REFERENCES
Arenson, L.U., Hauck, C., Hilbich, C., Seward, L., Yamato, Y., & Springman, S. (2010). Sub-surface Heterogeneities in the Murtèl – Corvatsch Rock Glacier, Switzerland. In: Canadian Geotechnical Society (eds.): Proceedings of the joint 63rd Canadian Geotechnical Conference and the 6th Canadian Permafrost Conference. Calgary, Alberta, S. 1494–1500.
Azócar, G.F., & Brenning, A. (2010). Hydrological and geomorphological significance of rock glaciers in the dry Andes, Chile (27◦–33◦S). Permafrost and Periglacial Processes, 21(1), 42–53. https://doi.org/10.1002/ppp.669
Barsch, D. (1996). Rockglaciers: Indicators for the Present and Former Geoecology in High Mountain Environments. Springer Series in Physical Environment, vol. 16. Springer, Berlin (1996).
Beniston, M., Farinotti, D., Stoffel, M., Andreassen, L. M., Coppola, E., Eckert, N., Fantini, A., Giacona, F., Hauck, C., Huss, M., Huwald, H., Lehning, M., López-Moreno, J.-I., Magnusson, J., Marty, C., Morán-Tejéda, E., Morin, S., Naaim, M., Provenzale, A., Rabatel, A., Six, D., Stötter, J., Strasser, U., Terzago, S., & Vincent, C. (2018). The European mountain cryosphere: a review of its current state, trends, and future challenges. The Cryosphere, 12, 759–794. https://doi.org/10.5194/tc-12-759-2018
Berger, J., Krainer, K., & Mostler, W. (2004). Dynamics of an active rock glacier (Ötztal Alps, Austria). Quaternary Research, 62(3), 233–242. https://doi.org/10.1016/j.yqres.2004.07.002
Berthling, I. (2011). Beyond confusion: Rock glaciers as cryo-conditioned landforms. Geomorphology, 131, 98–106. https://doi.org/10.1016/j.geomorph.2011.05.002
Brighenti, S., Tolotti, M., Bruno M.C., Warthon, G., Pusch, M.T., & Bertoldi, W. (2019). Ecosystem shifts in Alpine streams under glacier retreat and rock glacier thaw: A review. Science of the Total Environment 675, 542–559. https://doi.org/10.1016/j.scitotenv.2019.04.221
Buchli, T., Merz, K., Zhou, X., Kinzelbach, W., & Springman, S. (2013). Characterization and Monitoring of the Fuggwanghorn Rock Glacier, Turtmann Valley, Switzerland: Results from 2010 to 2012. Vadose Zone Journal 12(1). https://doi.org/10.2136/vzj2012.0067
Buckel, J., & Otto, J-C. (2018). The Austrian glacier inventory GI 4 (2015) in ArcGis (shapefile) format. Pangaea, https://doi.org/10.1594/PANGAEA.887415. PANGAEA supplement to: Buckel, Johannes; Otto, Jan-Christoph; Prasicek, Günther; & Keuschnig, Markus (2018): Glacial lakes in Austria - Distribution and formation since the Little Ice Age. Global and Planetary Change, 164, 39–51
Chen J, & Ohmura, A. (1990). Estimation of Alpine glacier water resources and their change since the 1870s. In Hydrology in Mountainous Regions, I – Hydrological Measurements; the Water Cycle, Proceedings of two Lausanne Symposia, August 1990, Lang H, Musy A (eds). IAHS Press: Wallingford, Oxfordshire, UK 193, 127–135.
Colombo, N., Salerno, F., Gruber, S., Freppaz, M., Williams, M., Fratianni, S., & Giardino, M. (2018). Review: impacts of permafrost degradation on inorganic chemistry of surface fresh water. Global and Planetary Change, 162, 69–83. https://doi.org/10.1016/j.gloplacha.2017.11.017.
Cuffey, K. M., & Paterson, W. S. B. (2010). The Physics of Glaciers. 4th ed. Elsevier Butterworth Heinemann, Burlington, MA.
Fischer, A., Seiser, B., Stocker-Waldhuber, M., Mitterer, C., & Abermann, J. (2015). In: Fischer, A. (Ed.), The Austrian Glacier Inventories GI 1 (1969), GI 2 (1998), GI 3 (2006), and GI LIA in ArcGIS (Shapefile) Format. PANGAEA; Supplement to: Fischer, Andrea; Seiser, Bernd; Stocker-Waldhuber, Martin; Mitterer, Christian; & Abermann, Jakob (2015): Tracing glacier changes in Austria from the Little Ice Age to the present using a lidar-based high-resolution glacier inventory in Austria. https://doi.org/10.1594/PANGAEA.844988.
