pentafluoroethanesulfonyl)amide  [EEOMA][BETA]  or  N-ethyl-N-methoxyethyl-

ammonium bis(pentafluoroethanesulfonyl)amide [EMOEA][BETA] that consists of the anion

BETA, the cation core NH2, and 5 substituent groups (2 N_CH2, 2 CH3, and 1 OCH2). The

operating pressure in the absorber is 21.5 bar and the temperature in the flash tank is 334.9 K.

The averaged CO2 equilibrium solubility (molar fraction) in the absorber is as high as 0.458.

In addition,  the IL viscosity  in the absorber  is  10.3 mPa⸱s.  Comparing  with most  of the

known ILs,43 this value is quite small, resulting in a high CO2 mass transfer coefficient.

[Insert Table 4 here]

The DEPG-based Selexol process is widely used for pre-combustion carbon capture. As a

benchmark, the economic performance of the Selexol process is evaluated. The flowsheet of

the Selexol process is shown in Figure S1 (Supporting Information). It is simulated in Aspen

Plus V8.8 according to literature reports55,56 and the detailed process specifications are listed

in Table S2. For consistency, the process economics is assessed with the same cost models

used in this work. Figure 5 compares the cost breakdown of the two processes. As indicated,

although a much larger amount of steam and cooling water are consumed in the IL-based

process, the electricity cost of the Selexol process is much higher than that of the IL-based

process. This is because a higher pressure (30 bar) is needed in the absorber of the Selexol

process to meet the CO2 capture requirement, which leads to a larger electricity consumption

for gas compressing. In contrast, our designed IL has a higher CO2 solubility than DEPG,

making the absorption operable at a lower pressure (21.5 bar). In total, the IL-based process

can achieve 14.8% total cost reduction compared to the benchmark Selexol process for pre-

combustion  carbon  capture,  which  demonstrates  the  significance  and  large  benefit  of

integrated IL and process design. 

[Insert Figure 5 here]

5. Conclusion

This paper presents a new integrated IL and absorption process design approach for carbon

capture. The physical, kinetic, and thermodynamic properties of ILs are predicted by different

types  of methods (e.g.,  GC methods,  empirical  correlations,  rigorous thermodynamic  and

18



data-driven models). In order to improve the reliability of the results, a rigorous rate-based

absorption model, where both absorption thermodynamics and kinetics are incorporated, is

used. With these, the integrated IL and process design task is formulated and solved as an

MINLP  optimization  problem.  The  IL  structure  and  process  operating  conditions  are

simultaneously optimized to minimize the total annualized cost. The proposed approach is

demonstrated  on  a  pre-combustion  carbon  capture  example.  In  the  case  study,  rigorous

thermodynamic models (UNIFAC and PR) are first applied to predict the CO2 equilibrium

solubility in ILs, which results in a convergence failure of the MINLP problem. To tackle the

problem,  an  ANN-based  surrogate  model  is  used  to  replace  the  thermodynamic  models.

Based on this, the integrated design problem is successfully solved to the global optimality.

The result shows that compared to the DEPG-based Selexol process, the optimal IL-based

process can achieve a better economic performance for the investigated carbon capture task.

To the best of our knowledge, this work is the first attempt in the global optimization of an

integrated  IL  and  process  design  problem  where  rigorous  rate-based  process  model  is

employed.  This study can be extended in several  ways.  For instance,  the method can be

applied  to  handle  different  CO2 emission  sources.  In  addition,  the  IL-based  absorption

process  can  be  compared  with  other  carbon  capture  processes  (e.g.,  adsorption  and

membrane) to identify the most efficient technology for different carbon sources. Despite the

large progress, limitations should not be neglected.  First,  a simple inequality constraint is

added to prevent unreasonable extrapolation of the ANN-based solubility model. In the future

work, more advanced methods (e.g.,  convex hull57 and topological data analysis58) can be

used  to  confine  the  results  into  the  validity  region.  Second,  the  current  work  cannot

distinguish between structural isomers. To do so, higher-order GC models incorporating the

group  connectivity  information  are  required,  which  may  significantly  increase  the

computational demand. A more realistic strategy is to investigate the practical performance of

isomers  in  a  post-design  step,  for  example,  by  experimental  studies.  Efforts  in  these

directions are underway.
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Appendix A

