References
Ait Baamrane, M.A., Shehzad, W., Ouhammou, A., Abbad, A., Naimi, M., Coissac, E., Taberlet, P., & Znari, M. (2012). Assessment of the food habits of the Moroccan dorcas gazelle in M’Sabih Talaa, west central Morocco, using the trn L approach.
PLoS One, 7(4), 35643.
https://doi.org/10.1371/journal.pone.0035643.
Allwood, J.S., Fierer, N., & Dunn, R.R. (2020). The future of environmental DNA in forensic science.
Applied and Environmental Microbiology, 86(2), 01504-19.
https://doi.org/10.1128/AEM.01504-19.
Barnes, M. A., & Turner, C. R. (2016). The ecology of environmental DNA and implications for conservation genetics.
Conservation Genetics,
17(1), 1-17.
https://doi.org/10.1007/s10592-015-0775-4.
Barnes, M.A., Brown, A.D., Daum, M.N., de la Garza, K.A., Driskill, J., Garrett, K., Goldstein, M.S., Luk, A., Maguire, J.I., Moke, R., Ostermaier, E.M., Sanders, Y.M., Sandhu, T., Stith, A., & Suresh, V.V. (2020). Detection of the amphibian pathogens chytrid fungus (
Batrachochytrium dendrobatidis) and ranavirus in West Texas, USA, using environmental DNA.
Journal of Wildlife Diseases, 56(3), 702-706.
https://doi.org/10.7589/2019-08-212.
Bartlett, L.J., Newbold, T., Purves, D.W., Tittensor, D.P., & Harfoot, M.B. (2016). Synergistic impacts of habitat loss and fragmentation on model ecosystems.
Proceedings of the Royal Society B: Biological Sciences, 283(1839), 20161027.
https://doi.org/10.1098/rspb.2016.1027.
Bovo, S., Ribani, A., Utzeri, V. J., Schiavo, G., Bertolini, F., & Fontanesi, L. (2018). Shotgun metagenomics of honey DNA: Evaluation of a methodological approach to describe a multi-kingdom honey bee derived environmental DNA signature.
PloS One,
13(10), e0205575.
https://doi.org/10.1371/journal.pone.0205575.
Buglione, M., Maselli, V., Rippa, D., de Filippo, G., Trapanese, M., & Fulgione, D. (2018). A pilot study on the application of DNA metabarcoding for non-invasive diet analysis in the Italian hare.
Mammalian Biology,
88, 31-42.
https://doi.org/10.1016/j.mambio.2017.10.010.
Burian, A., Mauvisseau, Q., Bulling, M., Domisch, S., Qian, S., & Sweet, M. (2021). Improving the reliability of eDNA data interpretation.
Molecular Ecology Resources, 21(5), 1422-1433.
https://doi.org/10.1111/1755-0998.13367.
Castagneyrol, B., Bonal, D., Damien, M., Jactel, H., Meredieu, C., Muiruri, E.W., & Barbaro, L. (2017). Bottom‐up and top‐down effects of tree species diversity on leaf insect herbivory.
Ecology and Evolution, 7(10), 520-3531.
https://doi.org/10.1002/ece3.2950.
Chama, L., Berens, D.G., Downs, C.T., & Farwig, N. (2013). Habitat characteristics of forest fragments determine specialisation of plant-frugivore networks in a mosaic forest landscape.
PloS One, 8(1), e54956.
https://doi.org/10.1371/journal.pone.0054956.
Che, J., Chen, H.M., Yang, J.X., JIN, J.Q., Jiang, K.E., Yuan, Z.Y., Murphy, R.W. & Zhang, Y.P. (2012). Universal COI primers for DNA barcoding amphibians. Molecular Ecology Resources, 12(2), 247-258. https://doi.org/10.1111/j.1755-0998.2011.03090.x.
Chua, P. Y., Lammers, Y. Y., Menoni, E., Ekrem, T., Bohmann, K., Boessenkool, S., & Alsos, I. G. (2021). Molecular dietary analyses of western capercaillies (
Tetrao urogallus) reveal a diverse diet.
bioRxiv.
https://doi.org/10.1101/2021.03.08.434346.
Clare, E.L. (2014). Molecular detection of trophic interactions: emerging trends, distinct advantages, significant considerations and conservation applications.
