References
1. Hope C, Schaefer K. Economic impacts of carbon dioxide and
methane released from thawing permafrost. Nature Climate Change.2016/01/01 2016;6(1):56-59.
2. Yu C-H, Huang C-H, Tan C-S. A Review of CO2Capture by Absorption and Adsorption. Aerosol and Air Quality
Research. 2012;12(5):745-769.
3. Kahn B. We Just Breached the 410 PPM Threshold for
CO2. Scientific American . Online: Springer
Nature; 2017.
4. Pacala S, Socolow R. Stabilization Wedges: Solving the
Climate Problem for the Next 50 Years with Current Technologies.Science. 2004;305(5686):968-972.
5. Modak A, Jana S. Advancement in porous adsorbents for
post-combustion CO2 capture. Microporous and
Mesoporous Materials. 2019/03/01/ 2019;276:107-132.
6. Simmons JM, Wu H, Zhou W, Yildirim T. Carbon capture in
metal-organic frameworks-a comparative study. Energy Environ.
Sci. Jun 2011;4(6):2177-2185.
7. To JWF, He JJ, Mei JG, et al. Hierarchical N-Doped Carbon as
CO2 Adsorbent with High CO2 Selectivity
from Rationally Designed Polypyrrole Precursor. Journal of the
American Chemical Society. Jan 2016;138(3):1001-1009.
8. Thiruvenkatachari R, Su S, An H, Yu XX. Post combustion
CO2 capture by carbon fibre monolithic adsorbents.Progress in Energy and Combustion Science. Oct
2009;35(5):438-455.
9. McDonald TM, Mason JA, Kong XQ, et al. Cooperative insertion
of CO2 in diamine-appended metal-organic frameworks.Nature. Mar 2015;519(7543):303-308.
10. Machida H, Ando R, Esaki T, et al. Low temperature swing
process for CO2 absorption-desorption using phase
separation CO2 capture solvent. International
Journal of Greenhouse Gas Control. 2018/08/01/ 2018;75:1-7.
11. Heldebrant DJ, Koech PK, Glezakou V-A, Rousseau R, Malhotra
D, Cantu DC. Water-Lean Solvents for Post-Combustion CO2Capture: Fundamentals, Uncertainties, Opportunities, and Outlook.Chemical Reviews. 2017/07/26 2017;117(14):9594-9624.
12. Tobiesen FA, Haugen G, Kim I, Kvamsdal H. Simulation and
Energy Evaluation of Two Novel Solvents Developed in the EU Project
HiPerCap. Energy Procedia. 2017/07/01/ 2017;114:1621-1629.
13. Rochelle GT. Amine Scrubbing for CO2Capture. Science. Sep 2009;325(5948):1652-1654.
14. Sun J, Li Q, Chen G, Duan J, Liu G, Jin W. MOF-801
incorporated PEBA mixed-matrix composite membranes for
CO2 capture. Separation and Purification
Technology. 2019/06/15/ 2019;217:229-239.
15. Xie K, Fu Q, Qiao GG, Webley PA. Recent progress on
fabrication methods of polymeric thin film gas separation membranes for
CO2 capture. Journal of Membrane Science.2019/02/15/ 2019;572:38-60.
16. Merkel TC, Lin HQ, Wei XT, Baker R. Power plant
post-combustion carbon dioxide capture: An opportunity for membranes.Journal of Membrane Science. Sep 2010;359(1-2):126-139.
17. Anantharaman R, Berstad D, Roussanaly S. Techno-economic
Performance of a Hybrid Membrane – Liquefaction Process for
Post-combustion CO2 Capture. Energy Procedia.2014/01/01/ 2014;61:1244-1247.
18. Wilcox J, Haghpanah R, Rupp EC, He JJ, Lee K. Advancing
Adsorption and Membrane Separation Processes for the Gigaton Carbon
Capture Challenge. In: Prausnitz JM, Doherty MF, Segalman RA, eds.Annual Review of Chemical and Biomolecular Engineering, Vol 5.Vol 52014:479-+.