UNIFAC activity coefficient model

The activity coefficient of CO2 in ILs is calculated by the reformulated UNIFAC model.59

The  combinatorial  part  γs
C and  residual  part  γs

R are  given  in  Eq.  A2 and Eq.  A3 –  A7,

respectively.

ln γs=ln (γ s
C )+ ln ⁡(γ s

R
)            (A1)

ln (γ s
C )=ln (R s )−ln ⁡¿ (A2)

ln (γ s
R
)=R1s−R2s (A3)

R1s=Q s−∑
i

ns ,i ∙ qi ∙ ln (R3i )+Q s ln (∑ss xssQ ss)−∑
i

R 4s ,i
R3i

(A4)

R2s=Q s ln (Qs )−∑
i

ns , i ∙ qi ∙ ln (∑
ii

qiins ,iiψ ii ,i) (A5)

R3i=∑
ii

qii∑
ss

nss ,ii xssψ ii ,i (A6)

R4s , i=∑
ii

ns ,iiq iiq i∑
ss

nss ,i x ssψ ii , i (A7)

where the subscripts  s and  ss are component indexes.  i and  ii are group indexes.  x and  n

represent the component molar fraction and number of group, respectively. The molecular

Van  der  Waals  volume and  surface  area  as  well  as  the  group  interaction  parameter  are

determined by Eq. A8 – A10.

R s=∑
i

ns ,i ri (A8)

Qs=∑
i

ns ,iqi (A9)

ψ ii ,i=e
−aii , i
T            (A10)

The group volume and surface area r i and q i as well as the binary group interaction parameter

a ii ,i for the CO2-IL systems can be found in Zhou et al.26  
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Peng-Robinson fugacity model

The fugacity of CO2 is calculated using the PR model.

ln ϕCO2=B BCO2(Z−1)−ln(¿Z−B)−
A

2√2B
(A ACO 2

−B BCO2) ln( Z+(1+√2 )B

Z+(1−√2 ) B )¿       (A11)

Z3−(1−B)Z2+(A−3 B2−2B)Z−(AB−B2−B3)=0            (A12)

The intermediate variables are calculated by

A ACO2=
2

a
∑¿

[∑
j

nc

( y j ∙ aa j ,CO2)]¿
,     A=

a∑¿ ∙ P

R2T2
¿,     

a
∑ ¿=∑

j

nc

∑
jj

nc

(y j ∙ y jj ∙ aa j, jj)¿
,

aa j , jj=aa j j , j= (1−δ j , jj )aa j
0.5aa jj

0.5,     aa j=0.45724
α j ∙R

2Tc j
2

Pc j
,

α j=[1+(1−√ TTc ) ∙ (0.37464+1.54226ω j−0.26992ω j2 )]
2

           (A13)

BBCO2=
bbCO2
b∑ ¿

¿
,     B=

b∑ ¿∙ P

RT
¿,    

b
∑ ¿=∑

j

nc

y j bb j¿
,     bb j=0.0778

R ∙Tc j
Pc j

(A14)

where Z is the compressibility factor. R and T are the ideal gas constant and gas temperature,

respectively. T c, Pc, and ω are the critical temperature, critical pressure, and acentric factor,

respectively. The subscripts j and jj represent the gas components. nc is the total number of

components.aa j and  bb j are  pure-component  parameters.  a∑ ¿ ¿ and  b∑ ¿ ¿ are  mixture

parameters.  δ j , jj is the binary interaction parameter between components  j and  jj (δCO2 , H 2
=

−0.1622).

Appendix B

Capital cost

Comparing with reference cases, the capital cost of compressor (CCOMP), heat exchangers (

CGC,  CHE,  and  CCO),  and pump (CPUMP) depends on the workload, heat transfer area, and

volumetric flowrate, respectively.53 

CCOMP=C ref
COMP ∙

WCOMP

W ref
COMP  (B1)
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CGC=C ref
HEX ∙

AGC

A ref
HEX ,     C

HE
=Cref

HEX ∙
AHE

Aref
HEX ,    C

CO
=Cref

HEX ∙
ACO

Aref
HEX (B2)

