REFERENCES
  1. Abás, S., Erdozain, A.M., Keller, B., Rodríguez-Arévalo, S., Callado, L.F., García-Sevilla, J.A., et al. (2017). Neuroprotective Effects of a Structurally New Family of High Affinity Imidazoline I2 Receptor Ligands. ACS Chem. Neurosci. 8 : 737–742.
  2. Abás, S., Rodríguez-Arévalo, S., Bagán, A., Griñán-Ferré, C., Vasilopoulou, F., Brocos-Mosquera, I., et al. (2020). Bicyclic α-Iminophosphonates as High Affinity Imidazoline I2 Receptor Ligands for Alzheimer’s Disease. J. Med. Chem. 63 : 3610–3633.
  3. Akiyama, H., Barger, S., Barnum, S., Bradt, B., Bauer, J., Cole, G.M., et al. (2000). Inflammation and Alzheimer’s disease. Neurobiol. Aging21 : 383–421.
  4. Alemany, R., Olmos, G., Escribá, P. V, Menargues, A., Obach, R., and García-Sevilla, J.A. (1995). LSL 60101, a selective ligand for imidazoline I2 receptors, on glial fibrillary acidic protein concentration. Eur. J. Pharmacol. 280 : 205–210.
  5. Archer, J. (1973). Tests for emotionality in rats and mice: A review. Anim. Behav. 21 : 205–235.
  6. Blanchard, V., Moussaoui, S., Czech, C., Touchet, N., Bonici, B., Planche, M., et al. (2003). Time sequence of maturation of dystrophic neurites associated with Abeta deposits in APP/PS1 transgenic mice. Exp. Neurol. 184 : 247–263.
  7. Boada-Rovira, M., Brodaty, H., Cras, P., Baloyannis, S., Emre, M., Zhang, R., et al. (2004). Efficacy and safety of donepezil in patients with Alzheimer’s disease. Drugs Aging 21 : 43–53.
  8. Boronat, M.A., Olmos, G., and García-Sevilla, J.A. (1998). Attenuation of tolerance to opioid-induced antinociception and protection against morphine-induced decrease of neurofilament proteins by idazoxan and other I2-imidazoline ligands. Br. J. Pharmacol. 125 : 175–185.
  9. Bousquet, P., Hudson, A., García-Sevilla, J.A., and Li, J.X. (2020). Imidazoline receptor system: The past, the present, and the future. Pharmacol. Rev. 72 : 50–79.
  10. Casanovas, A., Olmos, G., Ribera, J., Boronat, M.A., Esquerda, J.E., and García-Sevilla, J.A. (2000). Induction of reactive astrocytosis and prevention of motoneuron cell death by the I(2)-imidazoline receptor ligand LSL 60101. Br. J. Pharmacol. 130 : 1767–1776.
  11. Companys-Alemany, J., Turcu, A.L., Bellver-Sanchis, A., Loza, M.I., Brea, J.M., Canudas, A.M., et al. (2020). A novel NMDA receptor antagonist protects against cognitive decline presented by senescent mice. Pharmaceutics 12 : 1–17.
  12. Cummings, J., Lee, G., Ritter, A., Sabbagh, M., and Zhong, K. (2020). Alzheimer’s disease drug development pipeline: 2020. Alzheimer’s Dement. Transl. Res. Clin. Interv. 6 : 1–29.
  13. Curtis, M.J., Alexander, S., Cirino, G., Docherty, J.R., George, C.H., Giembycz, M.A., et al. (2018). Experimental design and analysis and their reporting II: updated and simplified guidance for authors and peer reviewers. Br. J. Pharmacol. 175 : 987–993.
  14. DeTure, M.A., and Dickson, D.W. (2019). The neuropathological diagnosis of Alzheimer’s disease. Mol. Neurodegener. 14 : 32.
  15. Dickson, D.W., and Rogers, J. (1992). Neuroimmunology of Alzheimer’s disease: A conference report. Neurobiol. Aging 13 : 793–798.
  16. Dong, H., Yuede, C.M., Coughlan, C.A., Murphy, K.M., and Csernansky, J.G. (2009). Effects of donepezil on amyloid-beta and synapse density in the Tg2576 mouse model of Alzheimer’s disease. Brain Res.1303 : 169–178.
  17. Ennaceur, A., and Delacour, J. (1988). A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data. Behav. Brain Res. 31 : 47–59.
  18. Finn, D.P., Martí, O., Harbuz, M.S., Vallès, A., Belda, X., Márquez, C., et al. (2003). Behavioral, neuroendocrine and neurochemical effects of the imidazoline I2 receptor selective ligand BU224 in naive rats and rats exposed to the stress of the forced swim test. Psychopharmacology (Berl). 167 : 195–202.