Evolutionary Applications, 7(9), 1144-1157.
https://doi.org/10.1111/eva.12225.
Colles, A., Liow, L.H., & Prinzing, A. (2009). Are specialists at risk under environmental change? Neoecological, paleoecological and phylogenetic approaches.
Ecology Letters, 12(8), 849-863.
https://doi.org/10.1111/j.1461-0248.2009.01336.x.
D’Alessandro, S., & Mariani, S. (2021). Sifting environmental DNA metabarcoding data sets for rapid reconstruction of marine food webs.
Fish and Fisheries.
https://doi.org/10.1111/faf.12553.
De Vere, N., Jones, L.E., Gilmore, T., Moscrop, J., Lowe, A., Smith, D., Hegarty, M.J., Creer, S., & Ford, C.R. (2017). Using DNA metabarcoding to investigate honey bee foraging reveals limited flower use despite high floral availability.
Scientific Reports, 7(1), 1-10.
https://doi.org/10.1038/srep42838.
Deiner, K., Bik, H.M., Mächler, E., Seymour, M., Lacoursière‐Roussel, A., Altermatt, F., Creer, S., Bista, I., Lodge, D.M., De Vere, N., & Pfrender, M.E. (2017). Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Molecular Ecology, 26(21), 5872-5895. https://doi.org/10.1111/mec.14350.
Deiner, K., Yamanaka, H., & Bernatchez, L. (2021). The future of biodiversity monitoring and conservation utilizing environmental DNA.
Environmental DNA, 3(1), 3-7.
https://doi.org/10.1002/edn3.178.
Derocles, S.A., Evans, D.M., Nichols, P.C., Evans, S.A., & Lunt, D.H. (2015). Determining plant–leaf miner–parasitoid interactions: a DNA barcoding approach.
PloS One, 10(2), e0117872.
https://doi.org/10.1371/journal.pone.0117872.
Derycke, S., De Ley, P., Tandingan De Ley, I., Holovachov, O., Rigaux, A. & Moens, T. (2010). Linking DNA sequences to morphology: cryptic diversity and population genetic structure in the marine nematode Thoracostoma trachygaster (Nematoda, Leptosomatidae). Zoologica Scripta, 39(3), 276-289. https://doi.org/10.1111/j.1463-6409.2009.00420.x.
DiBattista, J.D., Reimer, J.D., Stat, M., Masucci, G.D., Biondi, P., De Brauwer, M., Wilkinson, S.P., Chariton, A.A., & Bunce, M. (2020). Environmental DNA can act as a biodiversity barometer of anthropogenic pressures in coastal ecosystems.
Scientific Reports, 10(1), 1-15.
https://doi.org/10.1038/s41598-020-64858-9.
Echevarría-Machado, I., Sánchez-Cach, L.A., Hernández-Zepeda, C., Rivera-Madrid, R., & Moreno-Valenzuela, O.A. (2005). A simple and efficient method for isolation of DNA in high mucilaginous plant tissues.
Molecular Biotechnology, 31(2), 129-135.
https://doi.org/10.1385/MB:31:2:129.
Ellis, A.G., & Johnson, S.D. (2012). Lack of floral constancy by bee fly pollinators: implications for ethological isolation in an African daisy.
Behavioral Ecology, 23(4), 729-734.
https://doi.org/10.1093/beheco/ars019.
Evans, D.M. & Kitson, J.J. (2020). Molecular ecology as a tool for understanding pollination and other plant–insect interactions. Current opinion in insect science, 38, 26-33. https://doi.org/10.1016/j.cois.2020.01.005.
Evans, D.M., Kitson, J.J., Lunt, D.H., Straw, N.A., & Pocock, M.J. (2016). Merging DNA metabarcoding and ecological network analysis to understand and build resilient terrestrial ecosystems.
Functional Ecology, 30(12), 1904-1916.
https://doi.org/10.1111/1365-2435.12659.
Faegri, K., & Pijl, V. D. L. 1979. The principles of pollination ecology (64, p-6-7). (3d rev. ed.) Oxford; New York: Pergamon Press.
Fediajevaite, J., Priestley, V., Arnold, R., & Savolainen, V. (2021). Meta‐analysis shows that environmental DNA outperforms traditional surveys, but warrants better reporting standards.
Ecology and Evolution, 11(9), 4803-4815.
https://doi.org/10.1002/ece3.7382.