CPUMP=C ref
PUMP ∙

M IL ∙ MV FT

V F ref
PUMP (B3)

where  C ref
COMP,  C ref

HEX,  and  C ref
PUMP are the reference cost of compressor,  heat exchanger,  and

pump, respectively. W ref
COMP is the reference compressor workload, Aref

HEX is the reference heat

exchanger area, and  V Fref
PUMP is the reference volumetric flowrate. Furthermore, the capital

cost of absorber (C AB) consists of the costs of column shell (C cs), packing (C pa), and platform

and ladder (C pl) where C cs depends on the weight of the column shell W AB in Eq. B6.53 

C AB=1.218(C cs+C pa+C pl) (B4)

C cs=2.0706 e
6.629+0.1826 lnW AB+0.02297 (lnW AB )

2

(B5)

W AB=ρsteel [H AB π (DAB+2ΩAB )
2
−π (DAB )

2

4
+2 ∙

π (DAB )
2

4
∙ΩAB ] (B6)

C pa=2681×CSA∙ H
AB (B7)

C pl=300 (DAB )
0.7396

∙ (H AB )
0.7068 (B8)

where ρ steel is the density of steel.  DAB and ΩAB are the inner diameter and thickness of the

absorber, respectively. The capital cost of flash tank CFT  is decided by its weight W FT.53

CFT=3.5112e8.571−0.233 lnW
FT

+0.04333 ( lnW FT )
2

+2291 (3.28DFT )
0.2029 (B9)

W FT
= ρsteel ∙¿            (B10)

where DFT and ΩFT are the inner diameter and thickness of the flash tank, respectively.

Operating cost

Since steam is used to heat the CO2-loaded IL up, the steam cost  C steam depends on the

mass flowrate of steam consumed in the heat exchanger  (msHE).  The electricity  cost  C ele

accounts for the electricity consumption in the compressor (WCOMP) and pump (W PUMP). In

addition, the cost of cooling water  Cwater covers the water consumption for IL and feed gas

cooling. Moreover, it is assumed that one process cycle takes 1000 seconds and 0.01‰ of the

total ILs used in one cycle is lost every day. Thus, the cost of IL losses is calculated in Eq.
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B14. Finally, the labor and maintenance cost is assumed to be 16 percent of the total capital

cost.  

C steam=330×24×3600×msHE ∙ PRsteam          (B11)

C ele=330×24×(WCOMP
+W PUMP

)∙ PRele          (B12)

Cwater=330×24×3600×(mwCO+mwGC) ∙PRwater          (B13)

C IL=330×10−5×1000 ∙ M IL ∙ MW ∙PR IL          (B14)

Cml=0.16 ∙Ccap+C
IL          (B15)

where PRsteam, PRele, PRwater and PRIL are the prices of steam, electricity, cooling water, and

ionic liquid, respectively.
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Table 1. (a) Anions, cations, and cation substituent groups considered for IL design  

(b) Classification of cation substituent groups

(a)

Anions (Ganion)
BF4, Cl, DCA, NO3, PF6, SCN, C(CN)3, HSO4, Tf2N, BETA, FOR, 
TFA, C3F7CO2, MeSO4, EtSO4, MDEGSO4, MeSO3, TfO, NfO, 
TDfO, TOS, C12H25PhSO3, methide

Cations (Gcation) Im13, MIm, MMIM, Py, MPyrro, MPy, MPip, NH3, NH2, NH, N, P

Substituents (G¿)
CH3, N_CH3, P_CH3, aN_CH3, cycN_CH3, CH2, N_CH2, P_CH2, 
aN_CH2, cycN_CH2, CH, N_CH, OCH2, OCH3, CF2, CF3, OH

(b)

Alkyl group (Gag)
CH3, N_CH3, P_CH3, aN_CH3, 
cycN_CH3, CH2, N_CH2, P_CH2, 
aN_CH2, cycN_CH2, CH, N_CH 

Non-CH3 alkyl group (GnC H 3
)

CH2, N_CH2, P_CH2, aN_CH2, 
cycN_CH2, CH, N_CH

Functional group (Gfg) OCH2, OCH3, OH, CF2, CF3

Ether and hydroxyl group (Geh) OCH2, OCH3, OH

Fluorized alkyl group (Gfag) CF2, CF3

Alkyl group linked to aromatic nitrogen (GaN) aN_CH3, aN_CH2

Alkyl group linked to cyclic nitrogen (GcycN) cycN_CH3, cycN_CH2

Alkyl group linked to acyclic nitrogen (GN) N_CH3, N_CH2, N_CH

Alkyl group linked to acyclic phosphorous (GP) P_CH3, P_CH2

CH3 group directly linked to cation (GDCH 3
)

