Literature Cited
[1] Ralph TR, Hitchman ML, Millington JP, Walsh FC. Mass transport
in an Electrochemical Laboratory Filterpress Reactor and its Enhancement
by Turbulence Promoters. Electrichim. Acta. 1996;41:591-603.
[2] Rivera FF, Ponce de León C, Walsh FC, JL Nava. The reaction
environment in a filter-press laboratory reactor: the FM01-LC flow cell.
Electrichim. Acta. 2015;436-462:161
[3] Rivera FF, Ponce de León C, Nava JL, Walsh FC. The filter-press
FM01-LC laboratory flow reactor and its applications. Electrichim. Acta.
2015;338-354:163
[4] González-Garcia J, Frias A, Expósito E., Montiel V, Aldaz A.
Characterization of an electrochemical pilot-plant filter-press reactor
by hydrodynamic and mass transport studies. Ind. Eng. Chem.,
2000;1132-1142:39.
[5] Carlsson L, Sandegren B, Simonsson D, Rihovsky M. Design and
Performance of A Modular, Multi-Purpose Electrochemical Reactor. J.
Electrochem. Soc. 1983;342-345:130.
[6] Mizushina T. The Electrochemical Method in Transport Phenomena.
Adv. Heat Transf. 1971;87-161:7
[7] Velasco-Martinez G, Gutiérrez-Granados A, Alatorre-Ordaz A,
Rodriguez-Torres I. Methodology for the Characterization of a
parallel-plates Electrochemical Reactor. ECS Transact. 2007;1-12:3
[8] Weusten SJC, de Groot MT, van der Schaaf J. A comparative study
of the stability of hexachloroiridate and hexacyanoferrate in
electrochemical mass transfer measurements. J. Electroanal. Chem.,
2020;114512:878.
[9] Szánto DA, Cleghorn S, Ponce-de-Léon C, Walsh FC. The Limiting
Current for Reduction of the Ferricyanide Ion at Nickel. AIChE Journal.
2008;802-810:54.
[10] Petrovic S. Cyclic Voltammetry of Hexachloroiridate(IV): An
Alternative to the Electrochemical Study of the Ferricyanide Ion. The
Chem. Ed. 2000;231-235:5.
[11] Han LS. Hydrodynamic Entrance Lengths for Incompressible
Laminar Flow in Rectangular Ducts. J. Appl. Mech. 1960;403-409:27.
[12] Ong KL. Doctoral Thesis: The Influence of Hydrodynamic and
mass-transfer entrance effects on the performance of parallel plate
electrochemical flow cells.ManChester: Victoria University of
Manchester, 1972.
[13] Pickett DJ, Ong KL. The Influence of Hydrodynamic and Mass
Transfer Entrance Effects on the Operation of a Parallel Plate
Electrolytic Cell. Electrochim. Acta. 1974;875-882:19.
[14] Pickett DJ and Stanmore BR. Ionic mass transfer in parallel
plate electrochemical cells. J. of Appl. Electrochem. 2, 1971;151-156.
[15] Tobias CW, Eisenberg M, Wilke CR. Diffusion and Convection in
Electrolysis - A Theoretical Review. J. Electrochem. Soc.
1952;359-365:99.
[16] Söhnel O,Novotny P. Densities of Aqueous Solutions of Inorganic
Substances. Amsterdam: Elsevier, 1985.
[17] Wolf AV. Aqueous Solutions and Body Fluids, Their Concentrative
Properties and Conversion Tables, New York: Harper and Row, 1966.
[18] Brown CJ, Pletcher D, Walsh FC, Hammond JK and Robinson D,
Studies of space-averaged mass transport in the FM01-LC laboratory
electrolyser. J. Apl. Electrochem., 1993;38-43:23.
[19] Djati A, Brahimi M, Saidani B. Entrance effect on mass transfer
in a parallel plate electrochemical reactor. J. Apl. Electrochem.
2001;833-837:31.