Giardino, J.R., Vitek, J.D., & Demorett, J.L. (1992). A model of water movement in rock glaciers and associated water characteristics. In: Dixon, J.C., Abrahams, A.D. (Eds.): Periglacial Geomorphology. Wiley, Chichester, pp. 159–184.
Groh, T., & Blöthe, J.H. (2019). Rock glacier kinematics in the Kaunertal, Ötztal Alps, Austria. Geosciences, 9, 373. https://doi.org/10.3390/geosciences9090373
Haeberli, W. (1985). Creep of mountain permafrost. Internal structure and flow of alpine rock glaciers. Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der ETH Zürich, 77. Eidgenössische Technische Hochschule, Zürich.
Harrington, J.S., Mozil, A., Hayashi, M., Bentley, L.R. (2018). Groundwater flow and storage processes in an inactive rock glacier. Hydrological Processes, 32, 3070–3088. https://doi.org/10.1002/hyp.13248
Hausmann, H., Krainer, K., Brückl, E., & Mostler, W. (2007). Internal structure and ice content of Reichenkar Rock Glacier (Stubai Alps, Austria) assessed by geophysical investigations. Permafrost and Periglacial Processes, 18, 351–367. https://doi.org/10.1002/ppp.601
Hausmann, H., Krainer, K., Brückl, E., & Ullrich, C. (2012). Internal structure, ice content and dynamics of Ölgrube and Kaiserberg rock glaciers (Ötztal Alps, Austria) determined from geophysical surveys. Austrian Journal of Earth Sciences 105(2), 12–31.
Hayashi, M. (2020). Alpine Hydrogeology: The Critical Role of Groundwater in Sourcing the Headwaters of the World. Groundwater, 58(4), 498–510. https://doi.org/10.1111/gwat.12965
Heigert, K. (2018). Speicherverhalten und Abflussdynamik aktiver Blockgletscher am Beispiel „Ölgrube Süd“, Kaunertal [storage and discharge dynamics of active rock glaciers, example „Ölgrube Süd“, Kaunertal valley]. Beiträge zur Hydrogeolgie, 62, 33–42.
Hoinkes, G., & Thoni, M. (1993). Evolution of the Ötztal-Stubai, Scarl-Campo and Ulten basement units. In: von Raumer, J.F., Neubauer, F. (eds.) Pre-Mesozoic Geology in the Alps, pp. 485–494. Springer, Berlin, Heidelberg
Jones, D.B., Harrison, S., Anderson, K., Selley, H.L., Wood, J.L., & Betts, R.A. (2018). The distribution and hydrological significance of rock glaciers in the Nepalese Himalaya. Global and Planetary Change, 160, 123–142. https://doi.org/10.1016/j.gloplacha.2017.11.005
Jones, D. B., Harrison, S., Anderson, K., & Whalley, W. B. (2019). Rock glaciers and mountain hydrology. A review. Earth-Science Reviews, 193, 66–90. https://doi.org/10.1016/j.earscirev.2019.04.001
Klemes, V. (1986). Operational testing of hydrological simulation models. Hydrological Sciences, 31(1), 13–24. https://doi.org/10.1080/02626668609491024
Krainer, K., & Mostler, W. (2002). Hydrogeology of active rock glaciers: Examples from the Austrian Alps. Arctic, Antarctic and Alpine Research, 34(2), 142–149. https://doi.org/10.1080/15230430.2002.12003478
Krainer, K., & Mostler, W. (2006). Flow velocities of active rock glaciers in the Austrian Alps. Geografiska Annaler: Series A, Physical Geography, 88, 267–280. https://doi.org/10.1111/j.0435-3676.2006.00300.x
Krainer, K., Mostler, W., & Spötl, C. (2007). Discharge from active rock glaciers, Austrian Alps; a stable isotope approach. Austrian Journal of Earth Sciences, 100, 102–112.
