References
- Etacheri, V.; Di Valentin, C.; Schneider, J.; Bahnemann, D.; Pillai,
S. C. Visible-light activation of TiO2 photocatalysts:
Advances in theory and experiments. J. Photochem. Photobiol. C 2015,
25, 1–29.
- Khaki, M. R. D.; Shafeeyan, M. S.; Raman, A. A. A.; Daud, W. M. A.
Application of doped photocatalysts for organic pollutant
degradation-a review. J. Environ. Manage. 2017, 198,
78–94.
- Mazierski, P.; Mikolajczyk, A.; Bajorowicz, B.; Malankowska, A.;
Zaleska-Medynska, A.; Nadolna, J. The role of lanthanides in
TiO2-based photocatalysis: a review. Appl. Catal. B
2018, 233, 301–317.
- Chen,
D.; Cheng, Y.; Zhou, N.; Chen. P.; Wang, Y.; Li, K.; Huo, S.; Cheng,
P.; Peng, P.; Zhang, R.; Wang, L.; Liu, H.; Liu, Y.; Ruan, R.
Photocatalytic degradation of organic pollutants using
TiO2-based photocatalysts: a review. J. Cleaner Prod.
2020, 268, 121725.
- Diebold,
U. The surface science of titanium dioxide. Surf. Sci. Rep. 2003, 48,
53–229.
- Kumaravel V.; Mathew, S.; Bartlett, J.; Pillai, S. C. Photocatalytic
hydrogen production using metal doped TiO2: a review
of recent advances. Appl. Catal. B 2019, 244, 1021–1064.
- Li, X. Z.; Li, F. B.; Yang, C. L.; Ge, W. K. Photocatalytic activity
of WOx-TiO2 under visible light
irradiation. J. Photochem. Photobiol. A 2001, 141, 209–217.
- Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y.
Visible-light
photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293,
269–271.
- Chen, X.; Burda, C.
The
electronic origin of the visible-light absorption properties of C-, N-
and S-doped TiO2 nanomaterials.
J.
Am. Chem. Soc. 2008, 130,
5018–5019.
- Li, Z.; Shen, W.; He, W.; Zu, X.
Effect of Fe-doped
TiO2 nanoparticle derived from modified hydrothermal
process on the photocatalytic degradation performance on methylene
blue. J. Hazard. Mater. 2008, 155,
590–594.
- Ganesh, I.; Gupta, A. K.; Kumar, P. P.; Sekhar, P. S. C.; Radha, K.;
Padmanabham. G.; Sundararajan, G.
Preparation
and characterization of Ni-doped TiO2 materials for
photocurrent and photocatalytic applications. Sci. World J. 2012,
2012,
127326.
- Sakatani, Y.; Ando, H.; Okusako, K.; Koike, H.; Nunoshige, J.; Takata,
T.; Kondo, J. N.; Hara, M.; Domen, K.
Metal
ion and N co-doped TiO2 as a visible-light
photocatalyst. J. Mater. Res. 2004, 19, 2100–2108.
- Xing, M.; Wu, Y.; Zhang, J.; Chen, F. Effect of synergy on the visible
light activity of B, N and Fe co-doped TiO2 for the
degradation of MO. Nanoscale 2010, 2,
1233–1239.
- Khan, M.; Gul, S. R.; Li, J.; Cao, W.
Photocatalytic
degradation of methylene blue by hydrothermally prepared Ag-doped
TiO2 under visible light irradiations. JOM 2015, 67,
2104–2107.
- Anpo, M.; Takeuchi, M.
The
design and development of highly reactive titanium oxide
photocatalysts operating under visible light irradiation. J. Catal.
2003, 216,
505–516.
- Fujii, H.; Inata, K.; Ohtaki, M.; Eguchi, K.; Arai, H. Synthesis of
TiO2/CdS nanocomposite via TiO2coating on CdS nanoparticles by compartmentalized hydrolysis of Ti
alkoxide. J. Mater. Sci. 2001, 36,
527–532.
- Ismail, A. A.; Lars, R.; Bahnemann, D. W.
Study
of the efficiency of UV and visible-light photocatalytic oxidation of
methanol on mesoporous RuO2-TiO2nanocomposites. Chem. Phys. Chem. 2011, 12, 982–991.
- Chainarong, S.; Niyomwas, S.; Sikong, L.; Pavasupree, S.
The effect of molar ratio of
TiO2/WO3 nanocomposites on visible
light prepared by hydrothermal method. Adv. Mater. Res. 2012,
488–489, 572–577.
- Hahlin, M.; Johansson, E. M. J.; Plogmaker, S.; Odelius, M.; Hagberg,
D. P.; Sun, L.; Siegbahn, H.; Rensmo, H. Electronic and molecular
structures of organic dye/TiO2 interfaces for solar
cell applications: a core level photoelectron spectroscopy study.