19. Haghpanah R, Majumder A, Nilam R, et al. Multiobjective
Optimization of a Four-Step Adsorption Process for Postcombustion
CO2 Capture Via Finite Volume Simulation.Industrial & Engineering Chemistry Research. 2013/03/20
2013;52(11):4249-4265.
20. Yang J, Yu X, Yan J, Tu S-T, Dahlquist E. Effects of
SO2 on CO2 capture using a hollow fiber
membrane contactor. Applied Energy. 2013/12/01/ 2013;112:755-764.
21. Krzemień A, Więckol-Ryk A, Smoliński A, Koteras A,
Więcław-Solny L. Assessing the risk of corrosion in amine-based
CO2 capture process. Journal of Loss Prevention in
the Process Industries. 2016/09/01/ 2016;43:189-197.
22. Joss L, Gazzani M, Mazzotti M. Rational design of
temperature swing adsorption cycles for post-combustion
CO2 capture. Chemical Engineering Science.2017/02/02/ 2017;158:381-394.
23. Bui M, Adjiman CS, Bardow A, et al. Carbon capture and
storage (CCS): the way forward. Energy Environ. Sci.2018;11(5):1062-1176.
24. Zanco SE, Joss L, Hefti M, Gazzani M, Mazzotti M.
Addressing the Criticalities for the Deployment of Adsorption-based
CO2 Capture Processes. Energy Procedia.2017/07/01/ 2017;114:2497-2505.
25. Liu L, Sanders ES, Kulkarni SS, Hasse DJ, Koros WJ.
Sub-ambient temperature flue gas carbon dioxide capture via Matrimid (R)
hollow fiber membranes. Journal of Membrane Science. Sep
2014;465:49-55.
26. Hasse D, Ma JF, Kulkarni S, et al. CO2Capture by Cold Membrane Operation. In: Dixon T, Herzog H, Twinning S,
eds. 12th International Conference on Greenhouse Gas Control
Technologies, Ghgt-12. Vol 63. Amsterdam: Elsevier Science Bv;
2014:186-193.
27. Hasse D, Kulkarni S, Sanders E, Corson E, Tranier JP.
CO2 capture by sub-ambient membrane operation. In: Dixon
T, Yamaji K, eds. Ghgt-11. Vol 37. Amsterdam: Elsevier Science
Bv; 2013:993-1003.
28. Song C, Liu Q, Ji N, et al. Reducing the energy consumption
of membrane-cryogenic hybrid CO2 capture by process
optimization. Energy. 2017/04/01/ 2017;124:29-39.
29. Lee S, Kim J-K. Process-integrated design of a sub-ambient
membrane process for CO2 removal from natural gas power
plants. Applied Energy. 2020/02/15/ 2020;260:114255.
30. Luyben WL. Estimating refrigeration costs at cryogenic
temperatures. Computers & Chemical Engineering. 2017/08/04/
2017;103:144-150.
31. DeWitt SJA, Rubiera Landa HO, Kawajiri Y, Realff M, Lively
RP. Development of Phase-Change-Based Thermally Modulated Fiber
Sorbents. Industrial & Engineering Chemistry Research.2018/12/13 2018.
32. DeWitt SJA, Sinha A, Kalyanaraman J, Zhang F, Realff MJ,
Lively RP. Critical Comparison of Structured Contactors for
Adsorption-Based Gas Separations. Annual Review of Chemical and
Biomolecular Engineering. 2018;9(1):129-152.
33. Lively RP, Bessho N, Bhandari DA, Kawajiri Y, Koros WJ.
Thermally moderated hollow fiber sorbent modules in rapidly cycled
pressure swing adsorption mode for hydrogen purification. Int. J.
Hydrog. Energy. Oct 2012;37(20):15227-15240.
34. James RZ, Alexander; Keairns, Dale; Turner, Marc; Woods,
Mark; Kuehn, Norma. Cost and Performance Baseline for Fossil
Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity :
NETL;2019.