Ficetola, G.F., Miaud, C., Pompanon, F., & Taberlet, P. (2008). Species detection using environmental DNA from water samples.
Biology Letters 4(4), 423-425.
https://doi.org/10.1098/rsbl.2008.0118.
García-Robledo, C., Erickson, D.L., Staines, C.L., Erwin, T.L., & Kress, W.J. (2013). Tropical plant–herbivore networks: reconstructing species interactions using DNA barcodes.
PLoS One, 8(1), e52967.
https://doi.org/10.1371/journal.pone.0052967.
Gogarten, J.F., Hoffmann, C., Arandjelovic, M., Sachse, A., Merkel, K., Dieguez, P., Agbor, A., Angedakin, S., Brazzola, G., Jones, S., Langergraber, K.E., Lee, K., Marrocoli, S., Murai, M., Sommer, V., Kühl, H., Leendertz, F.H., & Calvignac‐Spencer, S. (2020). Fly‐derived DNA and camera traps are complementary tools for assessing mammalian biodiversity.
Environmental DNA 2(1), 63-76.
https://doi.org/10.1002/edn3.46.
Goldberg, A.R., Conway, C.J., Tank, D.C., Andrews, K.R., Gour, D.S., & Waits, L.P. (2020). Diet of a rare herbivore based on DNA metabarcoding of feces: Selection, seasonality, and survival. Ecology and Evolution, 10(14), 7627-7643.https://doi.org/10.1002/ece3.6488.
Gous, A., Swanevelder, D.Z., Eardley, C.D., & Willows‐Munro, S. (2019). Plant–pollinator interactions over time: Pollen metabarcoding from bees in a historic collection.
Evolutionary Applications, 12(2), 187-197.
https://doi.org/10.1111/eva.12707.
Guenay, Y., Trager, H., Glarcher, I., Traugott, M., & Wallinger, C. (2021). Limited detection of secondarily consumed plant food by DNA‐based diet analysis of omnivorous carabid beetles.
Environmental DNA, 3(2), 426-434.
https://doi.org/10.1002/edn3.128.
Hawkins, J., de Vere, N., Griffith, A., Ford, C.R., Allainguillaume, J., Hegarty, M.J., Baillie, L., & Adams-Groom, B. (2015). Using DNA metabarcoding to identify the floral composition of honey: a new tool for investigating honey bee foraging preferences.
PLoS One, 10(8), e0134735.
https://doi.org/10.1371/journal.pone.0134735.
Herrera, C.M. & Pellmyr, O. eds. (2009). Plant animal interactions: an evolutionary approach. John Wiley & Sons.
Hilbert, F., Taberlet, P., Chave, J., Scotti-Saintagne, C., Sabatier, D., & Richard-Hansen, C. (2013). Unveiling the diet of elusive rainforest herbivores in next generation sequencing era? The tapir as a case study.
PLoS One,
8(4), e60799.
https://doi.org/10.1371/journal.pone.0060799.
Hoshino, T., Nakao, R., Doi, H., & Minamoto, T. (2021). Simultaneous absolute quantification and sequencing of fish environmental DNA in a mesocosm by quantitative sequencing technique.
Scientific Reports, 11(1), 1-9.
https://doi.org/10.1038/s41598-021-83318-6.
IPBES. (2019). Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. E.S. Brondizio, J. Settele, S. Díaz, and H.T. Ngo (eds). IPBES secretariat, Bonn, Germany. 1-56.
https://ipbes.net/global-assessment.
Iwanowicz, D.D., Vandergast, A.G., Cornman, R.S., Adams, C.R., Kohn, J.R., Fisher, R.N., & Brehme, C.S. (2016). Metabarcoding of fecal samples to determine herbivore diets: A case study of the endangered Pacific pocket mouse.
PloS One, 11(11), e0165366.
https://doi.org/10.1371/journal.pone.0165366.
Jones, L., Twyford, A.D., Ford, C.R., Rich, T.C., Davies, H., Forrest, L.L., Hart, M.L., McHaffie, H., Brown, M.R., Hollingsworth, P.M., & De Vere, N. (2021). Barcode UK: A complete DNA barcoding resource for the flowering plants and conifers of the United Kingdom. Molecular Ecology Resources, 21(6), 2050-2062. https://doi.org/10.1111/1755-0998.13388.