Krainer, K., Bressan, D., Dietre, B., Haas, J. N., Hajdas, I., Lang, K., Mair, V., Nickus, U., Reidl, D., Thies, H., & Tonidandel, D. (2015). A 10,300-year-old permafrost core from the active rock glacier Lazaun, southern Ötztal Alps (South Tyrol, northern Italy). Quaternary Research, 83(2), 324–335. https://doi.org/10.1016/j.yqres.2014.12.005
Kreft, A., & Zuber, A. (1978). On the physical meaning of the dispersion equation and its solutions for different initial and boundary conditions. Chemical Engineering Science, 33(11), 1471–1480. https://doi.org/10.1016/0009-2509(78)85196-3
Kuhn, M., Kuhn M., Dreiseitl E., & Emprechtinger M. (2013). Temperatur und Niederschlag an der Wetterstation Obergurgl, 1953-2011. In Koch, E.M. Erschbamer, B. (eds.): Klima, Wetter, Gletscher im Wandel. Innsbruck university press (Alpine Forschungsstelle Obergurgl, 3), ISBN 978-3-902811-89, 9, 11–30.
Maillet, E. (1905). Essais d’hydraulique souterraine et fluviale. Librairie Scientifique A. Hermann, Paris
Mouelhi, S., Michel, C., Perrin, C., & Andréassian, V. (2006). Stepwise development of a two-parameter monthly water balance model. Journal of Hydrology, 318, 200–214. https://doi.org/10.1016/j.jhydrol.2005.06.014
Nash, J.E. and Sutcliffe, J.V., 1970. River flow forecasting through conceptual models. Part I – A discussion of principles. Journal of Hydrology, 10(3), 282–290. https://doi.org/10.1016/0022-1694(70)90255-6
Nepal, S., Chen, J., Penton D.J., Neumann, L.E., Zheng, H., & Wahid, S. (2017). Spatial GR4J conceptualization of the Tamor glaciated alpine catchment in Eastern Nepal: evaluation of GR4JSG against streamflow and MODIS snow extent. Hydrological Processes, 31, 51–68. https://doi.org/10.1002/hyp.10962
Pauritsch, M., Birk, S., Wagner, T., Hergarten, S. & Winkler, G. (2015). Analytical approximations of discharge recessions for steeply sloping aquifers in alpine catchments. Water Resources Research, 51, 8729–8740. https://doi.org/10.1002/2015WR017749
Pauritsch, M., Wagner, T., Winkler, G. & Birk, S. (2017). Investigating groundwater flow components in an Alpine relict rock glacier (Austria) using a numerical model. Hydrogeology Journal, 25, 371–383. https://doi.org/10.1007/s10040-016-1484-x
Posavec, K., Giacopetti, M., Materazzi, M., & Birk, S. (2017). Method and Excel VBA algorithm for modeling master recession curve using trigonometry approach. Groundwater, 55(6), 891–898. https://doi.org/10.1111/gwat.12549
Rogger, M., Chirico, G.B., Hausmann, H., Krainer, K., Brückl, E., Stadler, P., & Blöschl, G. (2017). Impact of mountain permafrost on flow path and runoff response in a high alpine catchment. Water Resources Research, 53, 1288–1308. https://doi.org/10.1002/2016WR019341
Schnegg, P.-A. (2002). An inexpensive field fluorometer for hydrogeological tracer tests with three tracers and turbidity measurement. XXXII IAH & ALHSUD Congress Groundwater and Human Development. Balkema, Mar del Plata, Argentina, pp. 1484–1488.
Shannon, S., Smith, R., Wiltshire, A., Payne, T., Huss, M., Betts, R., Caesar, J., Koutroulis, A., Jones, D., & Harrison, S. (2019). Global glacier volume projections under high-end climate change scenarios. Cryosphere, 13, 325–350. https://doi.org/10.5194/tc-13-325-2019
Singh, R., Wagener, T., van Werkhoven, K., Mann, M.E., & Crane, R. (2011). A trading space-for-time approach to probabilistic continuous streamflow predictions in a changing climate – accounting for changing watershed behavior. Hydrology and Earth System Sciences, 15, 3591–3603. https://doi.org/10.5194/hess-15-3591-2011
Tenthorey, G. (1992). Perennial névés and the hydrology of rock glaciers. Permafrost and Periglacial Processes, 3(3), 247–252. https://doi.org/10.1002/ppp.3430030313
Vonder Mühll, D. S. (1993). Geophysikalische Untersuchungen im Permafrost des Oberengadins [Geophysical investigations of permafrost in the Upper Engadin]. Doctoral Thesis, Eidgenössische Technische Hochschule, Zürich.