35. Boyce MP. 7 - Axial-Flow Compressors. In: Boyce MP, ed.Gas Turbine Engineering Handbook (Fourth Edition) . Oxford:
Butterworth-Heinemann; 2012:303-355.
36. Park J, Rubiera Landa H, Kawajiri Y, Realff M, Lively R,
Sholl D. How Well Do Approximate Models of Adsorption-Based
CO2 Capture Processes Predict Results of Detailed
Process Models? Industrial & Engineering Chemistry Research.04/15 2020;59:7097-7108.
37. Dubbeldam D, Torres-Knoop A, Walton KS. On the inner
workings of Monte Carlo codes. Molecular Simulation. 2013/12/01
2013;39(14-15):1253-1292.
38. Düren T, Bae Y-S, Snurr RQ. Using molecular simulation to
characterise metal–organic frameworks for adsorption applications.Chemical Society Reviews. 2009;38(5):1237-1247.
39. Altintas C, Avci G, Daglar H, et al. Database for
CO2 Separation Performances of MOFs Based on
Computational Materials Screening. ACS Applied Materials &
Interfaces. 2018/05/23 2018;10(20):17257-17268.
40. Park J, Howe JD, Sholl DS. How Reproducible Are Isotherm
Measurements in Metal–Organic Frameworks? Chemistry of
Materials. 2017/12/26 2017;29(24):10487-10495.
41. Park J, Lively RP, Sholl DS. Establishing upper bounds on
CO2 swing capacity in sub-ambient pressure swing
adsorption via molecular simulation of metal–organic frameworks.Journal of Materials Chemistry A. 2017;5(24):12258-12265.
42. Tang D, Wu Y, Verploegh RJ, Sholl DS. Efficiently Exploring
Adsorption Space to Identify Privileged Adsorbents for Chemical
Separations of a Diverse Set of Molecules. ChemSusChem.2018;11(9):1567-1575.
43. Agrawal M, Sava Gallis DF, Greathouse JA, Sholl DS. How
Useful Are Common Simulants of Chemical Warfare Agents at Predicting
Adsorption Behavior? The Journal of Physical Chemistry C.2018/11/15 2018;122(45):26061-26069.
44. Park J, Agrawal M, Sava Gallis DF, Harvey JA, Greathouse
JA, Sholl DS. Impact of intrinsic framework flexibility for selective
adsorption of sarin in non-aqueous solvents using metal–organic
frameworks. Physical Chemistry Chemical Physics.2020;22(11):6441-6448.
45. Myers AL, Prausnitz JM. Thermodynamics of mixed-gas
adsorption. AIChE Journal. 1965;11(1):121-127.
46. Rubiera Landa HO, Flockerzi D, Seidel-Morgenstern A. A
method for efficiently solving the IAST equations with an application to
adsorber dynamics. AIChE Journal. 2013;59(4):1263-1277.
47. Dickey AN, Yazaydın AÖ, Willis RR, Snurr RQ. Screening
CO2/N2 selectivity in metal-organic
frameworks using Monte Carlo simulations and ideal adsorbed solution
theory. The Canadian Journal of Chemical Engineering.2012;90(4):825-832.
48. Walton KS, Sholl DS. Predicting multicomponent adsorption:
50 years of the ideal adsorbed solution theory. AIChE Journal.2015;61(9):2757-2762.
49. Rubiera Landa HO, Lively RP, Kawajiri Y, Realff MJ.
Theoretical Investigation of Vacuum pressure-swing adsorptoin processes
applying thermally modulated fiber composite adsorbents.
50. Müller J. SOCEMO: Surrogate Optimization of Computationally
Expensive Multiobjective Problems. INFORMS Journal on Computing.2017;29(4):581-596.
51. MATLAB [computer program]. Version 9.6.0.
(R2019a). Natick, MA: The MathWorks Inc.; 2019.