Kartzinel, T.R., Chen, P.A., Coverdale, T.C., Erickson, D.L., Kress, W.J., Kuzmina, M.L., Rubenstein, D.I., Wang, W., & Pringle, R.M. (2015). DNA metabarcoding illuminates dietary niche partitioning by African large herbivores.
Proceedings of the National Academy of Sciences, 112(26), 8019-8024.
https://doi.org/10.1073/pnas.1503283112.
Kim, P., Kim, D., Yoon, T.J. & Shin, S. (2018). Early detection of marine invasive species, Bugula neritina (Bryozoa: Cheilostomatida), using species-specific primers and environmental DNA analysis in Korea. Marine environmental research, 139, 1-10. https://doi.org/10.1016/j.marenvres.2018.04.015.
Klein, A.M., Vaissiere, B.E., Cane, J.H., Steffan-Dewenter, I., Cunningham, S.A., Kremen, C., & Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops.
Proceedings of the Royal Society B: Biological Sciences, 274(1608), 303-313.
https://doi.org/10.1098/rspb.2006.3721.
Koizumi, N., Mori, A., Mineta, T., Sawada, E., Watabe, K., & Takemura, T. (2016). Exploratory environmental DNA analysis for investigating plant-feeding habit of the red-eared turtle using their feces samples.
Jurnal Teknologi,
78(1-2).
https://doi.org/10.11113/jt.v78.7253.
Kress, W.J., García-Robledo, C., Uriarte, M., & Erickson, D.L. (2015). DNA barcodes for ecology, evolution, and conservation.
Trends in Ecology & Evolution, 30(1), 25-35.
https://doi.org/10.1016/j.tree.2014.10.008.
Kudoh, A., Minamoto, T., & Yamamoto, S. (2020). Detection of herbivory: eDNA detection from feeding marks on leaves.
Environmental DNA,
2(4), 627-634.
https://doi.org/10.1002/edn3.113
Lacoursière‐Roussel, A., & Deiner, K. (2021). Environmental DNA is not the tool by itself.
Journal of Fish Biology, 98(2), 383-386.
https://doi.org/10.1111/jfb.14177.
Ladin, Z.S., Ferrell, B., Dums, J.T., Moore, R.M., Levia, D.F., Shriver, W.G., D’Amico, V., Trammell, T.L., Setubal, J.C., & Wommack, K.E. (2021). Assessing the efficacy of eDNA metabarcoding for measuring microbial biodiversity within forest ecosystems.
Scientific Reports, 11(1), 1-14.
https://doi.org/10.1038/s41598-020-80602-9.
Leray, M., Boehm, J.T.,Mills, S.C., & Meyer, C.P. (2012). Moorea BIOCODE barcode library as a tool for understanding predator–prey interactions: insights into the diet of common predatory coral reef fishes.
Coral Reefs 31: 383–388.
https://doi.org/10.1007/s00338-011-0845-0.
Leray, M., Meyer, C.P., & Mills, S.C. (2015). Metabarcoding dietary analysis of coral dwelling predatory fish demonstrates the minor contribution of coral mutualists to their highly partitioned, generalist diet.
PeerJ, 3: e1047.
https://doi.org/10.7717/peerj.1047.
Luna, P. & Dáttilo, W. (2021). Disentangling plant-animal interactions into complex networks: a multi-view approach and perspectives. In Plant-animal interactions (pp. 261-281). Springer, Cham.
Macgregor, C.J., Kitson, J.J., Fox, R., Hahn, C., Lunt, D.H., Pocock, M.J. & Evans, D.M. (2019). Construction, validation, and application of nocturnal pollen transport networks in an agro‐ecosystem: A comparison using light microscopy and DNA metabarcoding. Ecological Entomology, 44(1), 17-29. https://doi.org/10.1111/een.12674.
Macher, J.N., Vivancos, A., Piggott, J.J., Centeno, F.C., Matthaei, C.D., & Leese, F. (2018). Comparison of environmental DNA and bulk‐sample metabarcoding using highly degenerate cytochrome c oxidase I primers.
Molecular Ecology Resources, 18(6), 1456-1468.
https://doi.org/10.1111/1755-0998.12940.
Marshall, N.T., Vanderploeg, H.A., & Chaganti, S.R. (2021). Environmental (e) RNA advances the reliability of eDNA by predicting its age.