  19. Fitzgerald, P.J., Hale, P.J., Ghimire, A., and Watson, B.O. (2020). The cholinesterase inhibitor donepezil has antidepressant-like properties in the mouse forced swim test. Transl. Psychiatry10 : 255.
  20. Frölich, L., Atri, A., Ballard, C., Tariot, P.N., Molinuevo, J.L., Boneva, N., et al. (2019). Open-Label, Multicenter, Phase III Extension Study of Idalopirdine as Adjunctive to Donepezil for the Treatment of Mild-Moderate Alzheimer’s Disease. J. Alzheimers. Dis.67 : 303–313.
  21. Garau, C., Miralles, A., Garcia-Sevilla, J. a, and García-Sevilla, J. a (2013). Chronic treatment with selective I2-imidazoline receptor ligands decreases the content of pro-apoptotic markers in rat brain. J. Psychopharmacol. 27 : 123–34.
  22. Garcia-Sevilla, J., Escriba, P., Walzer, C., Bouras, C., and Guimon, J. (1998). Imidazoline receptor proteins in brains of patients with Alzheimer’s disease. Neurosci. Lett. 247 : 95–98.
  23. Gatt, J.M., Nemeroff, C.B., Dobson-Stone, C., Paul, R.H., Bryant, R.A., Schofield, P.R., et al. (2009). Interactions between BDNF Val66Met polymorphism and early life stress predict brain and arousal pathways to syndromal depression and anxiety. Mol. Psychiatry14 : 681–695.
  24. Giacobini, E. (2000). Cholinesterase Inhibitors Stabilize Alzheimer Disease. Neurochem. Res. 25 : 1185–1190.
  25. Griñán-Ferré, C., Izquierdo, V., Otero, E., Puigoriol-Illamola, D., Corpas, R., Sanfeliu, C., et al. (2018). Environmental Enrichment Improves Cognitive Deficits, AD Hallmarks and Epigenetic Alterations Presented in 5xFAD Mouse Model. Front. Cell. Neurosci. 12 : 224.
  26. Griñan-Ferré, C., Palomera-Ávalos, V., Puigoriol-Illamola, D., Camins, A., Porquet, D., Plá, V., et al. (2016). Behaviour and cognitive changes correlated with hippocampal neuroinflammaging and neuronal markers in female SAMP8, a model of accelerated senescence. Exp. Gerontol. 80 : 57–69.
  27. Griñán-Ferré, C., Vasilopoulou, F., Abás, S., Rodríguez-Arévalo, S., Bagán, A., Sureda, F.X., et al. (2019). Behavioral and Cognitive Improvement Induced by Novel Imidazoline I2 Receptor Ligands in Female SAMP8 Mice. Neurotherapeutics 16 : 416–431.
  28. Grossberg, G.T. (2003). Cholinesterase inhibitors for the treatment of Alzheimer’s disease:: getting on and staying on. Curr. Ther. Res. Clin. Exp. 64 : 216–235.
  29. Hernández-Hernández, E., García-Sevilla, J.A., and García-Fuster, M.J. (2020). Exploring the antidepressant-like potential of the selective I2-imidazoline receptor ligand LSL 60101 in adult male rats. Pharmacol. Reports.
  30. Hwang, J., Hwang, H., Lee, H.-W., and Suk, K. (2010). Microglia signaling as a target of donepezil. Neuropharmacology 58 : 1122–1129.
  31. Jawhar, S., Trawicka, A., Jenneckens, C., Bayer, T.A., and Wirths, O. (2012). Motor deficits, neuron loss, and reduced anxiety coinciding with axonal degeneration and intraneuronal Aβ aggregation in the 5XFAD mouse model of Alzheimer’s disease. Neurobiol. Aging 33 : 196.e29–40.
  32. Jiangbo, N., and Liyun, Z. (2018). Effect of donepezil hydrochloride & aerobic exercise training on learning and memory and its mechanism of action in an Alzheimer’s disease rat model. Pak. J. Pharm. Sci.31 : 2897–2901.
  33. Ju, Y., and Tam, K.Y. (2020). 9R, the cholinesterase and amyloid beta aggregation dual inhibitor, as a multifunctional agent to improve cognitive deficit and neuropathology in the triple-transgenic Alzheimer’s disease mouse model. Neuropharmacology 181 : 108354.
  34. Kim, H.G., Moon, M., Choi, J.G., Park, G., Kim, A.-J., Hur, J., et al. (2014). Donepezil inhibits the amyloid-beta oligomer-induced microglial activation in vitro and in vivo. Neurotoxicology 40 : 23–32.