Wagner, T., Mayaud, C., Benischke, R., & Birk, S. (2013). Ein besseres Verständnis des Lurbach-Karstsystems durch ein konzeptionelles Niederschlags-Abfluss-Modell [A better understanding oft he Lurbach karst system via a conceptional rainfall-runoff model]. Grundwasser, 18, 225–235. https://doi.org/10.1007/s00767-013-0234-4
Wagner, T., Pauritsch, M., & Winkler, G. (2016). Impact of relict rock glaciers on spring and stream flow of alpine watersheds: Examples of the Niedere Tauern Range, Eastern Alps (Austria). Austrian Journal of Earth Sciences, 109(1), 84–98. https://doi.org/10.17738/ajes.2016.0006
Wagner, T., Kainz, S., Wedenig, M., Pleschberger, R., Krainer, K., Kellerer-Pirklbauer, A., Ribis, M., Hergarten, S., & Winkler, G. (2019). Wasserwirtschaftiche Aspekte von Blockgletschern in Kristallingebieten der Ostalpen – Speicherverhalten, Abflussdynamik und Hydrochemie mit Schwerpunkt Schwermetallbelastungen (RGHeavyMetal) – Endbericht. Final report, 158 p. https://www.bmnt.gv.at/wasser/wasserqualitaet/RG-HeavyMetal.html
Wagner, T., Pauritsch, M., Mayaud, C., Kellerer-Pirklbauer, A., Thalheim, F., & Winkler, G. (2019). Controlling factors of microclimate in blocky surface layers of two nearby relict rock glaciers (Niedere Tauern Range, Austria). Geografiska Annaler: Series A, Physical Geography, 101(4), 310–333. https://doi.org/10.1080/04353676.2019.1670950
Wagner, T., Brodacz, A., Krainer, K., & Winkler, G. (2020a). Active rock glaciers as shallow groundwater reservoirs, Austrian Alps. Grundwasser, 25, 215–230. https://doi.org/10.1007/s00767-020-00455-x
Wagner, T., Pleschberger, R., Kainz, S., Ribis, M., Kellerer-Pirklbauer, A., Krainer, K., Philippitsch, R., & Winkler, G. (2020b). The first consistent inventory of rock glaciers and their hydrological catchments of the Austrian Alps. Austrian Journal of Earth Sciences, 113(1), 1–23. https://doi.org/10.17738/ajes.2020.0001
Wagner, T., Ribis, M., Kellerer-Pirklbauer, A., Krainer, K., & Winkler, G. (2020c). The Austrian rock glacier inventory RGI_1 and the related rock glacier catchment inventory RGCI_1 in ArcGis (shapefile) format. PANGAEA, https://doi.org/10.1594/PANGAEA.921629
Wetzel, K.-F. (2003). Runoff production processes in small alpine catchments within the unconsolidated Pleistocene sediments of the Lainbach area (Upper Bavaria). Hydrological Processes, 17, 2463–2483. https://doi.org/10.1002/hyp.1254
Williams, M.W., Knauf, M., Caine, N., Liu, F., Verplanck, P.L. (2006). Geochemistry and source waters of rock glacier outflow, Colorado Front Range. Permafrost and Periglacial Processes, 17, 13–33. https://doi.org/10.1002/ppp.535
Winkler, G., Wagner, T., Pauritsch, M., Birk, S., Kellerer-Pirklbauer, A., Benischke, R., Leis, A., Morawetz, R., Schreilechner, M.G., & Hergarten S. (2016). Identification and assessment of groundwater flow and storage components of the relict Schöneben Rock Glacier, Niedere Tauern Range, Eastern Alps (Austria). Hydrogeology Journal, 24, 937–953. https://doi.org/10.1007/s10040-015-1348-9
Winkler, G., Wagner, T., Krainer, K., Ribis, M., & Hergarten, S. (2018). Hydrogeology of Rock Glaciers – Storage Capacity and Drainage Dynamics – an Overview. In: Sychev, V.G., & Mueller, L., Novel methods and results of landscape research in Europe, Central Asia and Siberia, Vol II/71, 329–334.
Zenklusen Mutter, E., & Phillips, M. (2012). Thermal evidence of recent talik formation in Ritigraben rock glacier: Swiss Alps. In K. M. Hinkel (Ed.), Resources and risks of permafrost areas in a changing world. Proceedings. Vol. 1: international contributions (pp. 479-483). The Northern Publisher.
Zurawek, R. (2002). Internal structure of a relict rock glacier, Sleza Massif, southwest Poland. Permafrost and Periglacial Processes, 13, 29–42. https://doi.org/10.1002/ppp.403