Scientific Reports, 11(1), 1-11.
https://doi.org/10.1038/s41598-021-82205-4.
McElroy, M.E., Dressler, T.L., Titcomb, G.C., Wilson, E.A., Deiner, K., Dudley, T.L., Eliason, E.J., Evans, N.T., Gaines, S.D., Lafferty, K.D., & Lamberti, G.A. (2020). Calibrating environmental DNA metabarcoding to conventional surveys for measuring fish species richness.
Frontiers in Ecology and Evolution, 8, 276.
https://doi.org/10.3389/fevo.2020.00276.
McKee, A. M., Spear, S. F., & Pierson, T. W. (2015). The effect of dilution and the use of a post-extraction nucleic acid purification column on the accuracy, precision, and inhibition of environmental DNA samples. Biological Conservation, 183, 70-76. https://doi.org/10.1016/j.biocon.2014.11.031.
Meyer, J. M., Leempoel, K., Losapio, G., & Hadly, E. A. (2020). Molecular ecological network analyses: An effective conservation tool for the assessment of biodiversity, trophic interactions, and community structure.
Frontiers in Ecology and Evolution,
8, 360.
https://doi.org/10.3389/fevo.2020.588430.
Milchunas, D.G., & Lauenroth, W.K. (1993). Quantitative effects of grazing on vegetation and soils over a global range of environments: Ecological Archives M063-001.
Ecological Monographs, 63(4), 327-366.
https://doi.org/10.2307/2937150.
Monge, O., Dumas, D., & Baus, I. (2020). Environmental DNA from avian residual saliva in fruits and its potential uses in population genetics.
Conservation Genetics Resources, 12(1), 131-139.
https://doi.org/10.1007/s12686-018-1074-4.
Myers, N. (1990). Mass extinctions: what can the past tell us about the present and the future?. Palaeogeography, Palaeoclimatology,
Palaeoecology, 82(1-2), 175-185.
https://doi.org/10.1016/S0031-0182(12)80031-9.
NEA UK. 2011. The UK national ecosystem assessment: Synthesis of the key findings. Cambridge: UNEP-WCMC.
https://www.unep-wcmc.org/resources-and-data/the-uk-national-ecosystem-assessment--synthesis-of-the-key-findings-and-technical-reports.
Newmaster, S.G., Thompson, I.D., Steeves, R.A., Rodgers, A.R., Fazekas, A.J., Maloles, J.R., McMullin, R.T., & Fryxell, J.M. (2013). Examination of two new technologies to assess the diet of woodland caribou: video recorders attached to collars and DNA barcoding.
Canadian Journal of Forest Research, 43(10), 897-900.
https://doi.org/10.1139/cjfr-2013-0108.
Nichols, R.V., Cromsigt, J.P., & Spong, G. (2015). DNA left on browsed twigs uncovers bite-scale resource use patterns in European ungulates.
Oecologia, 178(1), 275-284.
https://doi.org/10.1007/s00442-014-3196-z.
Nichols, R.V., KOeNIGSSON, H.E.L.E.N.A., Danell, K., & Spong, G. (2012). Browsed twig environmental DNA: diagnostic PCR to identify ungulate species.
Molecular Ecology Resources, 12(6), 983-989.
https://doi.org/10.1111/j.1755-0998.2012.03172.x.
Olsen, B.R., Troedsson, C., Hadziavdic, K., Pedersen, R.B., & Rapp, H.T. (2014). A molecular gut content study of
Themisto abyssorum (Amphipoda) from A rctic hydrothermal vent and cold seep systems.
Molecular Ecology, 23(15), 3877-3889.
https://doi.org/10.1111/mec.12511.
Pawlowski, J., Apothéloz‐Perret‐Gentil, L. & Altermatt, F. (2020). Environmental DNA: What's behind the term? Clarifying the terminology and recommendations for its future use in biomonitoring. Molecular Ecology, 29(22), 4258-4264. https://doi.org/10.1111/mec.15643.
Pegard, A., Miquel, C., Valentini, A., Coissac, E., Bouvier, F., François, D., Taberlet, P., Engel, E., & Pompanon, F. (2009). Universal DNA-based methods for assessing the diet of grazing livestock and wildlife from feces.
Journal of Agricultural and Food Chemistry, 57(13), 5700-5706.
https://doi.org/10.1021/jf803680c.