Phys. Chem. Chem. Phys. 2010, 12, 1507–1517.
- Nishikawa, M.; Sakamoto, H.; Nosaka, Y. Reinvestigation of the
photocatalytic reaction mechanism for Pt-complex-modified
TiO2 under visible light irradiation by means of ESR
spectroscopy and chemiluminescence photometry. J. Phys. Chem. A 2012,
116, 9674–9679.
- Choi, W.; Termin, A.; Hoffmann, M. R. The role of metal ion dopants in
quantum-sized TiO2: correlation between
photoreactivity and charge carrier recombination dynamics. J. Phys.
Chem. 1994, 98, 13669–13679.
- Tayade,
R. J.; Kulkarni, R. G.; Jasra, R. V. Enhanced photocatalytic activity
of TiO2-coated NaY and HY zeolites for the degradation
of methylene blue in water. Ind. Eng. Chem. Res. 2007, 46, 369–376.
- Zhou, M.; Yu, J.; Cheng, B. Effects of Fe-doping on the photocatalytic
activity of mesoporous TiO2 powders prepared by an
ultrasonic method. J. Hazard. Mater. 2006, 137, 1838–1847.
- Kim, D. H.; Lee, K. S.; Kim, Y. S.; Chung, Y. C.; Kim, S. J.
Photocatalytic
activity of Ni 8 wt%-doped TiO2 photocatalyst
synthesized by mechanical alloying under visible light. J. Am. Ceram.
Soc.
2006,
89, 515–518.
- Jia, C.; Fan, W.; Yang, F.; Zhao, X.; Sun, H.; Li, P.; Liu, L. A
theoretical study of water adsorption and decomposition on low-index
spinel ZnGa2O4 surfaces: correlation
between surface structure and photocatalytic properties. Langmuir
2013, 29, 7025–7037.
- Hebenstreit, W.; Ruzycki, N.; Herman, G. S.; Gao, Y.; Diebold, U.
Scanning
tunneling microscopy investigation of the TiO2 anatase
(101) surface. Phys. Rev. B 2000, 62, R16334–R16336.
- Labat, F.; Baranek, P.; Adamo, C.
Structural
and electronic properties of selected rutile and anatase
TiO2 surfaces: An ab initio investigation. J.
Chem.Theory Comput. 2008, 4,
341–352.
- Ma, X. G.; Tang, C. Q.; Huang, J. Q.; Hu, L. F.; Xue, X.; Zhou, W. B.
First-principle
calculations on the geometry and relaxation structure of anatase
TiO2 (101) surface. Chinese J. Phys. 2006, 55,
4208–4213.
- Segall, M. D., Lindan, P. J. D., Probert, M. J., Pickard, C. J.,
Hasnip, P. J., Clark, S. J., Payne, M. C. First-principles simulation:
ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter
2002, 14, 2717–2744.
- Perdew, J. P. Burke, K. Ernzerhof, M. Generalized gradient
approximation made simple, Phys. Rev. Lett. 1996, 77, 3865–3868.
- Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized
eigenvalue formalism, Phys. Rev. B 1990, 41, 7892–7895.
- Yu, W.; Zhang, J.; Peng, T. New insight into the enhanced
photocatalytic activity of N-, C- and S-doped ZnO photocatalysts.
Appl. Catal. B 2016, 181, 220–227.
- Etacheri, V.; Di Valentin, C.; Schneider, J.; Bahnemann, D.; Pillai,
S.C. Visible-light activation of TiO2 photocatalysts:
advances in theory and experiments. J. Photochem. 2015, 25, 1–29.
- Yu, J.; Zhou, P.; Li, Q. New insight into the enhanced visible-light
photocatalytic activities of B-, C- and B/C-doped anatase
TiO2 by first-principles. Phys. Chem. Chem. Phys.
2013, 15, 12040–12047.
- Burdett, J. K.; Hughbanks, T.; Miller, G. J.; Richardson, J. W.;
Smith, J. V.
Structural-electronic
relationships in inorganic solids: powder neutron diffraction studies
of the rutile and anatase polymorphs of titanium dioxide at 15 and 295
K. J. Am. Chem. Soc. 1987, 109, 3639–3646.
- Asahi, R.; Taga, Y.; Mannstadt, W.; Freeman, A. J.
Electronic and optical properties
of anatase TiO2. Phys. Rev. B 2000, 61, 7459–7465.
- Boschloo, G. K.; Goossens, A.; Schoonman, J. Photoelectrochemical
study of thin anatase TiO2 films prepared by
metallorganic chemical vapor deposition. J. Electrochem. Soc. 1997,
144, 1311–1317.
- Yang, Y.; Feng, Q.; Wang, W.; Wang, Y.
First-principle study on the
electronic and optical properties of the anatase
TiO2(101) surface. J. Semicond. 2013, 34,
073004-1–073004-5.