[20] Focke WW. On the mechanism of transfer enhancement by eddy
promoters. Electrochim. Acta, 1983;1137-1146:28.
[21] Frías-Ferrer Á, González-García J, Sáez V, Ponce de Léon C,
Walsh FC. The effects of manifold flow on mass transport in
electrochemical filter-press reactors. AIChE Journal, 2008;811-823:54.
[22] Griffiths M, Ponce de Léon C, Walsh FC. Mass transport in the
rectangular channel of a filter-press electrolyzer (the FM01-LC
reactor). AIChE Journal. 2005;681-687:51
[23] Santos JLC, Geraldes V, Velziarov S, Crespo J. Characterization
of fluid dynamics and mass-transfer in an electrochemical oxidation cell
by experimental and CFD studies. Chem. Eng. J. 2010;379-392:157
[24] Letord-Quemere MM, Coeuret F, Legrand J. Mass transfer at the
wall of a thin channel containing an expanded turbulence promoting
structure. J. Electrochem. Soc. 1988;3063-3067:135.
[25] Mizushina T, Ogino F, Oka Y, Fukuda H. Turbulent Heat and Mass
Transfer between Wall and Fluid Streams of Large Prandtl and Schmidt
Numbers. J. Heat Mass Transf. 1971;1705-1716:14.
[26] Oduoza C, Wragg AA. Effects of baffle length on mass transfer
in a parallel plate rectangular electrochemical cell. J. Appl.
Electrochem. 2000;1439-1444:30.
[27] Ponce De Leon C, Hussey W, Frazao F, Jones D, Ruggeri E,
Tzortzatos S, Mckerracher R, Wills RGA, Yangb S, Walsh FC, The 3D
Printing of a Polymeric Electrochemical Cell Body and its
Characterisation. Chem. Eng. Trans. 2014;1-6:41.
[28] Wragg AA, Leontaritis A. Local mass transfer and current
distribution in baffled and unbaffled parallel plate electrochemical
reactors. Chem. Eng. J. 1997;1-10:66
[29] Zhao W, Trass O. Electrochemical mass transfer measurements in
rough surface pipe flow. Int. J. Heat Mass Transfer. 1997; 2785-2797:40.
[30] Colli AN, Toulser I, Bergmann MEH, Bisang JM. Mass-transfer
studies in an electrochemical reactor with a small interelectrode gap.
Electrochim. Acta, 2013;78-84:100.
[31] Oduoza C, Wragg AA. Effects of baffle length on mass transfer
in a parallel plate rectangular electrochemical cell. J. Appl.
Electrochem. 2000;1439-1444:30.
[32] Rivero EP, Rivera FF, Cruz-Diaz MR, Mayen E, González I.
Numerical simulation of mass transport in a filter press type
electrochemical FM01-LC: Comparison of predicted and experimental mass
transfer coefficient. Chem. Eng. Research and Design, 2012;1969-1978:90.
[33] Hammond JK, Robinson D. Mass transport studies in filterpress
monopolar (FM-Type) Electrolysers. Dechema-Monographs, 1991;279-295:123
[34] Qi J, Savinell R. Mass transfer in a laminar-flow parallel
plate electrolytic cell with simultaneous development of velocity and
concentration boundary layers. J. Appl. Electrochem., 1990;885-892:20.
[35] Colli AN, Bisang JM. Mass-transfer characterization in a
parallel-plate electrochemical reactor with convergent flow.
Electrochim. Acta, 2013;575-582:113.
[36] Rodriguez A, Rivera FF, Orozco G, Carreno G, Castaneda F.
Analysis of inlet and gap effect in hydrodynamics and mass transport
performance of a multipurpose electrochemical reactor: CFD simulation
and experimental validation. Electrochim. Acta, 2018; 520-532:282.
[37] Arenas LF, Ponce de León C, Walsh FC. Critical Review - The
Versatile Plane Parallel Electrode Geometry: An Illustrated Review. J.
Electrochem. Soc. 2020;023504:167