  35. Kotagale, N., Dixit, M., Garmelwar, H., Bhondekar, S., Umekar, M., and Taksande, B. (2020). Agmatine reverses memory deficits induced by Aβ1–42 peptide in mice: A key role of imidazoline receptors. Pharmacol. Biochem. Behav. 196 :.
  36. Krishna, K.V., Saha, R.N., and Dubey, S.K. (2020). Biophysical, Biochemical, and Behavioral Implications of ApoE3 Conjugated Donepezil Nanomedicine in a Aβ 1–42 Induced Alzheimer’s Disease Rat Model . ACS Chem. Neurosci.
  37. Landel, V., Baranger, K., Virard, I., Loriod, B., Khrestchatisky, M., Rivera, S., et al. (2014). Temporal gene profiling of the 5XFAD transgenic mouse model highlights the importance of microglial activation in Alzheimer’s disease. Mol. Neurodegener. 9 : 33.
  38. Lee, C.Y.D., Daggett, A., Gu, X., Jiang, L.L., Langfelder, P., Li, X., et al. (2018). Elevated TREM2 Gene Dosage Reprograms Microglia Responsivity and Ameliorates Pathological Phenotypes in Alzheimer’s Disease Models. Neuron 97 : 1032-1048.e5.
  39. Lilley, E., Stanford, S.C., Kendall, D.E., Alexander, S.P.H., Cirino, G., Docherty, J.R., et al. (2020). ARRIVE 2.0 and the British Journal of Pharmacology: Updated guidance for 2020. Br. J. Pharmacol.177 : 3611–3616.
  40. Mehta, M., Adem, A., and Sabbagh, M. (2012). New acetylcholinesterase inhibitors for Alzheimer’s disease. Int. J. Alzheimers. Dis.2012 : 728983.
  41. Meraz Rios, M.A., Toral-Rios, D., Franco-Bocanegra, D., Villeda-Hernández, J., And Campos-Peña, V. (2013). Inflammatory process in Alzheimer’s Disease . Front. Integr. Neurosci. 7 : 59.
  42. Mirzaei, N., Mota, B.C., Birch, A.M., Davis, N., Romero‐Molina, C., Katsouri, L., et al. (2020). Imidazoline ligand BU224 reverses cognitive deficits, reduces microgliosis and enhances synaptic connectivity in a mouse model of Alzheimer’s disease. Br. J. Pharmacol. 10.1111/bph.15312
  43. Murray, M.E., Graff-Radford, N.R., Ross, O.A., Petersen, R.C., Duara, R., and Dickson, D.W. (2011). Neuropathologically defined subtypes of Alzheimer’s disease with distinct clinical characteristics: a retrospective study. Lancet. Neurol. 10 : 785–796.
  44. Oakley, H., Cole, S.L., Logan, S., Maus, E., Shao, P., Craft, J. et al. (2006) Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci. 4;26(40):10129-40.
  45. Olmos, G., Alemany, R., Escriba, P.V., and García‐Sevilla, J.A. (1994). The effects of chronic imidazoline drug treatment on glial fibrillary acidic protein concentrations in rat brain. Br. J. Pharmacol. 111 : 997–1002.
  46. Ongnok, B., Khuanjing, T., Chunchai, T., Kerdphoo, S., Jaiwongkam, T., Chattipakorn, N., et al. (2021). Donepezil provides neuroprotective effects against brain injury and Alzheimer’s pathology under conditions of cardiac ischemia/reperfusion injury. Biochim. Biophys. Acta. Mol. Basis Dis. 1867 : 165975.
  47. Puzzo, D., Gulisano, W., Palmeri, A., and Arancio, O. (2015). Rodent models for Alzheimer’s disease drug discovery. Expert Opin. Drug Discov. 10 : 703–711.
  48. Regunathan, S., Feinstein, D.L., and Reis, D.J. (1993). Expression of non-adrenergic imidazoline sites in rat cerebral cortical astrocytes. J. Neurosci. Res. 34 : 681–688.
  49. Riedel, G., Kang, S.H., Choi, D.Y., and Platt, B. (2009). Scopolamine-induced deficits in social memory in mice: Reversal by donepezil. Behav. Brain Res. 204 : 217–225.
  50. Rosini, M., Simoni, E., Minarini, A., and Melchiorre, C. (2014). Multi-target design strategies in the context of Alzheimer’s disease: acetylcholinesterase inhibition and NMDA receptor antagonism as the driving forces. Neurochem. Res. 39 : 1914–1923.