52. Rubiera Landa HO, Kawajiri Y, Realff MJ. Efficient
Evaluation of Vacuum Pressure-Swing Cycle Performance using
Surrogate-based, Multi-objective Optimization Algorithm. Paper presented
at: Computer Aided Chemical Engineering: 30th European Symposium on
Computer Aided Process Engineering (Part C)2020.
53. Castle WF. Fifty-Years’ Development of Cryogenic
Liquefaction Processes. In: Timmerhaus KD, Reed RP, eds. Cryogenic
Engineering . New York, NY: Springer New York; 2007:146-160.
54. Agrawal R. Synthesis of Distillation Column Configurations
for a Multicomponent Separation. Industrial & Engineering
Chemistry Research. 1996/01/01 1996;35(4):1059-1071.
55. Castle WF. Air separation and liquefaction: recent
developments and prospects for the beginning of the new millennium.International Journal of Refrigeration. 2002/01/01/
2002;25(1):158-172.
56. Li Y, Wang X, Ding Y. An optimal design methodology for
large-scale gas liquefaction. Applied Energy. 2012/11/01/
2012;99:484-490.
57. Latimer RE. Distillation of Air. Chemical Engineering
Progress. 1967;63(2):35-59.
58. Wetenhall B, Aghajani H, Chalmers H, et al. Impact of
CO2 impurity on CO2 compression,
liquefaction and transportation. Energy Procedia. 2014/01/01/
2014;63:2764-2778.
59. Yoo B-Y, Lee S-G, Rhee K-p, Na H-S, Park J-M. New CCS
system integration with CO2 carrier and liquefaction
process. Energy Procedia. 2011/01/01/ 2011;4:2308-2314.
60. Sujan AR, Koh D-Y, Zhu G, et al. High-Temperature
Activation of Zeolite-Loaded Fiber Sorbents. Industrial &
Engineering Chemistry Research. 2018/08/29 2018;57(34):11757-11766.
61. Fan Y, Kalyanaraman J, Labreche Y, et al.
CO2 Sorption Performance of Composite
Polymer/Aminosilica Hollow Fiber Sorbents: An Experimental and Modeling
Study. Industrial & Engineering Chemistry Research. 2015/02/18
2015;54(6):1783-1795.
62. Zhao T, Jeremias F, Boldog I, Nguyen B, Henninger SK,
Janiak C. High-yield, fluoride-free and large-scale synthesis of
MIL-101(Cr). Dalton Transactions. 2015;44(38):16791-16801.
63. Ye S, Jiang X, Ruan L-W, et al. Post-combustion
CO2 capture with the HKUST-1 and MIL-101(Cr)
metal–organic frameworks: Adsorption, separation and regeneration
investigations. Microporous and Mesoporous Materials. 2013/09/15/
2013;179:191-197.
64. Chen G, Koros WJ, Jones CW. Hybrid Polymer/UiO-66(Zr) and
Polymer/NaY Fiber Sorbents for Mercaptan Removal from Natural Gas.Acs Applied Materials & Interfaces. Apr 2016;8(15):9700-9709.
65. Liu Q, Ning L, Zheng S, Tao M, Shi Y, He Y. Adsorption of
Carbon Dioxide by MIL-101(Cr): Regeneration Conditions and Influence of
Flue Gas Contaminants. Scientific Reports. 2013/10/10
2013;3(1):2916.
66. Xu M, Chen S, Seo D-K, Deng S. Evaluation and optimization
of VPSA processes with nanostructured zeolite NaX for post-combustion
CO2 capture. Chemical Engineering Journal.2019/09/01/ 2019;371:693-705.
67. Akhtar F, Ogunwumi S, Bergström L. Thin zeolite laminates
for rapid and energy-efficient carbon capture. Scientific
Reports. 2017/09/08 2017;7(1):10988.
68. Haghpanah R, Nilam R, Rajendran A, Farooq S, Karimi IA.
Cycle synthesis and optimization of a VSA process for postcombustion
CO2 capture. AIChE Journal.2013;59(12):4735-4748.