Piaggio, A.J., Engeman, R.M., Hopken, M.W., Humphrey, J.S., Keacher, K.L., Bruce, W.E., & Avery, M.L. (2014). Detecting an elusive invasive species: a diagnostic PCR to detect Burmese python in Florida waters and an assessment of persistence of environmental DNA.
Molecular Ecology Resources, 14(2), 374-380.
https://doi.org/10.1111/1755-0998.12180.
Pompanon, F., Deagle, B.E., Symondson, W.O., Brown, D.S., Jarman, S.N., & Taberlet, P. (2012). Who is eating what: diet assessment using next generation sequencing.
Molecular Ecology, 21(8), 1931-1950.
https://doi.org/10.1111/j.1365-294X.2011.05403.x.
Qu, C., & Stewart, K.A. (2019). Evaluating monitoring options for conservation: comparing traditional and environmental DNA tools for a critically endangered mammal.
The Science of Nature,
106(3), 1-9.
https://doi.org/10.1007/s00114-019-1605-1.
Quéméré, E., Hibert, F., Miquel, C., Lhuillier, E., Rasolondraibe, E., Champeau, J., Rabarivola, C., Nusbaumer, L., Chatelain, C., Gautier, L., & Ranirison, P. (2013). A DNA metabarcoding study of a primate dietary diversity and plasticity across its entire fragmented range.
PloS One, 8(3), e58971.
https://doi.org/10.1371/journal.pone.0058971.
Rasmussen, A. J., Nielsen, M., Mak, S.S., Döring, J., Klincke, F., Gopalakrishnan, S., Dunn, R.R., Kauer, R., & Gilbert, M.T.P. (2021). eDNA‐based biomonitoring at an experimental German vineyard to characterize how management regimes shape ecosystem diversity.
Environmental DNA, 3(1), 70-82.
https://doi.org/10.1002/edn3.131.
Robledo‐Arnuncio, J.J., & Garcia, C. (2007). Estimation of the seed dispersal kernel from exact identification of source plants.
Molecular Ecology, 16(23), 5098-5109.
https://doi.org/10.1111/j.1365-294X.2007.03427.x.
Rodriguez‐Ezpeleta, N., Morissette, O., Bean, C.W., Manu, S., Banerjee, P., Lacoursière‐Roussel, A., Beng, K.C., Alter, S.E., Roger, F., Holman, L.E. & Stewart, K.A., Monaghan, M.T., Mauvisseau, Q., Mirimin, L., Wangensteen, O.S., Antognazza, C.M., Helyar, S.J., Boer, H., Monchamp, M., Nijland, R., Abbott, C. L., Doi, H., Barnes, M.A., Leray, M., Hablützel, P.I., Deiner K. (2021). Trade‐offs between reducing complex terminology and producing accurate interpretations from environmental DNA: Comment on “Environmental DNA: What's behind the term?” by Pawlowski et al., (2020).
Molecular Ecology.
https://doi.org/10.1111/mec.15942.
Román-Palacios, C., & Wiens, J.J. (2020). Recent responses to climate change reveal the drivers of species extinction and survival.
Proceedings of the National Academy of Sciences, 117(8), 4211-4217.
https://doi.org/10.1073/pnas.1913007117.
Roslin, T., & Majaneva, S. (2016). The use of DNA barcodes in food web construction—terrestrial and aquatic ecologists unite!.
Genome,
59(9), 603-628.
https://doi.org/10.1139/gen-2015-0229.
Sargent, R.D., & Ackerly, D.D. (2008). Plant–pollinator interactions and the assembly of plant communities.
Trends in Ecology & Evolution, 23(3), 123-130.
https://doi.org/10.1016/j.tree.2007.11.003.
Sassoubre, L.M., Yamahara, K.M., Gardner, L.D., Block, B.A., & Boehm, A.B. (2016). Quantification of environmental DNA (eDNA) shedding and decay rates for three marine fish. Environmental Science & Technology, 50(19), https://doi.org/10456-10464. 10.1021/acs.est.6b03114.
Schallhart, N., Tusch, M.J., Wallinger, C., Staudacher, K., & Traugott, M. (2012). Effects of plant identity and diversity on the dietary choice of a soil‐living insect herbivore.
Ecology, 93(12), 2650-2657.
https://doi.org/10.1890/11-2067.1.