N_CH3, P_CH3, aN_CH3, 
cycN_CH3

Group not directly linked to cation (GNDC)
CH3, CH2, CH, OCH2, OCH3, CF2, 
CF3, OH
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Table 2. Input parameters for the pre-combustion carbon capture process

Input parameters for pre-combustion flue gas

Gas composition
CO2 0.4 Temperature (K) 313.15

H2 0.6 Pressure (bar) 20

Input molar flowrate (kmol/s) 10 Molar volume (L/mol) 1.28

Density (kg/m3) 16.92 Heat capacity (kJ/kg/K) 1.72

Input parameters for the rate-based absorption process

Inlet water temperature (K) 287 Hot steam temperature (K) 393.15

Outlet water temperature (K) 297 Steam latent heat (kJ/kg) 2201.6

Water heat capacity (kJ/kg/K) 4.18 Molar flowrate of IL (kmol/s) 3.75

Absorber temperature (K) 300 IL surface tension (N/m) 0.05

Absorber diameter (m) 5 IL association factor 0.14

Absorber thickness (m) 0.02 Packing surface area (m2/m3) 102

Packing diameter (m) 0.05 Packing void fraction 0.98

Flash tank thickness (m) 0.02 Packing critical surface tension (N/m) 0.075

CO2 molar fraction in lean ILs 0.02 Flash tank diameter (m) 2.5

Isentropic coefficient 1.37
Partial molar volume of CO2 in IL 
solutions (cm3/mol)

34

Input parameters for process costing 

Capital recovery factor 0.1102 Reference cost of compressor (k$) 4714

Density of steel (kg/m3) 7870 Reference work of compressor (kW) 22371

Cooling water price ($/ton) 0.0316 Reference cost of heat exchanger (k$) 438

Steam price ($/kg) 0.0042 Reference area of heat exchanger (m2) 1115

Electricity price ($/kWh) 0.0775 Reference cost of pump (k$) 420.1

IL price ($/kg) 10 Reference work of pump (m3/s) 8.2
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Table  3.  Computational  statistics  for  the  deterministic  global  optimization  of  the

CAILPD problem

UNIFAC-PR based
models

ANN-based hybrid
models

Solver BARON BARON

Number of discrete variables 52 52

Number of single variables 3086 439

Number of equations 3121 456

Number of nonlinear matrix entries 58032 574

Computational time
No convergence 
within 24 hours

5216 seconds
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Table 4. Global optimization results of the studied CAILPD problem

Optimal IL group combination 2 CH3, 2 N_CH2, 1 OCH2, 1 NH2, 1 BETA

Optimal IL structure
NH2

CH2CH2OCH3

+

CH2CH3
C2F5 C2F5

N
SS

O O O O

− NH2

CH2OCH2CH3

+

CH2CH3
C2F5 C2F5

N
SS

O O O O

−

[EMOEA][BETA][EEOMA][BETA]

or

Flash tank temperature (K) 334.9

Absorber pressure (bar) 21.5

Absorber height (m) 19.4

CO2 average solubility in the absorber 0.458

IL heat capacity in the absorber (J/g/K) 1.29

IL viscosity in the absorber (mPa⸱s) 10.3

CO2 mass transfer coefficient (m/s) 1.23×10-4

Gas-cooling heat exchanger area (m2) 2090.0

IL-heating heat exchanger area (m2) 1187.7

IL-cooling heat exchanger area (m2) 3790.8

Cooling water consumption (ton/s) 2.17

Steam consumption (kg/s) 37.9

Compressor workload (kW) 1862.1

Pump workload (kW) 2530.3

Electricity consumption (kWh/s) 1.22

TAC (M$/year) 11.44
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Figure  1.  Systematic  framework  for  computer-aided  ionic  liquid  and  rate-based

absorption process design
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Figure 2. Representation of building groups of ionic liquids exemplified for [C3mim]

[Tf2N]
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Figure 3. Models for predicting the physical and kinetic properties of ionic liquids
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Figure  4.  Schematic  diagram  of  ionic  liquid-based  absorption  process  for  carbon

capture
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Figure  5.  Cost  breakdown  of  the  optimal  IL-based  and  DEPG-based  absorption

processes
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