  51. Ruiz, J., Martín, I., Callado, L.F., Meana, J.J., Barturen, F., and García-Sevilla, J.A. (1993). Non-adrenoceptor [3H]idazoxan binding sites (I2-imidazoline sites) are increased in postmortem brain from patients with Alzheimer’s disease. Neurosci. Lett. 160 : 109–112.
  52. Sánchez-Blázquez, P., Boronat, M.A., Olmos, G., García-Sevilla, J.A., and Garzón, J. (2000). Activation of I(2)-imidazoline receptors enhances supraspinal morphine analgesia in mice: a model to detect agonist and antagonist activities at these receptors. Br. J. Pharmacol. 130 : 146–152.
  53. Saul, A., Sprenger, F., Bayer, T.A., and Wirths, O. (2013). Accelerated tau pathology with synaptic and neuronal loss in a novel triple transgenic mouse model of Alzheimer’s disease. Neurobiol. Aging34 : 2564–2573.
  54. Schmitt, B., Bernhardt, T., Moeller, H.-J., Heuser, I., and Frölich, L. (2004). Combination therapy in Alzheimer’s disease: a review of current evidence. CNS Drugs 18 : 827–844.
  55. Selkoe, D.J. (2008). Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior. Behav. Brain Res. 192 : 106–113.
  56. Serrano-Pozo, A., Frosch, M.P., Masliah, E., and Hyman, B.T. (2011). Neuropathological alterations in Alzheimer disease. Cold Spring Harb. Perspect. Med. 1 : a006189.
  57. Sinforiani, E., Banchieri, L.M., Zucchella, C., Bernasconi, L., and Nappi, G. (2003). Cholinesterase inhibitors in Alzheimer’s disease: efficacy in a non-selected population. Funct. Neurol. 18 : 233–237.
  58. Takada-Takatori, Y., Nakagawa, S., Kimata, R., Nao, Y., Mizukawa, Y., Urushidani, T., et al. (2019). Donepezil modulates amyloid precursor protein endocytosis and reduction by up-regulation of SNX33 expression in primary cortical neurons. Sci. Rep. 9 : 11922.
  59. Tonello, R., Villarinho, J.G., Silva Sant’Anna, G. da, Tamiozzo, L., Machado, P., Trevisan, G., et al. (2012). The potential antidepressant-like effect of imidazoline I 2 ligand 2-BFI in mice. Prog. Neuro-Psychopharmacology Biol. Psychiatry 37 : 15–21.
  60. Vasilopoulou, F., Bagan, A., Rodriguez-Arevalo, S., Escolano, C., Griñán-Ferré, C., and Pallàs, M. (2020a). Amelioration of BPSD-like phenotype and cognitive decline in SAMP8 mice model accompanied by molecular changes after treatment with I2-imidazoline receptor ligand MCR5. Pharmaceutics 12 :.
  61. Vasilopoulou, F., Griñán-Ferré, C., Rodríguez-Arévalo, S., Bagán, A., Abás, S., Escolano, C., et al. (2020b). I2 imidazoline receptor modulation protects aged SAMP8 mice against cognitive decline by suppressing the calcineurin pathway. GeroScience 27–31.
  62. Walf, A.A., and Frye, C.A. (2007). The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat. Protoc.2 : 322–328.
  63. Walsh, D.M., and Selkoe, D.J. (2004). Oligomers on the brain: the emerging role of soluble protein aggregates in neurodegeneration. Protein Pept. Lett. 11 : 213–228.
  64. Yang, H., Mu, W., Wei, D., Zhang, Y., Duan, Y., Gao, J. xiao, et al. (2020). A Novel Targeted and High-Efficiency Nanosystem for Combinational Therapy for Alzheimer’s Disease. Adv. Sci. 7 : 1–13.
  65. Yoshiyama, Y., Kojima, A., Ishikawa, C., and Arai, K. (2010). Anti-inflammatory action of donepezil ameliorates tau pathology, synaptic loss, and neurodegeneration in a tauopathy mouse model. J. Alzheimers. Dis. 22 : 295–306.
  66. Zhang, F., Gannon, M., Chen, Y., Yan, S., Zhang, S., Feng, W., et al. (2020). β-amyloid redirects norepinephrine signaling to activate the pathogenic GSK3β/tau cascade. Sci. Transl. Med. 12 : eaay6931.
  67. Zhang, F., and Jiang, L. (2015). Neuroinflammation in Alzheimer’s disease. Neuropsychiatr. Dis. Treat. 11 : 243–256.
  68. Zhao, Y., Wu, X., Li, X., Jiang, L.-L., Gui, X., Liu, Y., et al. (2018). TREM2 Is a Receptor for β-Amyloid that Mediates Microglial Function. Neuron 97 : 1023-1031.e7.