Schirawski, J., & Perlin, M.H. (2018). Plant–microbe interaction 2017—the good, the bad and the diverse.
International Journal of Molecular Sciences, 19, 1374
https://doi.org/10.3390/ijms19051374.
Sheppard S.K., Bell J., Sunderland K.D., Fenlon J., Skervin D., & Symondson W.O.C. (2005). Detection of secondary predation by PCR analyses of the gut contents of invertebrate generalist predators.
Molecular Ecology, 14: 4461–4468.
https://doi.org/10.1111/j.1365-294X.2005.02742.x.
Sheth, B.P. & Thaker, V.S. (2017). DNA barcoding and traditional taxonomy: an integrated approach for biodiversity conservation. Genome, 60(7), 618-628. https://doi.org/10.1139/gen-2015-0167
Simmons, B.I., Wauchope, H.S., Amano, T., Dicks, L.V., Sutherland, W.J., & Dakos, V. (2020). Estimating the risk of species interaction loss in mutualistic communities.
PLoS Biology, 18(8), e3000843.
https://doi.org/10.1371/journal.pbio.3000843.
Singh, G. B. (2015). Fundamentals of Bioinformatics and Computational Biology. Springer.
Stewart, K., Ma, H., Zheng, J., & Zhao, J. (2017). Using environmental DNA to assess population‐wide spatiotemporal reserve use.
Conservation Biology, 31(5), 1173-1182.
https://doi.org/10.1111/cobi.12910.
Stewart, K.A. (2019). Understanding the effects of biotic and abiotic factors on sources of aquatic environmental DNA.
Biodiversity and Conservation,
28(5), 983-1001.
https://doi.org/10.1007/s10531-019-01709-8.
Stewart, K.A., & Taylor, S.A. (2020). Leveraging eDNA to expand the study of hybrid zones. Molecular Ecology, 29(15), 2768-2776.
https://doi.org/10.1111/mec.15514.
Taberlet, P., Bonin, A., Zinger, L., & Coissac, E. (2018). Environmental DNA: For biodiversity research and monitoring. Oxford University Press.
Taberlet, P., Coissac, E., Hajibabaei, M., & Rieseberg, L.H. (2012). Environmental DNA.
Molecular Ecology, 21(8), 1789-1793.
https://doi.org/10.1111/j.1365-294X.2012.05542.x.
ter Schure, A.T., Pillai, A.A., Thorbek, L., Bhavani Shankar, M., Puri, R., Ravikanth, G., de Boer, H.J., & Boessenkool, S. (2021). eDNA metabarcoding reveals dietary niche overlap among herbivores in an Indian wildlife sanctuary.
Environmental DNA, 3(3), 681-696.
https://doi.org/10.1002/edn3.168.
Thomsen, P. F., & Sigsgaard, E. E. (2019). Environmental DNA metabarcoding of wild flowers reveals diverse communities of terrestrial arthropods.
Ecology and Evolution,
9(4), 1665-1679.
https://doi.org/10.1002/ece3.4809.
Tillotson, M. D., Kelly, R. P., Duda, J. J., Hoy, M., Kralj, J., & Quinn, T. P. (2018). Concentrations of environmental DNA (eDNA) reflect spawning salmon abundance at fine spatial and temporal scales.
Biological Conservation, 220, 1-11.
https://doi.org/10.1016/j.biocon.2018.01.030.
Tournayre, O., Leuchtmann, M., Galan, M., Trillat, M., Piry, S., Pinaud, D., Filippi‐Codaccioni, O., Pontier, D., & Charbonnel, N. (2021). eDNA metabarcoding reveals a core and secondary diets of the greater horseshoe bat with strong spatio‐temporal plasticity.
Environmental DNA, 3(1), 277-296.
https://doi.org/10.1002/edn3.167.
Tsuri, K., Ikeda, S., Hirohara, T., Shimada, Y., Minamoto, T., & Yamanaka, H. (2021). Messenger RNA typing of environmental RNA (eRNA): A case study on zebrafish tank water with perspectives for the future development of eRNA analysis on aquatic vertebrates.
Environmental DNA, 3(1), 14-21.
https://doi.org/10.1002/edn3.169.
Utzeri, V.J., Schiavo, G., Ribani, A., Tinarelli, S., Bertolini, F., Bovo, S., & Fontanesi, L. (2018). Entomological signatures in honey: an environmental DNA metabarcoding approach can disclose information on plant-sucking insects in agricultural and forest landscapes.
