Literature Cited:
Arif, S., Graham, N., Wilson, S., MacNeil, A. (2021) Causal drivers of
climate-mediated coral reef regime shifts. Ecosphere , in press
(accepted).
Akaike, H. (1973). Information theory and an extension of the maximum
likelihood principle. In Second International Symposium on
Information Theory, Ed(s). Petrov, B.N., Csaki, B.F. Academiai Kiado:
Budapest, pp 267-281.
Brook, B., Sodhi, N., Ng, P. (2003). Catastrophic extinctions follow
deforestation in Singapore. Nature , 424, 420-423.
Chinn, S.M., Kilgo, J.C., Vukovich, M.A., Beasley, J.C. (2021).
Influence of intrinsic and
extrinsic attributes on neonate survival in an invasive large mammal.Sci Rep , 11, 11033.
https://doi.org/10.1038/s41598-021-90495-x
Cinelli, C., Forney, A., Pearl, J. (2021). Crash course in good and bad
controls. Technical Report R-493.
Elwert, F. (2013). Graphical causal models. In Handbook of causal
analysis for social research, Ed. Morgan, S.L. Springer, Dordrecht, pp
245-273.
Grace, J. B., M. Loreau, and B. Schmid. (2021). A graphical causal model
for resolving species identity effects and biodiversity–ecosystem
function correlation: comment. Ecology , 0, e03378.
https://doi.org/10.1002/ecy.3378
Graham, N., Jennings, S., MacNeil, A., Mouillot, D., Wilson, S. (2015).
Predicting climate-driven regime shifts versus rebound potential in
coral reefs. Nature , 518, 94-97.
Glymour, C. (2009). Causation and Statistical Inference. In The
Oxford Handbook of Causation , Ed(s). Beebee, H., Hitchcock, C.,
Menzies, P. Oxford University Press, New York, USA.
Griffith, G., Morris, T., Tudball, M., Herbert, A., Mancano, G., Pike,
L. et al . (2020). Collider bias undermines our understanding of
COVID-19 disease risk and severity. Nat Commun , 11, 5749.
Hernan, M. (2018). The C-Word: Scientific euphemisms do not improve
causal inference from observational data. Am J Public Health ,
108(5), 616-619.
Larsen, A., Meng, K., Kendall, B. (2019). Causal analysis in
control-impact ecological studies with observational data. Methods
Ecol Evol , 10, 924-934.
Laubach, Z., Murray, E., Hoke, K., Safran, R., Perng, W. 2021. A
biologist’s guide to model selection and causal inference. Proc
Royal Soc B , 288(1943), 20202815. Doi: 10.1098/rspb.2020.2815.
Lu, X., Chen, X., Zhao, X., Lv, D., Zhang, Y. (2021). Assessing the
impact of land surface temperature on urban net primary productivity
increment based on geographically weighted regression model. Sci
Rep , 11, 22282. https://doi.org/10.1038/s41598-021-01757-7
Luque-Fernandez, M., Schomaker, M., Refondo-Sanchez, D., Perez, M.,
Vaidya, A., Schnitzer, M. (2019). Educational note: paradoxical collider
effect in the analysis of non-communicable disease epidemiological data:
a reproducible illustration and web application. Int J
Epidemeiol , 1(48), 640-653.
MacNeil, A. (2008). Making empirical progress in observational ecology.
Environ Conserv, 35(3), 193-196.
McElreath, R. (2020). Statistical rethinking: A Bayesian course
with examples in R and Stan . CRC Press, Boca Raton, USA.
Millard, J., Outhwaite, C.L., Kinnersley, R., Freeman, R., Gregory, R.,
Adedoja, O. et al . (2021). Global effects of land-use intensity
on local pollinator biodiversity. Nat Commun , 12, 2902.
Montano-Centellas, F., Loiselle, B., Tingley, M. (2020). Ecological
drivers of avian community assembly along a tropical elevation gradient.Ecography , 44(4), 574-588.
Morton, O., Scheffers, B.R., Haugaasen, T., Edwards, D. 2021. Impacts of
wildlife trade on terrestrial biodiversity. Nat Ecol Evol , 5,
540-548.
Pearl, J. (2009). Causality: Models, Reasoning and Inference .
2nd Edition. Cambridge University Press; Cambridge,
UK.
Rode, K., Regehr, E., Bromaghin, J., Wilson, R., Martin, M., Crawford,
J., Quakenbush, L. (2021). Seal body condition and atmospheric
circulation patterns influence polar bear body condition, recruitment,
and feeding ecology in the Chukchi Sea. Glob Chang Biol , 27(12),
2684-2701.
Safaie, A., Silbiger, N.J., McClanahan, T.R., Pawlak, G., Barshis, D.K.,
Hench, J.L. et al . (2018). High frequency temperature variability
reduces the risk of coral bleaching. Nat Commun , 9, 1671.
Sagarin, R., Pauchard, A. (2010). Observational approaches in ecology
open new ground in a changing world. Front Ecol Environ, 8(7), 379-386.
Sala, E., Giakoumi, S. (2018). No-take marine reserves are the most
effective protected areas in the ocean. ICES J Mar Sci , 75(3),
1166-1168.
Schoolmaster Jr., D., Zirbel, C., and Cronin, P. (2020). A graphical
causal model for resolving species identity effects and
biodiversity–ecosystem function correlations. Ecology , 101(8):
e03070.
Schoolmaster Jr., D., Zirbel, C., and Cronin, P. (2021). A graphical
causal model for resolving species identity effects and
biodiversity-ecosystem function correlations: Reply. Ecology , 0,
e03593. doi:10.1002/ecy.3593.
Schwarz, Gideon E. (1978). Estimating the dimension of a model.Ann Stat , 6(2), 461-464.
Sinnot-Armstrong, M., Donoghue, M., Jetz, W. (2021). Dispersers and
environment drive global variation in fruit colour syndromes. Ecol
Lett , 24(7), 1387-1399.
Spiegelhalter, D., Best, N., Carlin, B., van der Linde, A. (2002).
Bayesian measures of model complexity and fit (with discussion). J
R Stat Soc Ser B Methodol , 64(4), 583-639.
Teixeira, H., Montade, V., Salmona, J., Metzger, J., Bremond, L.,
Kasper, T. (2021). Past environmental changes affected lemur population
dynamics prior to human impact in Madagascar. 2021. Commun Biol ,
4, 1084.
Tredennick, A., Hooker, G., Ellner, S., Adler, P. (2021). A practical
guide to selecting models for exploration, inference and prediction in
ecology. Ecology , 102(6), e03336.
Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical Bayesian model
evaluation using leave-one-out cross-validation and WAIC. Stat
Comput , 27(5), 1413-1432.
Watanabe, S. 2013. A widely applicable Bayesian information criterion.J Mach Learn Res , 14, 867-897.
Walker, M., Uribasterra, M., Asher, V., Getz, W., Ryan, S., Ponciano,
J., Blackburn, J. 2021. Factors influencing scavenger guilds and
scavenging efficiency in Southwestern Montana. Sci Rep , 11, 4254.
Table 1. A sample of recent observational ecological studies
that have used model selection techniques to answer causal questions,
where results are communicated using causal language (e.g., effect,
driver, influence).