Scientific Reports, 8(1), 1-13.
https://doi.org/10.1038/s41598-018-27933-w.
Valentin, R.E., Fonseca, D.M., Gable, S., Kyle, K.E., Hamilton, G.C., Nielsen, A.L., & Lockwood, J.L. (2020). Moving eDNA surveys onto land: Strategies for active eDNA aggregation to detect invasive forest insects.
Molecular Ecology Resources, 20(3), 746-755.
https://doi.org/10.1111/1755-0998.13151.
Valentini, A., Pompanon, F., & Taberlet, P. (2009). DNA barcoding for ecologists.
Trends in Ecology & Evolution, 24(2), 110-117.
https://doi.org/10.1016/j.tree.2008.09.011.
Valiente‐Banuet, A., Aizen, M.A., Alcántara, J.M., Arroyo, J., Cocucci, A., Galetti, M., García, M.B., García, D., Gómez, J.M., Jordano, P., & Medel, R. (2015). Beyond species loss: the extinction of ecological interactions in a changing world. Functional Ecology, 29(3), 299-307.
https://doi.org/10.1111/1365-2435.12356.
van Beeck Calkoen, S. T., Leigh-Moy, K., Cromsigt, J.P.G.M., Spong, G., Lebeau, L.C., & heurich, M. (2019). The blame game: Using eDNA to identify species-specific tree browsing by red deer (
Cervus elaphus) and roe deer (
Capreolus capreolus) in a temperate forest.
Forest Ecology and Management, 451, 117483.
https://doi.org/10.1016/j.foreco.2019.117483.
Veilleux, H.D., Misutka, M.D., & Glover, C.N. (2021). Environmental DNA and environmental RNA: current and prospective applications for biological monitoring.
Science of The Total Environment, 46891.
https://doi.org/10.1016/j.scitotenv.2021.146891.
Wirta, H., Várkonyi, G., Rasmussen, C., Kaartinen, R., Schmidt, N.M., Hebert, P.D.N., Bartak, M., Blagoev, G., Disney, H., Ertl, S., Gjelstrup, P., Gwiazdowicz, D. J., Huldén L., Ilmonen J., Jakovlev J., Jaschhof M., Kahanpää J., Kankaanpää T., Krogh P. H., Labbee R., Lettner C., Michelsen V., Nielsen S. A., Nielsen T. R., Paasivirta L., Pedersen S., Pohjoismäki J., Salmela J., Vilkamaa P., Väre H., von Tschirnhaus M., & Roslin T. (2016). Establishing a community‐wide DNA barcode library as a new tool for arctic research.
Molecular Ecology Resources, 16(3), 809-822.
https://doi.org/10.1111/1755-0998.12489.
Wirta, H.K., Hebert, P.D.N., Kaartinen, R., Prosser, S.W., Várkonyi, G., & Roslin, T. (2014). Complementary molecular information changes our perception of food web structure.
Proceedings of the National Academy of Sciences, U.S.A., 111, 1885–1890.
https://doi.org/10.1073/pnas.1316990111.
Wirta, H.K., Vesterinen, E.J., Hambäck, P.A., Weingartner, E., Rasmussen, C., Reneerkens, J., Schmidt, N.M., Gilg, O., & Roslin, T. (2015a). Exposing the structure of an Arctic food web.
Ecology and Evolution, 5(17), 3842-3856.
https://doi.org/10.1002/ece3.1647.
Wirta, H.K., Weingartner, E., Hambäck, P.A., & Roslin, T. (2015b). Extensive niche overlap among the dominant arthropod predators of the High Arctic.
Basic and Applied Ecology, 16(1), 86-92.
https://doi.org/10.1016/j.baae.2014.11.003.
Wirth, R., Meyer, S.T., Leal, I.R., & Tabarelli, M. (2008). Plant herbivore interactions at the forest edge. In Progress in botany (pp. 423-448). Springer, Berlin, Heidelberg.
Xie, Y., Wang, J., Yang, J., Giesy, J.P., Yu, H., & Zhang, X. (2017). Environmental DNA metabarcoding reveals primary chemical contaminants in freshwater sediments from different land-use types.
Chemosphere, 172, 201-209.
https://doi.org/10.1016/j.chemosphere.2016.12.117.